Quarterly Report Department of Energy Implementation Plan For
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
This Is a Converted File. Please Check Before Making the Next Change
OEM: When controller is mounted, discard either Table 151 or Table 154 before attaching lower portion of the instruction sheet to your equipment. Table 151 should remain when the controller is mounted in a small enclusure(a volume of 860 cubic inches or less), or in the proximity of heat producing components which have the same effect as a small enclosure. Select Table 154 for use on open panels or in very large enclosures. BULLETIN 520, SIZE 2, 3-PHASE, heater Table 151 element selection table for controllers with Table 154 two Bulletin 592 3-pole overload relays. Heater Full Heater Full Type Load WARNING:To provide continued protec- Type Load No. Amps. tion against fire or shock hazard, the No. Amps. complete overload relay must be replaced W50 8.45 if burnout of any heater element occurs. W50 8.58 W51 9.32 W51 9.48 W52 10.3 W52 10.6 W53 11.3 IMPORTANT: When ordering heater W53 11.7 W54 12.3 elements for this controller, always specify W54 12.8 W55 13.4 the desired “Heater Type No.’ W55 14.1 W56 14.5 W56 15.4 W57 15.8 Motors Rated for Continuous Duty with W57 16.9 W58 16.7 Marked Service Factor Not Less Than 1.15 or W58 18.3 W59 18.1 Marked Temperature Rise Not Over 40°C. W59 19.9 W60 20.0 Select the ”Heater Type No.” with the listed W60 21.9 W61 22.0 “Full Load Amps.” nearest the full load W61 24.2 W62 24.5 current value shown on the motor W62 26.8 W63 27.3 nameplate when the ambient temperature W63 29.6 W64 29.2 at the controller and the motor is the same. -
Thierry Moreau
Compilation and Hardware Support for Approximate Acceleration Thierry Moreau, Adrian Sampson, Andre Baixo, Mark Wyse, Ben Ransford, Jacob Nelson, Hadi Esmaeilzadeh (Georgia Tech), Luis Ceze and Mark Oskin University of Washington [email protected] Theme: 2384.004 1 Thierry Moreau Approximate Computing Aims to exploit application resilience to trade-off quality for efficiency 2 Thierry Moreau Approximate Computing 3 Thierry Moreau Approximate Computing ✅ Accurate ✅ Approximate ❌ Expensive ✅ Cheap 4 Thierry Moreau 5 Thierry Moreau 6 Thierry Moreau 7 Thierry Moreau Neural Networks as Approximate Accelerators CPU Esmaeilzadeh et al. [MICRO 2012] 8 Thierry Moreau Neural Acceleration float foo (float a, float b) { AR F … NPUM P G return val; approximation acceleration } 9 Thierry Moreau Neural Acceleration compiler-support float foo (float a, float b) { AR F … NPUM P G return val; approximation acceleration } ACCEPT* *Sampson et. al [UW-TR] 10 Thierry Moreau Neural Acceleration compiler-support HW-support float foo (float a, float b) { AR F … NPUM P G return val; approximation acceleration } ACCEPT SNNAP* *Moreau et. al [HPCA2015] 11 Thierry Moreau Neural Acceleration compiler-support HW-support float foo (float a, float b) { AR F … NPUM P G return val; approximation acceleration } ACCEPT SNNAP 3.8x speedup and 2.8x efficiency - 10% error 12 Thierry Moreau Talk Outline Introduction Compiler Support with ACCEPT SNNAP Accelerator design Evaluation & Comparison with HLS 13 Thierry Moreau Compilation Overview code 1. Region detection annotation 14 Thierry Moreau Compilation Overview ACCEPT code region detection 1. Region detection & program annotation instrumentation 15 Thierry Moreau Compilation Overview ACCEPT code region detection 1. Region detection & program annotation instrumentation back prop. -
Heater Element Specifications Bulletin Number 592
Technical Data Heater Element Specifications Bulletin Number 592 Topic Page Description 2 Heater Element Selection Procedure 2 Index to Heater Element Selection Tables 5 Heater Element Selection Tables 6 Additional Resources These documents contain additional information concerning related products from Rockwell Automation. Resource Description Industrial Automation Wiring and Grounding Guidelines, publication 1770-4.1 Provides general guidelines for installing a Rockwell Automation industrial system. Product Certifications website, http://www.ab.com Provides declarations of conformity, certificates, and other certification details. You can view or download publications at http://www.rockwellautomation.com/literature/. To order paper copies of technical documentation, contact your local Allen-Bradley distributor or Rockwell Automation sales representative. For Application on Bulletin 100/500/609/1200 Line Starters Heater Element Specifications Eutectic Alloy Overload Relay Heater Elements Type J — CLASS 10 Type P — CLASS 20 (Bul. 600 ONLY) Type W — CLASS 20 Type WL — CLASS 30 Note: Heater Element Type W/WL does not currently meet the material Type W Heater Elements restrictions related to EU ROHS Description The following is for motors rated for Continuous Duty: For motors with marked service factor of not less than 1.15, or Overload Relay Class Designation motors with a marked temperature rise not over +40 °C United States Industry Standards (NEMA ICS 2 Part 4) designate an (+104 °F), apply application rules 1 through 3. Apply application overload relay by a class number indicating the maximum time in rules 2 and 3 when the temperature difference does not exceed seconds at which it will trip when carrying a current equal to 600 +10 °C (+18 °F). -
K-12 Individual No. Name Team Gr Rate Pts Tbrk1 Tbrk2 Tbrk3 Tbrk4
K-12 Individual No. Name Team Gr Rate Pts TBrk1 TBrk2 TBrk3 TBrk4 Rnd1 Rnd2 Rnd3 Rnd4 Rnd5 Rnd6 1 Chakraborty, Dipro 11 2299 5.5 21 24 43 20.5 W27 W12 W5 W32 W8 D3 State Champion, AZ Denker Representative 2 Yim, Tony Sung BASISS 8 2135 5 20.5 23.5 38.5 17.5 W24 W10 D3 D16 W11 W9 3 Aletheia-Zomlefer, Soren CHANPR 11 1961 5 20 23 35.5 18.5 W25 W26 D2 W40 W15 D1 4 Desmarais, Nicholas Eduard NOTRED 10 1917 5 18 20 33 18 W39 W23 W18 L15 W10 W8 5 Wong, Kinsleigh Phillip CFHS 10 1992 4.5 20 20 24.5 15 -X- W17 L1 W26 D7 W15 6 Todd, Bryce BASISC 10 1923 4.5 17 19 26.5 14.5 W38 D18 L9 W23 W21 W16 7 Chaliki, Kalyan DSMTHS 9 1726 4.5 17 18.5 26 15 W46 L16 W28 W22 D5 W17 8 Li, Bohan UHS 9 2048 4 22 25 29 18 W30 W11 W45 W9 L1 L4 9 Mittal, Rohan CFHS 9 1916 4 19.5 20.5 23 17 W47 W22 W6 L8 W20 L2 10 Pennock, Joshua CFHS 10 1682 4 19 22 24 14 W31 L2 W25 W21 L4 W29 11 Aradhyula, Sumhith CFHS 9 1631 4 18 20 22 14 W41 L8 W38 W13 L2 W19 12 Johnston, Nicolas Godfrey CFHS 9 1803 4 18 19.5 21 13 W43 L1 W29 L17 W24 W20 13 Martis, Tyler BRHS 12 1787 4 17 18 21 13 W42 L15 W24 L11 W18 W22 14 Plumb, Justin Rodney GCLACA 10 1700 4 16 17 20 13 W51 L32 W19 L20 W28 W27 15 Martinez, Isaac GLPREP 10 2159 3.5 21.5 24.5 27.5 16 W28 W13 D16 W4 L3 L5 16 Chen, Derek H CFHS 10 1965 3.5 21 23.5 26 15.5 W35 W7 D15 D2 D17 L6 17 Woodson, Tyler GILBHS 1640 3.5 19 19 17.5 14 W50 L5 W30 W12 D16 L7 18 Cancio, Aiya CFHS 9 1469 3.5 18.5 20 17.5 12.5 W36 D6 L4 W46 L13 W25 AZ Girls' Invitational Representative 19 Folden, Kurt CHANPR 10 1207 3 14 18 12 10 L32 W50 L14 W31 W23 L11 20 Thornton, -
The Benefits of Moving to an All-W87 ICBM Force the NNSA Is Proposing
The Benefits of Moving to an All-W87 ICBM Force The NNSA is proposing to replace the W78 ICBM warhead with a new W87-1 warhead using a “W87- like” pit. A better alternative Replacing the 200 deployed W78s with the some of the 340 W87s in storage would bring several benefits: 1. Enhanced safety—much sooner: A major feature of the W87-1 is that it would use insensitive high explosives (IHE). As NNSA states in its report W78 Replacement Program (W87-1): Cost Estimates and Insensitive High Explosives: “Replacing the conventional high explosives (CHE) in the current W78 warhead with IHE is the single most significant weapon system change that improves the warhead’s safety and security.” But the W87 also uses IHE and could be deployed now, not in several decades. 2. Less demanding pit production schedule: The W87-1 would use new plutonium pits, which requires the NNSA to start up and then quickly ramp up its pit production from the current zero (and none since 2013) to 80 per year by 2030. As the NNSA states, this will be “challenging.” The alternative would obviate or significantly delay the need to produce 80 pits by 2030. 3. More realistic schedule overall: The NNSA faces significant schedule challenges in producing the W87-1, as it states in the FY19 Stockpile Stewardship & Management Plan: “Production is predicated on all newly manufactured components and a nuclear material manufacturing modernization strategy that relies on large, multi-year investments in component and material capabilities.” 4. Reduced NNSA workload: The NNSA and the weapons complex are already struggling to manage five simultaneous major work programs on weapons in the stockpile while also building the UPF and trying to establish a pit production capacity. -
The Reliable Replacement Warhead Program and the Life Extension Program
Order Code RL33748 Nuclear Warheads: The Reliable Replacement Warhead Program and the Life Extension Program Updated December 3, 2007 Jonathan Medalia Specialist in National Defense Foreign Affairs, Defense, and Trade Division Nuclear Warheads: The Reliable Replacement Warhead Program and the Life Extension Program Summary Current U.S. nuclear warheads were deployed during the Cold War. The National Nuclear Security Administration (NNSA) maintains them with a Life Extension Program (LEP). NNSA questions if LEP can maintain them indefinitely on grounds that an accretion of minor changes introduced in replacement components will inevitably reduce confidence in warhead safety and reliability over the long term. Congress mandated the Reliable Replacement Warhead (RRW) program in 2004 “to improve the reliability, longevity, and certifiability of existing weapons and their components.” Since then, Congress has specified more goals for the program, such as increasing safety, reducing the need for nuclear testing, designing for ease of manufacture, and reducing cost. RRW has become the principal program for designing new warheads to replace current ones. The program’s first step was a design competition. The winning design was selected in March 2007. If the program continues, NNSA would advance the design of the first RRW, assess its technical feasibility, and estimate cost and schedule in FY2008; start engineering development by FY2010; and produce the first deployable RRW between FY2012 and FY2016. Congressional actions on the FY2008 national defense authorization bills (H.R. 1585, S. 1547) and energy and water appropriations bills (H.R. 2641, S. 1751) have called this schedule into question. For details, see CRS Report RL32929, The Reliable Replacement Warhead Program: Background and Current Developments, which provides background and tracks legislation and developments. -
Gao-20-703, Nuclear Weapons
United States Government Accountability Office Report to Congressional Requesters September 2020 NUCLEAR WEAPONS NNSA Should Further Develop Cost, Schedule, and Risk Information for the W87-1 Warhead Program GAO-20-703 September 2020 NUCLEAR WEAPONS NNSA Should Further Develop Cost, Schedule, and Risk Information for the W87-1 Warhead Program Highlights of GAO-20-703, a report to congressional requesters Why GAO Did This Study What GAO Found The Department of Defense (DOD) The National Nuclear Security Administration (NNSA) did not consider cost and NNSA restarted a program in fiscal estimates in early major design decisions for the W87-1 warhead because it was year 2019 to replace the capabilities of not required to do so, but NNSA has since changed its guidance to require that the aging W78 nuclear warhead with cost be considered, according to a May 2019 NNSA review of program the W87-1. NNSA made key design documentation. The design decisions that remain for features that would achieve decisions for this weapon from 2010 either minimum or enhanced requirements for the W87-1 could affect cost, until the program was paused in 2014. according to NNSA officials (see table). We found, however, that NNSA did not NNSA estimated in December 2018 yet have study plans for assessing the costs and benefits of the remaining that the W87-1 would cost $8.6 billion decisions consistent with best practices as detailed in NNSA’s analysis of to $14.8 billion, which could make it the alternatives business procedure. NNSA does not require and only recommends most expensive warhead modernization program to date. -
Taking Stock WORLDWIDE NUCLEAR DEPLOYMENTS 1998
Taking Stock WORLDWIDE NUCLEAR DEPLOYMENTS 1998 BY William M. Arkin Robert S. Norris Joshua Handler NRDC Nuclear Program MARCH 1998 NATURAL RESOURCES DEFENSE COUNCIL, INC. 1200 New York Ave., NW, Suite 400 Washington, D.C. 20005 202/289-6868 VOICE 802-457-3426 (Arkin) 202-289-2369 (Norris) FAX 202-289-1060 INTERNET [email protected] [email protected] Worldwide Nuclear Deployments 1998 i © Copyright, Natural Resources Defense Council, 1998 ii TAKING STOCK Table of Contents Introduction . 1 Methodology . 4 Arms Control and Nuclear Weapons Deployments . 6 Strategic Arms Reduction Treaty (START I) . 6 Strategic Arms Reduction Treaty (START II) . 7 The Intermediate Nuclear Forces (INF) Treaty . 8 Unilateral Initiatives . 8 Future Nuclear Deployments . 11 The United States . 14 Nuclear History . 16 Nuclear Organization . 19 Nuclear Weapons Deployments . 24 Russia . 26 Nuclear Organization . 29 Nuclear Weapons Deployments . 33 Britain . 39 France . 42 China . 45 Appendix A: Locations of U.S. Nuclear Weapons, by Type . 53 Appendix B: U.S. Nuclear Weapons by Location . 55 Appendix C: U.S. Nuclear Weapons, Location Profiles . 56 By State California . 56 Colorado . 57 Georgia. 58 Louisiana . 59 Missouri . 60 Montana . 61 Nebraska . 61 Nevada . 62 New Mexico. 63 North Dakota . 65 Texas . 68 Virginia . 70 Washington . 70 Wyoming . 72 Overseas by Country Belgium . 72 Germany . 73 Greece . 76 Italy . 77 The Netherlands . 78 Turkey . 78 United Kingdom . 79 Appendix D: Location of Russian Nuclear Weapons, by Type . 81 Appendix E: Russian Nuclear Weapons by Location . 84 Appendix F: British Nuclear Weapons by Type and Location . 88 Appendix G: French Nuclear Weapons by Type and Location . -
Nuclear Warhead Safety
OCCASIONAL REPORT NUCLEAR WARHEAD SAFETY The following is an extract from the Report of the Panel on Nuclear Weapons Safety of the Committee on Armed Services House of Representatives, December 1990. The mem- bers of the panel were Sidney D. Drell, chairman, John S. Foster Jr, and Charles H. Townes. oncerns that have been raised recently about the safety of several of the Cnuclear weapons systems in the US arsenal have led the government to take immediate steps to reduce the risk of unintended, accidental detonations that could result in dispersing plutonium into the environment in potentially dangerous amounts, or even generate a nuclear yield. These steps include temporarily removing the short-range air-to-ground attack missiles, SRAM- A, from the alert bombers of the Strategic Air Command and modifying some of the artillery-fired atomic projectiles (AFAPs) deployed with US forces. In addition, the Departments of Defense and Energy, which hold dual responsi- bility for the surety of the US stockpile of nuclear weapons systems—i.e., for their safety, their security, and their control—have initiated studies looking more broadly into safety issues. This is a very important, as well as opportune, moment to undertake a safety review of nuclear weapons for reasons that go well beyond the immedi- ate concerns of several specific weapons. As we enter the last decade of the 20th century, the world is in the midst of profound, and indeed revolutionary, changes in the strategic, political, and military dimensions of international security. These changes, together with a continuing rapid pace of technical advances, create an entirely new context for making choices in the develop- ment of our nuclear forces for the future. -
Global Fissile Material Report 2015 Nuclear Weapon and Fissile Material Stockpiles and Production
Global Fissile Material Report 2015 Nuclear Weapon and Fissile Material Stockpiles and Production Eighth annual report of the International Panel on Fissile Materials Eighth annual report of the International Panel on Fissile Materials Global Fissile Material Report 2015 Nuclear Weapon and Fissile Material Stockpiles and Production 2015 International Panel on Fissile Materials This work is licensed under the Creative Commons Attribution-Noncommercial License To view a copy of this license, visit www.creativecommons.org/licenses/by-nc/3.0 On the cover: the map shows existing uranium enrichment and plutonium separation (reprocessing) facilities. Table of Contents About the IPFM 1 Summary 2 Nuclear Weapons 4 Highly Enriched Uranium 10 Military HEU 13 Civilian Use of HEU 17 Civilian Uranium Enrichment Plants 19 Separated Plutonium 23 Weapons Plutonium 25 Civilian Plutonium 29 Nuclear Weapons, Fissile Materials and Transparency 34 Appendix 1. Fissile Materials and Nuclear Weapons 40 Appendix 2. Uranium Enrichment Plants 48 Appendix 3. Reprocessing Plants 49 Appendix 4. Civilian Plutonium Stockpile Declarations 50 Endnotes 51 About the IPFM The International Panel on Fissile Materials (IPFM) was founded in January 2006. It is an independent group of arms-control and nonproliferation experts from seventeen countries, including both nuclear weapon and non-nuclear weapon states. The mission of the IPFM is to analyze the technical basis for practical and achievable policy initiatives to secure, consolidate, and reduce stockpiles of highly enriched urani- um and plutonium. These fissile materials are the key ingredients in nuclear weapons, and their control is critical to nuclear disarmament, halting the proliferation of nuclear weapons, and ensuring that terrorists do not acquire nuclear weapons. -
Nuclear Weapons Databook, Volume I 3 Stockpile
3 Stockpile Chapter Three USNuclear Stockpile This section describes the 24 types of warheads cur- enriched uranium (oralloy) as its nuclear fissile material rently in the U.S. nuclear stockpile. As of 1983, the total and is considered volatile and unsafe. As a result, its number of warheads was an estimated 26,000. They are nuclear materials and fuzes are kept separately from the made in a wide variety of configurations with over 50 artillery projectile. The W33 can be used in two differ- different modifications and yields. The smallest war- ent yield configurations and requires the assembly and head is the man-portable nuclear land mine, known as insertion of distinct "pits" (nuclear materials cores) with the "Special Atomic Demolition Munition" (SADM). the amount of materials determining a "low" or '4high'' The SADM weighs only 58.5 pounds and has an explo- yield. sive yield (W54) equivalent to as little as 10 tons of TNT, In contrast, the newest of the nuclear warheads is the The largest yield is found in the 165 ton TITAN I1 mis- W80,5 a thermonuclear warhead built for the long-range sile, which carries a four ton nuclear warhead (W53) Air-Launched Cruise Missile (ALCM) and first deployed equal in explosive capability to 9 million tons of TNT, in late 1981. The W80 warhead has a yield equivalent to The nuclear weapons stockpile officially includes 200 kilotons of TNT (more than 20 times greater than the only those nuclear missile reentry vehicles, bombs, artil- W33), weighs about the same as the W33, utilizes the lery projectiles, and atomic demolition munitions that same material (oralloy), and, through improvements in are in "active service."l Active service means those electronics such as fuzing and miniaturization, repre- which are in the custody of the Department of Defense sents close to the limits of technology in building a high and considered "war reserve weapons." Excluded are yield, safe, small warhead. -
Draft Project List 2017-04-24
Transportation System Development Charge (TSDC) Project List Total Non- Growth City SDC Eligible Project # Project Name Project Location Estimated Growth Cost Responsibility Cost Cost Cost Share Share Driving Solutions (Intersections, Extensions & Expansions) Molalla Avenue from Washington Street to Molalla Avenue/ Beavercreek Road Adaptive D1 Gaffney Lane; Beavercreek Road from Molalla $1,565,000 75% 25% 100% $391,250 Signal Timing Avenue to Maple Lane Road D2 Beavercreek Road Traffic Surveillance Molalla Avenue to Maple Lane Road $605,000 75% 25% 100% $151,250 D3 Washington Street Traffic Surveillance 7th Street to OR 213 $480,000 75% 25% 100% $120,000 D4 7th Street/Molalla Avenue Traffic Surveillance Washington Street to OR 213 $800,000 75% 25% 100% $200,000 OR 213/ 7th Street-Molalla Avenue/ D5 Washington Street Integrated Corridor I-205 to Henrici Road $1,760,000 75% 25% 30% $132,000 Management D6 OR 99E Integrated Corridor Management OR 224 (in Milwaukie) to 10th Street $720,000 75% 25% 30% $54,000 D7 14th Street Restriping OR 99E to John Adams Street $845,000 74% 26% 100% $216,536 D8 15th Street Restriping OR 99E to John Adams Street $960,000 80% 20% 100% $192,000 OR 213/Beavercreek Road Weather D9 OR 213/Beavercreek Road $120,000 100% 0% 30% $0 Information Station Warner Milne Road/Linn Avenue Road Weather D10 Warner Milne Road/Linn Avenue $120,000 100% 0% 100% $0 Information Station D11 Optimize existing traffic signals Citywide $50,000 75% 25% 100% $12,500 D12 Protected/permitted signal phasing Citywide $65,000 75% 25% 100%