Addressing the Challenges of RE Manufacturing in India: Horizon 2032

Total Page:16

File Type:pdf, Size:1020Kb

Addressing the Challenges of RE Manufacturing in India: Horizon 2032 Addressing the Challenges of RE Manufacturing in India: Horizon 2032 An Initiative Supported by Addressing the Challenges of RE Manufacturing in India: Horizon 2032 CSTEP WISE Sharath Rao, Senior Research Scientist Rajendra Kharul , Director and Head, Centre for Wind Power Bhupesh Verma, Research Analyst Suhas Tendulkar, Head, Centre for Climate Change and Sustainability Policy Ritesh Jain, Research Economist Arun Mehta, Senior Research Associate, Centre for Wind Power Varun Jyothiprakash, Consultant Chandan Kumar, Research Associate, Centre for Wind Power Gaurav Jain, Research Associate, Centre for Wind Power Salil Joglekar,Research Associate, Centre for Wind Power Disclaimer The views expressed in this document are based on the collection and analysis of the data/information by Centre for Study of Science, Technology and Policy (CSTEP) and World Institute for Sustainable Energy (WISE). The views do not necessarily reflect those of Shakti Sustainable Energy Foundation. The Foundation does not accept any responsibility for the consequences of the use of the information in this document. Information contained in this publication is reliable and deemed correct to the knowledge of CSTEP and WISE. Due care and caution has been taken by CSTEP and WISE in compilation of data from various primary and secondary resources. CSTEP and WISE shall not have any liability whatsoever, including financial, at any time in future because of the use of information in this report. © Copyright 2015 CSTEP and WISE No part of this report may be disseminated or reproduced in any form (electronic or mechanical) without permission from CSTEP and WISE. Center for Study of Science, Technology and World Institute of Sustainable Energy Policy Plot No.44, Hindustan Estates, Road No. 2, 10th Cross, Papanna Layout, Mayura Street Kalyani Nagar, Pune 411 006, Nagashettyhalli, RMV II Stage, Maharashtra, India. Bangalore-560094 Tel: + 91-20-26613832 Karnataka, India Fax: +91-20-26611438 Tel: +91 (80) 6690-2500 Email: [email protected] Email: [email protected] Website: www.wisein.org Website: www.cstep.in Acknowledgements CSTEP and WISE are grateful to all the experts and specialists for providing useful inputs and insights during the preparation and at various stages of this report. Special thanks are due to Shri Dilip Nigam, Director - Ministry of New and Renewable Energy, Shri Ashvini Kumar, MD (I/C) and Director (Solar), Solar Energy Corporation of India and Shri Gaurav Dave, Fmr. Chief (Joint Secretary), National Manufacturing Competitiveness Council for their useful insights and suggestions during the inception stage and drafting of the report. The project team would also like to acknowledge the support of officials from various Ministries and Departments of Government of India, particularly Ministry of New and Renewable Energy, Department of Industrial Policy and Promotion, Department of Electronics and Information Technology, Directorate General of Foreign Trade and Directorate General of Anti Dumping and National Manufacturing Competitiveness Council. Further, we would like to thank industry professionals and experts in providing key inputs at various stages of the study. Special thanks are due to Mr. A.S Karanth (Executive Advisor, DEIF India), Mr. Chintan Shah (President and Head, Strategic Business Development), Mr. Hemkant Limaye (Commercial Director, LM Wind), Mr. K Bharathy (CEO, Windar Renewable Energy Pvt. Ltd.), Dr. Omprakash G Kulkarni (Scientist, Advisor, Indian Institute of Science), Mr. Ramesh Kymal (Managing Director, Gamesa Wind Turbines Ltd), Mr. R Bakul (President, Suzlon Energy Ltd), Mr. T. Pradeep Kumar (CEO, Kenersys Wind Energy), Mr. G. V. Balaram (MD, Karnataka Renewable Energy Development Limited), Dr. Arul Shanmugasundram (Executive VP (Projects) and CTO, Tata Power Solar Systems Ltd.), Mr. Rajesh Bhat (MD, Juwi India Renewable Energies Pvt. Ltd) and Mr. Srinath .T (Technical Director, EMMVEE Solar) for their valuable inputs and validation of the findings of this study. In addition, we would like to profoundly thank Dr. V. S. Arunachalam (Chairman, CSTEP), Dr. Anshu Bhardwaj (Executive Director, CSTEP) and Mr. G. M. Pillai (Director General, WISE), whose insights and support gave the much-needed depth of perspective to the analysis and recommendations. Thanks are also due to various staff members of CSTEP and WISE who directly or indirectly contributed towards the study by means of organizing field trips and workshops, financial reporting, publishing and dissemination activities of the project. Finally, a special thanks to Shakti Sustainable Energy Foundation (SSEF) for supporting this important project. In particular, we would like to thank Mr. Deepak Gupta, Senior Programme Manager (Power) and Ms. Disha Agrawal, Program Associate (Renewable Energy) for their patience and for providing valuable feedback and suggesting crucial course corrections at different phase of research. Table of Contents 1 INTRODUCTION ........................................................................................................................................................... 7 1.1 RENEWABLE GENERATION IN INDIA ........................................................................................................................................ 10 2 RE MANUFACTURING SUPPLY CHAIN IN INDIA -OVERVIEW ...................................................................... 13 2.1 INDIA’S WIND AND SOLAR MARKET ........................................................................................................................................ 13 2.2 WIND POWER ............................................................................................................................................................................... 14 2.2.1 Technology Trends in Onshore Wind ............................................................................................................................. 16 2.3 SOLAR POWER .............................................................................................................................................................................. 18 2.4 WIND AND SOLAR MANUFACTURING SUPPLY CHAIN IN INDIA ........................................................................................... 21 2.4.1 Wind OEM Overview .............................................................................................................................................................. 22 2.4.2 Cost /Price of WTG Components ...................................................................................................................................... 28 2.4.3 Import and Export Status of the Indian Wind Industry ......................................................................................... 29 2.4.4 Solar OEM Overview .............................................................................................................................................................. 30 2.4.5 Solar PV ....................................................................................................................................................................................... 32 2.4.6 CSP ................................................................................................................................................................................................. 37 3 RE MANUFACTURING: CRITICAL COMPONENTS AND SUPPLY CHAIN CHALLENGES .......................... 44 3.1 METHODOLOGY ............................................................................................................................................................................ 44 3.1.1 Wind .............................................................................................................................................................................................. 45 3.1.2 Solar .............................................................................................................................................................................................. 46 3.2 OVERVIEW OF CRITICAL COMPONENTS ................................................................................................................................... 48 3.2.1 Wind .............................................................................................................................................................................................. 49 3.2.2 Solar PV ....................................................................................................................................................................................... 53 3.2.3 Concentrated Solar Power .................................................................................................................................................. 57 3.2.4 Thermal Storage System ...................................................................................................................................................... 65 3.3 SUPPLY CHAIN CHALLENGES ..................................................................................................................................................... 69 3.3.1 Wind .............................................................................................................................................................................................. 70 3.3.2 Solar .............................................................................................................................................................................................
Recommended publications
  • Impact of Windfarm OWEZ on the Local Macrobenthos Communiy
    Impact of windfarm OWEZ on the local macrobenthos community report OWEZ_R_261_T1_20090305 R. Daan, M. Mulder, M.J.N. Bergman Koninklijk Nederlands Instituut voor Zeeonderzoek (NIOZ) This project is carried out on behalf of NoordzeeWind, through a sub contract with Wageningen-Imares Contents Summary and conclusions 3 Introduction 5 Methods 6 Results boxcore 11 Results Triple-D dredge 13 Discussion 16 References 19 Tables 21 Figures 33 Appendix 1 44 Appendix 2 69 Appendix 3 72 Photo’s by Hendricus Kooi 2 Summary and conclusions In this report the results are presented of a study on possible short‐term effects of the construction of Offshore Windfarm Egmond aan Zee (OWEZ) on the composition of the local benthic fauna living in or on top of the sediment. The study is based on a benthic survey carried out in spring 2007, a few months after completion of the wind farm. During this survey the benthic fauna was sampled within the wind farm itself and in 6 reference areas lying north and south of it. Sampling took place mainly with a boxcorer, but there was also a limited programme with a Triple‐D dredge. The occurrence of possible effects was analyzed by comparing characteristics of the macrobenthos within the wind farm with those in the reference areas. A quantitative comparison of these characteristics with those observed during a baseline survey carried out 4 years before was hampered by a difference in sampling design and methodological differences. The conclusions of this study can be summarized as follows: 1. Based on the Bray‐Curtis index for percentage similarity there appeared to be great to very great similarity in the fauna composition of OWEZ and the majority of the reference areas.
    [Show full text]
  • New & Renewable Energy
    Seoul - December 6, 2010 Wind Energy in the Netherlands . History . Overview . Offshore . Examples . Conclusions 2 History of wind energy in the Netherlands A windmill is a machine which converts the energy of the wind into rotational motion by means of adjustable vanes called sails Autonomous development in Europe that started in the 11th century Development in the Netherlands leading to a large variety of mills First wind mills for drainage in 1414 Windmills for energy to saw mills, to mills used for crushing seeds, grains, etc. Cheap energy was a major contributing factor to the Golden Age (17th century) of the Netherlands Invention of steam engine (1775) signaled the end of wind mills 1,000 wind mills left out of a total of more than 10,000 3 Kinderdijk 4 Recent history of wind energy in the Netherlands A windmill is a machine which converts the energy of the wind into rotational motion by means of adjustable blades made of synthetic material Renewed interest in wind energy resulted from the oil crisis in 1973 Dutch government support from 1976 Present capacity 2,229MW Government objective to have 6GW installed by 2020 5 Overview wind energy sector in the Netherlands (1) Turbine manufacturers & developers: . Lagerwey in difficulties, restarted as Zephyros, acquired by Hara Kosan, now acquired by STX . Nedwind acquired by NEG-Micon, which in turn acquired by Vestas . Windmaster discontinued . Darwind acquired by XEMC (China) . EWT originally using Lagerwey technology, now developing its own technology . 2B Energy proto type for +6MW offshore turbine 6 Overview wind energy sector in the Netherlands (2) Marine engineering Construction & dredging Electrical design & consulting Building of specialized vessels 7 Overview wind energy sector in the Netherlands (3) Blade manufacturing & testing .
    [Show full text]
  • Biodiesel from Argentina and Indonesia
    Biodiesel From Argentina And Indonesia Investigation Nos. 731-TA-1347-1348 (Final) Publication 4775 April 2018 U.S. International Trade Commission Washington, DC 20436 U.S. International Trade Commission COMMISSIONERS Rhonda K. Schmidtlein, Chairman David S. Johanson, Vice Chairman Irving A. Williamson Meredith M. Broadbent Jason E. Kearns Catherine DeFilippo Director of Operations Staff assigned Nathanael Comly, Investigator Philip Stone, Industry Analyst Cindy Cohen, Economist Charles Yost, Accountant Russell Duncan, Senior Statistician Carolyn Holmes, Statistical Assistant Roop Bhatti, Attorney Elizabeth Haines, Supervisory Investigator Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Biodiesel From Argentina And Indonesia Investigation Nos. 731-TA-1347-1348 (Final) Publication 4775 April 2018 CONTENTS Page Determinations ............................................................................................................................... 1 Views of the Commission ............................................................................................................... 3 Part I: Introduction .............................................................................................................. I-1 Background ................................................................................................................................ I-1 Nature and extent of sales at
    [Show full text]
  • Effect Studies Offshore Wind Egmond Aan Zee: Cumulative Effects on Seabirds
    Effect studies Offshore Wind Egmond aan Zee: cumulative effects on seabirds A modelling approach to estimate effects on population levels in seabirds M.J.M. Poot P.W. van Horssen M.P. Collier R. Lensink S. Dirksen Consultants for environment & ecology Effect studies Offshore Wind Egmond aan Zee: cumulative effects on seabirds A modelling approach to estimate effects on population levels in seabirds M.J.M. Poot P.W. van Horssen M.P. Collier R. Lensink S. Dirksen commissioned by: Noordzeewind date: 18 November 2011 report nr: 11-026 OWEZ_R_212_T1_20111118_Cumulative effects Status: Final report Report nr.: 11-026 OWEZ_R_212_T1_20111118_Cumulative effects Date of publication: 18 November 2011 Title: Effect studies Offshore Wind Egmond aan Zee: cumulative effects on seabirds Subtitle: A modelling approach to estimate effects on population levels in seabirds Authors: drs. M.J.M. Poot drs. P.W. van Horssen msc. M.P. Collier drs. ing. R. Lensink drs. S. Dirksen Number of pages incl. appendices: 247 Project nr: 06-466 Project manager: drs. M.J.M. Poot Name & address client: Noordzeewind, ing. H.J. Kouwenhoven 2e Havenstraat 5B 1976 CE IJmuiden Reference client: Framework agreement for the provision of “MEP services” 30 May 2005 Signed for publication: Team manager bird ecology department Bureau Waardenburg bv drs. T.J. Boudewijn Initials: Bureau Waardenburg bv is not liable for any resulting damage, nor for damage which results from applying results of work or other data obtained from Bureau Waardenburg bv; client indemnifies Bureau Waardenburg bv against third-party liability in relation to these applications. © Bureau Waardenburg bv / Noordzeewind This report is produced at the request of the client mentioned above and is his property.
    [Show full text]
  • Ecological Monitoring and Mitigation Policies and Practices at Offshore Wind Installations in the United States and Europe
    Ecological Monitoring and Mitigation Policies and Practices at Offshore Wind Installations in the United States and Europe August 2020 Michael C. Allen, Ph.D., Postdoctoral Research Associate, Department of Ecology, Evolution, and Natural Resources, Rutgers University, Matthew Campo, Senior Research Specialist, Environmental Analysis & Communications Group, Rutgers University Prepared for the New Jersey Climate Change Alliance (https://njadapt.rutgers.edu/). Working Group Members: John Cecil, New Jersey Audubon Tim Dillingham, American Littoral Society Patty Doerr, The Nature Conservancy of New Jersey Russell Furnari, PSEG Kevin Hassell, New Jersey Department of Environmental Protection Anthony MacDonald, Urban Coast Institute at Monmouth University Martha Maxwell-Doyle, Barnegat Bay Partnership David Mizrahi, Ph.D., New Jersey Audubon Technical Reviews and Acknowledgments Joseph Brodie, Ph.D. Jeanne Herb Marjorie Kaplan, Dr.P.H. Josh Kohut, Ph.D. Richard Lathrop, Ph.D. Julie Lockwood, Ph.D. Douglas Zemeckis, Ph.D. https://doi.org/doi:10.7282/t3-wn1p-cz80 1 ABSTRACT Offshore wind energy is poised to expand dramatically along the eastern United States. However, the promise of sustainable energy also brings potential impacts on marine ecosystems from new turbines and transmission infrastructure. This whitepaper informs government officials, scientists, and stakeholders in New Jersey about the current policies and monitoring methods other jurisdictions use to monitor potential ecological impacts from offshore wind installations. We reviewed policy documents in the eastern U.S. and Europe, reviewed the scientific literature, and conducted stakeholder interviews in Spring 2020. We found: 1. Short-term (3-5 year) project-specific efforts dominate coordinated regional and project life duration ecological monitoring efforts at offshore wind farms in North America and Europe.
    [Show full text]
  • Energy Effificiency Workshop
    Second Annual Asia-Pacific Dialogue on Clean Energy Governance, Policy, and Regulation Second Annual Asia-Pacifi c Dialogue Energy Efficiency Workshop Under the auspices of the Second Annual Asia-Pacific Dialogue on Clean Energy Governance, on Clean Energy Governance, Policy, and Regulation, the Energy Efficiency Workshop was held on 20–21 June 2011 at the Asian Development Bank. The workshop—whose proceedings are documented in this publication prepared under the Law and Policy Reform Program of the Office of the Policy and Regulation General Counsel—focused on addressing the slow uptake of energy efficiency solutions by identifying the political, governance, and financial constraints in implementing energy efficiency solutions, and considering innovative policy, regulatory, and financial remedies for overcoming these constraints. Energy Effi ciency Workshop About the Asian Development Bank ADB’s vision is an Asia and Pacific region free of poverty. Its mission is to help its developing member countries reduce poverty and improve the quality of life of their people. Despite the region’s many successes, it remains home to two-thirds of the world’s poor: 1.8 billion people who live on less than $2 a day, with 903 million struggling on less than $1.25 a day. ADB is committed to reducing poverty through inclusive economic growth, environmentally sustainable growth, and regional integration. Based in Manila, ADB is owned by 67 members, including 48 from the region. Its main instruments for helping its developing member countries are policy dialogue,
    [Show full text]
  • Biodiesel from Argentina and Indonesia
    Biodiesel From Argentina And Indonesia Investigation Nos. 701-TA-571-572 (Final) Publication 4748 December 2017 U.S. International Trade Commission Washington, DC 20436 U.S. International Trade Commission COMMISSIONERS Rhonda K. Schmidtlein, Chairman David S. Johanson, Vice Chairman Irving A. Williamson Meredith M. Broadbent Catherine DeFilippo Director of Operations Staff assigned Nathanael Comly, Investigator Philip Stone, Industry Analyst Cindy Cohen, Economist Charles Yost, Accountant Russell Duncan, Senior Statistician Carolyn Holmes, Statistical Assistant Michael Haldenstein, Attorney Betsy Haines, Supervisory Investigator Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Biodiesel From Argentina And Indonesia Investigation Nos. 701-TA-571-572 (Final) Publication 4748 December 2017 CONTENTS Page Determinations ............................................................................................................................... 1 Views of the Commission ............................................................................................................... 3 Part I: Introduction .............................................................................................................. I-1 Background ................................................................................................................................ I-1 Statutory criteria and organization of
    [Show full text]
  • Cost Modelling of Floating Wind Farms
    Cost Modelling of Floating Wind Farms Georgios Katsouris Andrew Marina March 2016 ECN-E--15- 078 Acknowledgement This report is written in the context of the “TO2 - Floating Wind” project. ‘Although the information contained in this report is derived from reliable sources and reasonable care has been taken in the compiling of this report, ECN cannot be held responsible by the user for any errors, inaccuracies and/or omissions contained therein, regardless of the cause, nor can ECN be held responsible for any damages that may result therefrom. Any use that is made of the information contained in this report and decisions made by the user on the basis of this information are for the account and risk of the user. In no event shall ECN, its managers, directors and/or employees have any liability for indirect, non-material or consequential damages, including loss of profit or revenue and loss of contracts or orders.’ Contents Summary 5 1 Introduction 7 1.1 Floating wind 7 1.2 Objective 8 1.3 Report outline 9 2 ECN Install v2.0 11 2.1 “ECN Install” tool 11 2.2 From ECN Install v1.0 to v2.0 12 2.3 Case study: Gemini offshore wind farm 14 2.4 Discussion and future work 17 3 Wind farm cost analysis 19 3.1 OWECOP cost model 19 3.2 Tri-Floater modelling in OWECOP 20 3.3 Cost model inputs for case atudies 24 3.4 Results of cost modelling studies 27 3.5 Conclusions and further works 31 4 Conclusions 33 References 35 ECN-E--15- 078 3 4 Summary The depth limitations for bottom-fixed turbines exclude the possibility to utilize the vast quantities of offshore wind resources in deeper waters.
    [Show full text]
  • Offshore Wind Energy in the Netherlands Introduction
    # Borssele OffshoreWind Farm wind Zone energy inProject the & Site DescriptionNetherlands The roadmap from 1,000 to 4,500 MW offshore wind capacity >> Sustainable. Agricultural. Innovative. International. 2 | Offshore wind energy in the Netherlands Introduction The Netherlands is working on a transition to a sustainable, reliable and affordable energy supply for everyone. Drivers are the climate change, the declining availability of fossil fuels, and the dependence on international energy suppliers. The National Energy Agreement, a goal of 16% sustainable energy in 2023 was agreed upon with over forty organisations in- cluding Ministries, energy organisations, employers organisations, unions, NGO’s and others. All available sustainable energy sources are needed to reach this goal, including wind energy both land based and offshore. The conditions for offshore wind energy in the Netherlands are excellent: relatively shallow waters, good wind resource, good harbour facilities, experienced industry and a robust support system. This brochure gives a brief overview of the road map to increase offshore wind capacity from todays 1,000 MW to 4,500 MW in 2023 as part of this National Energy Agreement. The Dutch government has designated three wind farm zones where new wind farms can be developed in the coming years. In consultation with the wind energy sector, a new system was designed for the deployment of these new wind farms. The government is responsible for a greater part of the preliminary works: consents, electrical infrastructure and insight in the physical environment. Companies that want to develop a wind farm can base their Front End Engineering Design (FEED) studies on these preliminary works and register for one of the selected sites.
    [Show full text]
  • Nuclear Security Governance in India: Institutions, Instruments, and Culture (2019)
    SANDIA REPORT SAND2020-10916 Printed October 2020 Nuclear Security Governance in India: Institutions, Instruments, and Culture (2019) Sitakanta Mishra (Associate Professor, School of Liberal Studies, Pandit Deendayal Petroleum University, Gujarat, India) Happymon Jacob (Associate Professor, School of International Studies, Jawaharlal Nehru University, New Delhi, India) Visiting Research Scholars Cooperative Monitoring Center Sandia National Laboratories P.O. Box 5800 Albuquerque, New Mexico 87185-MS1373 Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology & Engineering Solutions of Sandia, LLC. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors. Printed in the United States of America. This report has been reproduced directly from the best available copy.
    [Show full text]
  • Fuelling the Future
    MARINE BIOFUELS Fuelling the future Photo: Adobe Adobe Photo: Stock Marine biofuels are gaining everywhere around the world apart from new biofuel products is underway and the existing Baltic Sea, North Sea, North industry sources say the sector is, in turn, acceptance but the industry’s American and US Caribbean ECAs, where becoming more open to alternative fuel the sulphur limit is 0.1%. sources. adoption of alternative fuels Because the shipping sector is the “Over the next few years, biofuel will be faces challenges Gill Langham highest emitter of toxic sulphur oxide in the only available option to significantly the transportation industry, these limits reduce the carbon footprint of marine have been set by the United Nation’s fuel, which is essential if shipping is to The marine biofuel sector is still in its International Maritime Organization. In play its part in reaching global carbon infancy but with regulatory and market order to comply, ship owners must either reduction targets,” says Olivier Benny, drivers in place, it could comprise between use low-sulphur fuel, install scrubbers marketing director at international 5% and 10% of the global marine fuel on their ships to clean up emissions, biodiesel distributor Targray. mix by 2030, according to a report by the or switch to alternative fuels such as “Acceptance has grown rapidly in the International Energy Agency Bioenergy (IEA liquefied natural gas (LNG). international shipping sector these past Bioenergy). The regulation affects the world’s entire few years. One major shipping company Globally the shipping sector consumes shipping fleet of some 60,000 vessels.
    [Show full text]
  • Review the Company Directory
    service | company directory The Solar Power Magazine International Consultants MERSEN (formerly Carbone Lorraine) Victron Energy SCHMID Group Innovative solutions for the solar and True sinewave stand-alone inverters and Process and automation equipment as 3E semiconductor industries. An extended combined inverter-chargers. Modular systems well as turnkey solutions for wafer 3E is an independent global software range of high performance materials 200 W + 45 kW. Unique grid and generator production, cell production and module and consultancy company specialized large size graphite blocks, C/C composites, parallel operation features. Also battery chargers assembly. in due diligence, module assessments, thermal insulation materials. battery monitoring, and DC/DC converters. Robert-Bosch-Str. 32-36 project guidance and PV portfolio 41, rue Jean Jaurès, BP 148 P.O. Box 50076 D-72250 Freudenstadt, Germany monitoring & optimization (SynaptiQ) F-92231 Gennevilliers Cedex, France 1305 AA Almere-Haven, The Netherlands phone +49/7441/538-0, fax -121 Kalkkaai 6 phone +33/141854514, fax +33/141854353 phone +31/535-9700, fax -9740 [email protected] Belgium - 1000 Brussels [email protected], www.mersen.com www.victronenergie.com www.schmid-group.com phone: +32-2- 217 58 68 www.3e.eu - www.3esynaptiq.com Inverters Voltronic Power Technology Module Frames Leading OEM/DOM manufacturer of grid- PV Activities in Japan Studer Innotec SA tied inverters, hybrid inverters off-grid Osamu Ikki Swiss made inverters and inverters and MPPT charger with RTS Corporation inverter-chargers for off grid systems. user-friendly LCD. 2-3-11 Shinkawa CH-1950 Sion 5F, No. 151, Xinhu 1st road, Neihu dist.
    [Show full text]