A Multi-Methodological Study of Kurnakovite: a Potential B-Rich 2 Aggregate 3 4 G
1 A multi-methodological study of kurnakovite: a potential B-rich 2 aggregate 3 4 G. Diego Gatta1, Alessandro Guastoni2, Paolo Lotti1, Giorgio Guastella3, 5 Oscar Fabelo4 and Maria Teresa Fernandez-Diaz4 6 7 1Dipartimento di Scienze della Terra, Università degli Studi di Milano, 8 Via Botticelli 23, I-20133 Milano, Italy 9 2Dipartmento di Geoscienze, Università degli Studi di Padova, 10 Via G. Gradenigo 6, I-35131, Padova, Italy 11 3Agenzia delle Dogane e dei Monopoli, Direzione Regionale per la Lombardia, 12 Laboratorio e Servizi Chimici, Via Marco Bruto 14, I-20138 Milan, Italy 13 4Institut Laue-Langevin, 71 Avenue des Martyrs, F-38000 Grenoble, France 14 15 16 Abstract 17 The crystal structure and crystal chemistry of kurnakovite from Kramer Deposit (Kern 18 County, California), ideally MgB3O3(OH)5·5H2O, was investigated by single-crystal neutron 19 diffraction (data collected at 293 and 20 K) and by a series of analytical techniques aimed to determine 20 its chemical composition. The concentration of more than 50 elements was measured. The empirical 21 formula of the sample used in this study is: Mg0.99(Si0.01B3.00)Σ3.01O.3.00(OH)5·4.98H2O. The fraction 22 of rare earth elements (REE) and other minor elements is, overall, insignificant. Even the fluorine 23 content, as potential OH-group substituent, is insignificant (i.e., ~ 0.008 wt%). The neutron structure 24 model obtained in this study, based on intensity data collected at 293 and 20 K, shows that the 25 structure of kurnakovite contains: [BO2(OH)]-groups in planar-triangular coordination (with the B- 2 26 ions in sp electronic configuration), [BO2(OH)2]-groups in tetrahedral coordination (with the B-ions 3 27 in sp electronic configuration), and Mg(OH)2(H2O)4-octahedra, connected in (neutral) 28 Mg(H2O)4B3O3(OH)5 units forming infinite chains running along [001].
[Show full text]