Global Fissile Material Report 2015 Nuclear Weapon and Fissile Material Stockpiles and Production
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Table 2.Iii.1. Fissionable Isotopes1
FISSIONABLE ISOTOPES Charles P. Blair Last revised: 2012 “While several isotopes are theoretically fissionable, RANNSAD defines fissionable isotopes as either uranium-233 or 235; plutonium 238, 239, 240, 241, or 242, or Americium-241. See, Ackerman, Asal, Bale, Blair and Rethemeyer, Anatomizing Radiological and Nuclear Non-State Adversaries: Identifying the Adversary, p. 99-101, footnote #10, TABLE 2.III.1. FISSIONABLE ISOTOPES1 Isotope Availability Possible Fission Bare Critical Weapon-types mass2 Uranium-233 MEDIUM: DOE reportedly stores Gun-type or implosion-type 15 kg more than one metric ton of U- 233.3 Uranium-235 HIGH: As of 2007, 1700 metric Gun-type or implosion-type 50 kg tons of HEU existed globally, in both civilian and military stocks.4 Plutonium- HIGH: A separated global stock of Implosion 10 kg 238 plutonium, both civilian and military, of over 500 tons.5 Implosion 10 kg Plutonium- Produced in military and civilian 239 reactor fuels. Typically, reactor Plutonium- grade plutonium (RGP) consists Implosion 40 kg 240 of roughly 60 percent plutonium- Plutonium- 239, 25 percent plutonium-240, Implosion 10-13 kg nine percent plutonium-241, five 241 percent plutonium-242 and one Plutonium- percent plutonium-2386 (these Implosion 89 -100 kg 242 percentages are influenced by how long the fuel is irradiated in the reactor).7 1 This table is drawn, in part, from Charles P. Blair, “Jihadists and Nuclear Weapons,” in Gary A. Ackerman and Jeremy Tamsett, ed., Jihadists and Weapons of Mass Destruction: A Growing Threat (New York: Taylor and Francis, 2009), pp. 196-197. See also, David Albright N 2 “Bare critical mass” refers to the absence of an initiator or a reflector. -
This Is a Converted File. Please Check Before Making the Next Change
OEM: When controller is mounted, discard either Table 151 or Table 154 before attaching lower portion of the instruction sheet to your equipment. Table 151 should remain when the controller is mounted in a small enclusure(a volume of 860 cubic inches or less), or in the proximity of heat producing components which have the same effect as a small enclosure. Select Table 154 for use on open panels or in very large enclosures. BULLETIN 520, SIZE 2, 3-PHASE, heater Table 151 element selection table for controllers with Table 154 two Bulletin 592 3-pole overload relays. Heater Full Heater Full Type Load WARNING:To provide continued protec- Type Load No. Amps. tion against fire or shock hazard, the No. Amps. complete overload relay must be replaced W50 8.45 if burnout of any heater element occurs. W50 8.58 W51 9.32 W51 9.48 W52 10.3 W52 10.6 W53 11.3 IMPORTANT: When ordering heater W53 11.7 W54 12.3 elements for this controller, always specify W54 12.8 W55 13.4 the desired “Heater Type No.’ W55 14.1 W56 14.5 W56 15.4 W57 15.8 Motors Rated for Continuous Duty with W57 16.9 W58 16.7 Marked Service Factor Not Less Than 1.15 or W58 18.3 W59 18.1 Marked Temperature Rise Not Over 40°C. W59 19.9 W60 20.0 Select the ”Heater Type No.” with the listed W60 21.9 W61 22.0 “Full Load Amps.” nearest the full load W61 24.2 W62 24.5 current value shown on the motor W62 26.8 W63 27.3 nameplate when the ambient temperature W63 29.6 W64 29.2 at the controller and the motor is the same. -
Combating Illicit Trafficking in Nuclear and Other Radioactive Material Radioactive Other Traffickingand Illicit Nuclear Combating in 6 No
8.8 mm IAEA Nuclear Security Series No. 6 Technical Guidance Reference Manual IAEA Nuclear Security Series No. 6 in Combating Nuclear Illicit and Trafficking other Radioactive Material Combating Illicit Trafficking in Nuclear and other Radioactive Material This publication is intended for individuals and organizations that may be called upon to deal with the detection of and response to criminal or unauthorized acts involving nuclear or other radioactive material. It will also be useful for legislators, law enforcement agencies, government officials, technical experts, lawyers, diplomats and users of nuclear technology. In addition, the manual emphasizes the international initiatives for improving the security of nuclear and other radioactive material, and considers a variety of elements that are recognized as being essential for dealing with incidents of criminal or unauthorized acts involving such material. Jointly sponsored by the EUROPOL WCO INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA ISBN 978–92–0–109807–8 ISSN 1816–9317 07-45231_P1309_CovI+IV.indd 1 2008-01-16 16:03:26 COMBATING ILLICIT TRAFFICKING IN NUCLEAR AND OTHER RADIOACTIVE MATERIAL REFERENCE MANUAL The Agency’s Statute was approved on 23 October 1956 by the Conference on the Statute of the IAEA held at United Nations Headquarters, New York; it entered into force on 29 July 1957. The Headquarters of the Agency are situated in Vienna. Its principal objective is “to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world’’. IAEA NUCLEAR SECURITY SERIES No. 6 TECHNICAL GUIDANCE COMBATING ILLICIT TRAFFICKING IN NUCLEAR AND OTHER RADIOACTIVE MATERIAL REFERENCE MANUAL JOINTLY SPONSORED BY THE EUROPEAN POLICE OFFICE, INTERNATIONAL ATOMIC ENERGY AGENCY, INTERNATIONAL POLICE ORGANIZATION, AND WORLD CUSTOMS ORGANIZATION INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA, 2007 COPYRIGHT NOTICE All IAEA scientific and technical publications are protected by the terms of the Universal Copyright Convention as adopted in 1952 (Berne) and as revised in 1972 (Paris). -
Rulemaking for Enhanced Security of Special Nuclear Material
Rulemaking for Enhanced Security of Special Nuclear Material RIN number: 3150-AJ41 NRC Docket ID: NRC-2014-0118 Regulatory Basis Document January 2015 Table of Contents 1. Introduction and Background .............................................................................................. 1 2. Existing Regulatory Framework .......................................................................................... 3 2.1 Regulatory History ............................................................................................................. 3 2.2 Existing Regulatory Requirements .................................................................................... 8 3. Regulatory Problem .......................................................................................................... 13 3.1 Generic Applicability of Security Orders .......................................................................... 13 3.2 Risk Insights .................................................................................................................... 16 3.3 Consistency and Clarity .................................................................................................. 27 3.4 Use of a Risk-Informed and Performance-Based Structure. ........................................... 29 4. Basis for Requested Changes ........................................................................................... 30 4.1 Material Categorization and Attractiveness ..................................................................... 30 4.2 -
Thierry Moreau
Compilation and Hardware Support for Approximate Acceleration Thierry Moreau, Adrian Sampson, Andre Baixo, Mark Wyse, Ben Ransford, Jacob Nelson, Hadi Esmaeilzadeh (Georgia Tech), Luis Ceze and Mark Oskin University of Washington [email protected] Theme: 2384.004 1 Thierry Moreau Approximate Computing Aims to exploit application resilience to trade-off quality for efficiency 2 Thierry Moreau Approximate Computing 3 Thierry Moreau Approximate Computing ✅ Accurate ✅ Approximate ❌ Expensive ✅ Cheap 4 Thierry Moreau 5 Thierry Moreau 6 Thierry Moreau 7 Thierry Moreau Neural Networks as Approximate Accelerators CPU Esmaeilzadeh et al. [MICRO 2012] 8 Thierry Moreau Neural Acceleration float foo (float a, float b) { AR F … NPUM P G return val; approximation acceleration } 9 Thierry Moreau Neural Acceleration compiler-support float foo (float a, float b) { AR F … NPUM P G return val; approximation acceleration } ACCEPT* *Sampson et. al [UW-TR] 10 Thierry Moreau Neural Acceleration compiler-support HW-support float foo (float a, float b) { AR F … NPUM P G return val; approximation acceleration } ACCEPT SNNAP* *Moreau et. al [HPCA2015] 11 Thierry Moreau Neural Acceleration compiler-support HW-support float foo (float a, float b) { AR F … NPUM P G return val; approximation acceleration } ACCEPT SNNAP 3.8x speedup and 2.8x efficiency - 10% error 12 Thierry Moreau Talk Outline Introduction Compiler Support with ACCEPT SNNAP Accelerator design Evaluation & Comparison with HLS 13 Thierry Moreau Compilation Overview code 1. Region detection annotation 14 Thierry Moreau Compilation Overview ACCEPT code region detection 1. Region detection & program annotation instrumentation 15 Thierry Moreau Compilation Overview ACCEPT code region detection 1. Region detection & program annotation instrumentation back prop. -
A Fissile Material Cut-Off Treaty N I T E D Understanding the Critical Issues N A
U N I D I R A F i s s i l e M a A mandate to negotiate a treaty banning the production of fissile material t e r i for nuclear weapons has been under discussion in the Conference of a l Disarmament (CD) in Geneva since 1994. On 29 May 2009 the Conference C u on Disarmament agreed a mandate to begin those negotiations. Shortly t - o afterwards, UNIDIR, with the support of the Government of Switzerland, f f T launched a project to support this process. r e a t This publication is a compilation of various products of the project, y : that hopefully will help to illuminate the critical issues that will need to U n be addressed in the negotiation of a treaty that stands to make a vital d e r contribution to the cause of nuclear disarmament and non-proliferation. s t a n d i n g t h e C r i t i c a l I s s u e s UNITED NATIONS INSTITUTE FOR DISARMAMENT RESEARCH U A Fissile Material Cut-off Treaty N I T E D Understanding the Critical Issues N A Designed and printed by the Publishing Service, United Nations, Geneva T I GE.10-00850 – April 2010 – 2,400 O N UNIDIR/2010/4 S UNIDIR/2010/4 A Fissile Material Cut-off Treaty Understanding the Critical Issues UNIDIR United Nations Institute for Disarmament Research Geneva, Switzerland New York and Geneva, 2010 Cover image courtesy of the Offi ce of Environmental Management, US Department of Energy. -
Uranium 2001: Resources, Production and Demand
A Joint Report by the OECD Nuclear Energy Agency and the International Atomic Energy Agency Uranium 2001: Resources, Production and Demand NUCLEAR ENERGY AGENCY ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT ORGANISATION FOR ECONOMIC CO-OPERATION AND DEVELOPMENT Pursuant to Article 1 of the Convention signed in Paris on 14th December 1960, and which came into force on 30th September 1961, the Organisation for Economic Co-operation and Development (OECD) shall promote policies designed: − to achieve the highest sustainable economic growth and employment and a rising standard of living in Member countries, while maintaining financial stability, and thus to contribute to the development of the world economy; − to contribute to sound economic expansion in Member as well as non-member countries in the process of economic development; and − to contribute to the expansion of world trade on a multilateral, non-discriminatory basis in accordance with international obligations. The original Member countries of the OECD are Austria, Belgium, Canada, Denmark, France, Germany, Greece, Iceland, Ireland, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, Turkey, the United Kingdom and the United States. The following countries became Members subsequently through accession at the dates indicated hereafter: Japan (28th April 1964), Finland (28th January 1969), Australia (7th June 1971), New Zealand (29th May 1973), Mexico (18th May 1994), the Czech Republic (21st December 1995), Hungary (7th May 1996), Poland (22nd November 1996), Korea (12th December 1996) and the Slovak Republic (14 December 2000). The Commission of the European Communities takes part in the work of the OECD (Article 13 of the OECD Convention). -
Re-Examining the Role of Nuclear Fusion in a Renewables-Based Energy Mix
Re-examining the Role of Nuclear Fusion in a Renewables-Based Energy Mix T. E. G. Nicholasa,∗, T. P. Davisb, F. Federicia, J. E. Lelandc, B. S. Patela, C. Vincentd, S. H. Warda a York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD, UK b Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH c Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, L69 3GJ, UK d Centre for Advanced Instrumentation, Department of Physics, Durham University, Durham DH1 3LS, UK Abstract Fusion energy is often regarded as a long-term solution to the world's energy needs. However, even after solving the critical research challenges, engineer- ing and materials science will still impose significant constraints on the char- acteristics of a fusion power plant. Meanwhile, the global energy grid must transition to low-carbon sources by 2050 to prevent the worst effects of climate change. We review three factors affecting fusion's future trajectory: (1) the sig- nificant drop in the price of renewable energy, (2) the intermittency of renewable sources and implications for future energy grids, and (3) the recent proposition of intermediate-level nuclear waste as a product of fusion. Within the scenario assumed by our premises, we find that while there remains a clear motivation to develop fusion power plants, this motivation is likely weakened by the time they become available. We also conclude that most current fusion reactor designs do not take these factors into account and, to increase market penetration, fu- sion research should consider relaxed nuclear waste design criteria, raw material availability constraints and load-following designs with pulsed operation. -
Nuclear Regulatory Commission § 70.5
Nuclear Regulatory Commission § 70.5 section 51 of the act, determines to be intermediates, which are unsuitable for special nuclear material, but does not use in their present form, but all or include source material; or (2) any ma- part of which will be used after further terial artificially enriched by any of processing. the foregoing but does not include Strategic special nuclear material source material; means uranium-235 (contained in ura- Special nuclear material of low strategic nium enriched to 20 percent or more in significance means: the U235 isotope), uranium-233, or pluto- (1) Less than an amount of special nium. nuclear material of moderate strategic Transient shipment means a shipment significance as defined in paragraph (1) of nuclear material, originating and of the definition of strategic nuclear terminating in foreign countries, on a material of moderate strategic signifi- vessel or aircraft which stops at a cance in this section, but more than 15 United States port. grams of uranium-235 (contained in Unacceptable performance deficiencies uranium enriched to 20 percent or more mean deficiencies in the items relied in U-235 isotope) or 15 grams of ura- on for safety or the management meas- nium-233 or 15 grams of plutonium or ures that need to be corrected to en- the combination of 15 grams when com- sure an adequate level of protection as puted by the equation, grams = (grams defined in 10 CFR 70.61(b), (c), or (d). contained U-235) + (grams plutonium) + United States, when used in a geo- (grams U-233); or graphical sense, includes Puerto Rico (2) Less than 10,000 grams but more and all territories and possessions of than 1,000 grams of uranium-235 (con- the United States. -
Article Thermonuclear Bomb 5 7 12
1 Inexpensive Mini Thermonuclear Reactor By Alexander Bolonkin [email protected] New York, April 2012 2 Article Thermonuclear Reactor 1 26 13 Inexpensive Mini Thermonuclear Reactor By Alexander Bolonkin C&R Co., [email protected] Abstract This proposed design for a mini thermonuclear reactor uses a method based upon a series of important innovations. A cumulative explosion presses a capsule with nuclear fuel up to 100 thousands of atmospheres, the explosive electric generator heats the capsule/pellet up to 100 million degrees and a special capsule and a special cover which keeps these pressure and temperature in capsule up to 0.001 sec. which is sufficient for Lawson criteria for ignition of thermonuclear fuel. Major advantages of these reactors/bombs is its very low cost, dimension, weight and easy production, which does not require a complex industry. The mini thermonuclear bomb can be delivered as a shell by conventional gun (from 155 mm), small civil aircraft, boat or even by an individual. The same method may be used for thermonuclear engine for electric energy plants, ships, aircrafts, tracks and rockets. ----------------------------------------------------------------------- Key words: Thermonuclear mini bomb, thermonuclear reactor, nuclear energy, nuclear engine, nuclear space propulsion. Introduction It is common knowledge that thermonuclear bombs are extremely powerful but very expensive and difficult to produce as it requires a conventional nuclear bomb for ignition. In stark contrast, the Mini Thermonuclear Bomb is very inexpensive. Moreover, in contrast to conventional dangerous radioactive or neutron bombs which generates enormous power, the Mini Thermonuclear Bomb does not have gamma or neutron radiation which, in effect, makes it a ―clean‖ bomb having only the flash and shock wave of a conventional explosive but much more powerful (from 1 ton of TNT and more, for example 100 tons). -
Analysis of Zirconium and Nickel Based Alloys and Zirconium Oxides
NET318_proof ■ 22 February 2017 ■ 1/7 Nuclear Engineering and Technology xxx (2017) 1e7 Available online at ScienceDirect 65 66 1 67 2 Nuclear Engineering and Technology 68 3 69 4 70 5 journal homepage: www.elsevier.com/locate/net 71 6 72 7 73 8 74 9 Original Article 75 10 76 11 Analysis of Zirconium and Nickel Based Alloys and 77 12 78 13 Zirconium Oxides by Relative and Internal 79 14 80 15 81 16 Monostandard Neutron Activation Analysis 82 17 83 18 Q1 Methods 84 19 85 20 * 86 21 a b, a,1 Q15 Q2Amol D. Shinde , R. Acharya , and A.V.R. Reddy 87 22 88 Q3 a Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India 23 89 b Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India 24 90 25 91 26 92 article info abstract 27 93 28 94 29 Article history: Background: The chemical characterization of metallic alloys and oxides is conventionally 95 30 Received 9 March 2016 carried out by wet chemical analytical methods and/or instrumental methods. Instru- 96 31 Received in revised form mental neutron activation analysis (INAA) is capable of analyzing samples nondestruc- 97 32 1 August 2016 tively. As a part of a chemical quality control exercise, Zircaloys 2 and 4, nimonic alloy, and 98 33 99 34 Accepted 19 September 2016 zirconium oxide samples were analyzed by two INAA methods. The samples of alloys and Available online xxx oxides were also analyzed by inductively coupled plasma optical emission spectroscopy 100 35 101 (ICP-OES) and direct current Arc OES methods, respectively, for quality assurance pur- 36 102 Keywords: poses. -
Jihadists and Nuclear Weapons
VERSION: Charles P. Blair, “Jihadists and Nuclear Weapons,” in Gary Ackerman and Jeremy Tamsett, eds., Jihadists and Weapons of Mass Destruction: A Growing Threat (New York: Taylor and Francis, 2009), pp. 193-238. c h a p t e r 8 Jihadists and Nuclear Weapons Charles P. Blair CONTENTS Introduction 193 Improvised Nuclear Devices (INDs) 195 Fissile Materials 198 Weapons-Grade Uranium and Plutonium 199 Likely IND Construction 203 External Procurement of Intact Nuclear Weapons 204 State Acquisition of an Intact Nuclear Weapon 204 Nuclear Black Market 212 Incidents of Jihadist Interest in Nuclear Weapons and Weapons-Grade Nuclear Materials 213 Al-Qa‘ida 213 Russia’s Chechen-Led Jihadists 214 Nuclear-Related Threats and Attacks in India and Pakistan 215 Overall Likelihood of Jihadists Obtaining Nuclear Capability 215 Notes 216 Appendix: Toward a Nuclear Weapon: Principles of Nuclear Energy 232 Discovery of Radioactive Materials 232 Divisibility of the Atom 232 Atomic Nucleus 233 Discovery of Neutrons: A Pathway to the Nucleus 233 Fission 234 Chain Reactions 235 Notes 236 INTRODUCTION On December 1, 2001, CIA Director George Tenet made a hastily planned, clandestine trip to Pakistan. Tenet arrived in Islamabad deeply shaken by the news that less than three months earlier—just weeks before the attacks of September 11, 2001—al-Qa‘ida and Taliban leaders had met with two former Pakistani nuclear weapon scientists in a joint quest to acquire nuclear weapons. Captured documents the scientists abandoned as 193 AU6964.indb 193 12/16/08 5:44:39 PM 194 Charles P. Blair they fled Kabul from advancing anti-Taliban forces were evidence, in the minds of top U.S.