Vpisystems—Demonstration Examples

Total Page:16

File Type:pdf, Size:1020Kb

Vpisystems—Demonstration Examples Appendix VPIsystems—Demonstration Examples Introduction The following 12 examples have been added to demonstrate important engineering aspects of Chapter 3. The user can play with each example in real time by accessing the website http://www.vpiphotonics.com/VPIplayer.php. This particular website is maintained by VPIsystems GmbH and it is provided at no cost to the user. Any difficulties opening the website or any software improperly functioning should be addressed directly to VPIsystems GmbH, Carnotstr. 6, 10587 Berlin, Germany, Phone +49 30 398 058-0, Fax +49 30 398 058-58 Application Example 1 Title System impairments in 10 Gbps NRZ-based WDM transmissions Description This setup illustrates the impact of ASE noise and fiber nonlinearities on the performance of a 10 Gbps NRZ-based WDM system. The BER of each channel can be investigated individually. The user can adjust the number of spans (transmission length), switch off/on the fiber nonlinear- ities and modify the EDFA noise figure. Application Example 2 Title Performance of NRZ, RZ, and Duobinary modulation format in 10 Gbps transmission Description The setup compares the performance of the NRZ, RZ, and Duobinary modulation formats in a single channel 10 Gbps transmission. The BER obtained with each modulation format are displayed against the accumulated dispersion or the OSNR. The user can adjust the OSNR (respectively the accumulated dispersion) as well as the 3 dB bandwidth of the optical filter in front of the receiver. S. V. Kartalopoulos, Next Generation Intelligent Optical Networks, 257 C Springer 2008 258 Appendix: VPIsystems—Demonstration Examples Application Example 3 Title Performance comparison of NRZ, DPSK, and DQPSK in 40 Gbps transmission Description The setup investigates the performance of NRZ, DPSK, and DQPSK modulation in a single channel 40 Gbps transmission. The BER obtained with each modulation format are displayed against the accumulated dispersion or the OSNR. The user can adjust the OSNR (respectively the accumulated dispersion) as well as the 3 dB bandwidth of the optical filter in front of the receiver. Application Example 4 Title Variation of OSNR over an OADM chain Description This setup illustrates the variation of OSNR over a chain of OADMs where channels are randomly added and dropped. The OSNR is displayed over the number of passed OADM for three different random add–drop sequences. The user can specify the number of cascaded OADMs as well as their insertion loss. Application Example 5 Title EDFA transients and their control in dynamic networks Description The setup demonstrates the transient behavior of a dynamically controlled EDFA after switching off one of four WDM channels. The power control of the EDFA is achieved by adjusting the pump power with a controller. The user can adjust the feedback gain of the EDFA controller, which affects the settling time and shape of the controlled EDFA’s transient response. Application Example 6 Title Impact of the dispersion map on nonlinear impairments in 10 and 40 Gbps RZ systems Introduction 259 Description The setup illustrates the impact of the dispersion map on nonlinear impairments in single channel 10 or 40 Gbps RZ systems. Each span consists of 80 km of SSMF and a pre– and post-compensation modules. The line is considered noiseless in order to focus on the impact of nonlinear impairments. ASE is added in front of the receiver to achieve a given OSNR. An ideal DCM is placed in front of the receiver side for (partial) compensation of the dispersion accumulated in the line. The BER is displayed against the amount of residual dispersion at the receiver side. The user can adjust the OSNR as well as the amount of pre– and post-compensation per span that affect the nonlinear propagation of the signal in the line. Application Example 7 Title Reducing FWM effect using different channel spacing Description This setup illustrates the impact of four-wave mixing on the performance of WDM systems utilizing low dispersion fibers (DSF, NZDSF) and high signal powers. The BER and the magnitude of FWM products are displayed against the channel input power. The user can adjust the emission frequencies of the channels. The channel spacing can be set unequal so that the degradation due to FWM is reduced. Application Example 8 Title Influence of PMD in 40 Gbps transmission Description This setup models the random variation of the bit error rate due to polarization mode dispersion. The amount of PMD is randomly changed for each iteration. The spread of BER results demonstrates the difficulty in measuring the power penalty due to PMD. The user can adjust the modulation format (between NRZ and RZ) and the number of iterations. Application Example 9 Title Reduction of nonlinear penalties in 40 Gbps transmissions using alternate polarization modulation Description This setup demonstrates the advantages of alternate polarization modulation format over standard formats (NRZ). To apply alternating polarization between adjacent bits is an effective technique in suppressing intra-channel nonlinear distortions. The user can adjust the propagation distance and the WDM input power. 260 Appendix: VPIsystems—Demonstration Examples Application Example 10 Title Multi-pump Raman optimization Description Flat Raman gain is achieved over C and L bands by adjusting pump wavelengths and powers. The Raman gain and noise figure are displayed over the wavelength. Raman amplification between the pumps can be observed in an OSA. The user can modify the wavelength and power of the pumps and observe the changes in the Raman gain. Application Example 11 Title 10G–40G upgrade using Raman amplifier Description This setup demonstrates the benefits of Raman amplification allowing an upgrade from 10 s to 40 Gbps. Distributed Raman amplification is achieved by backward pumping the transmission fiber from the receiver terminal end. The user can change the bit rate from 10 to 40 Gbps and adjust the Raman pump power. Application Example 12 Title MLSE versus classical receiver performance Description This setup demonstrates the advantage of the Viterbi-MLSE receiver over classical receiver in the presence of intersymbol interferences. The BER of a 10 Gbps NRZ signal is displayed for a constant OSNR against the amount of residual dispersion for both receivers. The user can adjust the OSNR as well as the length of the sequences and the number of states used for Viterbi-MLSE detection. Acronyms 10Base-T: 10 Mbps over twisted pair 100Base-T: 100 Mbps over twisted pair 1000Base-T: 1,000 Mbps over twisted pair 2B1Q: two bits to one quaternary 2f-BLSR: two-fiber bidirectional line switched ring 3R: re-amplification, reshaping, and retiming 4B/5B: four bit to five bit coding 4f-BLSR: four-fiber bidirectional line switched ring 8B/10B: eight bit to ten bit coding AAL: ATM adaptation layer ABR: available bit rate ADC: analog to digital conversion ADM: add-drop multiplexer ADPCM: adaptive differential pulse code modulation ADSL: asymmetric digital subscriber line AES: advanced encryption standard AIS: alarm indication signal ALP: application layer protocol AM: administration module; amplitude modulation AMI: alternate mark inversion AON: all-optical network AP: access point APD: avalanche photodetector APDU: application protocol data unit; authentic protocol data unit API: access point identifier APON: ATM-based broadband PON APS: automatic protection switching ARM: access resource management ASE: amplified spontaneous emission ASIC: application-specific integrated circuit ASK: amplitude shift keying ATM: asynchronous transfer mode AU: administrative unit AU-n: administrative unit, level n AUG: administrative unit group AUG-N: administrative unit group-N B8ZS: bipolar with eight-zero substitution B: B channel (ISDN) BB: broadband BBER: background block error ratio BBO: beta-barium borate BCD: binary coded decimal 261 262 Acronyms BDI: backward defect indication BDI-O: backward defect indication overhead BDI-P: backward defect indication payload BEI: backward error indication BER: bit error rate; basic encoding rules BI: backward indication B-ISDN: broadband integrated services digital network BIP-8: bit interleaved parity 8 field BITS: building information timing supply BML: business management layer bps: bits per second BPSR: bidirectional path-switching ring BRI: basic rate interface BSHR: bidirectional shelf-healing ring BSHR/2: 2 fiber bidirectional shelf-healing ring BSHR/4: 4 fiber bidirectional shelf-healing ring C-n: container-level n; n = 11, 12, 2, 3, or 4 CAC: connection admission control CAM: content addressable memory CAP: carrierless amplitude phase CAS: channel associated signaling CBR: constant bit rate CCAMP: common control and management plane CDMA: code division multiple access CELP: code excited linear prediction CEPT-n: conference of European posts and telecommunications-level n (see E1) CIT: craft interface terminal CLEC: competitive local exchange carrier CLP: cell loss priority CLR: cell loss rate CM: communications module; connection management; connection monitoring CMI: coded mark inversion CMIP: common management information protocol CMISE: common management information service element CMIS/P: common management information service/protocol CMT: coupled-mode theory CNM: customer network management CO: central office CODEC: COder–DECoder COP: connection-oriented protocol COPS: common open policy service CORBA: common object request broker architecture COT: central office terminal CP: customer premises CPE: customer premises equipment CPN: calling party’s number;
Recommended publications
  • Criteria for Choosing Line Codes in Data Communication
    ISTANBUL UNIVERSITY – YEAR : 2003 (843-857) JOURNAL OF ELECTRICAL & ELECTRONICS ENGINEERING VOLUME : 3 NUMBER : 2 CRITERIA FOR CHOOSING LINE CODES IN DATA COMMUNICATION Demir Öner Istanbul University, Engineering Faculty, Electrical and Electronics Engineering Department Avcılar, 34850, İstanbul, Turkey E-mail: [email protected] ABSTRACT In this paper, line codes used in data communication are investigated. The need for the line codes is emphasized, classification of line codes is presented, coding techniques of widely used line codes are explained with their advantages and disadvantages and criteria for chosing a line code are given. Keywords: Line codes, correlative coding, criteria for chosing line codes.. coding is either performed just before the 1. INTRODUCTION modulation or it is combined with the modulation process. The place of line coding in High-voltage-high-power pulse current The transmission systems is shown in Figure 1. purpose of applying line coding to digital signals before transmission is to reduce the undesirable The line coder at the transmitter and the effects of transmission medium such as noise, corresponding decoder at the receiver must attenuation, distortion and interference and to operate at the transmitted symbol rate. For this ensure reliable transmission by putting the signal reason, epecially for high-speed systems, a into a form that is suitable for the properties of reasonably simple design is usually essential. the transmission medium. For example, a sampled and quantized signal is not in a suitable form for transmission. Such a signal can be put 2. ISSUES TO BE CONSIDERED IN into a more suitable form by coding the LINE CODING quantized samples.
    [Show full text]
  • MLT Verification Codes Link the List of MLT Verification (VER) Codes Is Given Here to Assist You in Identifying the Trouble After the MLT Is Performed
    MLT Verification Codes Link The list of MLT Verification (VER) Codes is given here to assist you in identifying the trouble after the MLT is performed. VER RESPONSE DESCRIPTION No obvious trouble was detected on the line. However, there may still be a problem with parts of the loop that were not tested. For example, there might be a problem in the station set, on a crossbar line, or in the Central Office (CO). When the system tests ok you 0 TEST OK will see that the DC resistances and voltage will not indicate a problem. The AC signature will be valid (if done), the line ckt will be ok and the system can draw and break dial tone. Balance should be good. VER_05 (zero five) is applicable to all switches and applies to both integrated and universal DLC loops. It indicates that all metallic tests passed, but that the channel test was either not made, didn’t complete in time or the returned results did not match the acceptable signatures. It does not mean that the channel is bad. TEST OK - CHANNEL For IDLC in 5ESS switches, it may be an indication that there may 05 NOT TESTED be a shortage of transmission test facility (TTF) responders. (The TTF performs the ISLC channel tests). This VER Code applies to the LTF, LTS, DCTU and CMU test heads. With this VER Code, the RSA may be able to arrange a front end close out as no trouble affecting the loop has been identified. NOTE: Length of loop is not given with this Ver code.
    [Show full text]
  • CLASS 341 CODED DATA GENERATION OR CONVERSION January 2011
    CLASS 341 CODED DATA GENERATION OR CONVERSION 341 - 1 341 CODED DATA GENERATION OR CONVERSION 1 DIGITAL PATTERN READING TYPE 50 DIGITAL CODE TO DIGITAL CODE CONVERTER CONVERTERS 2 .Plural denominationally related 51 .Adaptive coding carriers (e.g., coarse/fine 52 .To or from particular bit symbol geared discs) 53 ..Bit represented by pulse width 3 .Plural types of codes on single 54 ..Bit represented by discrete carrier frequency 4 .According to nonlinear function 55 .Substituting specified bit 5 .For X or Y coordinate combinations for other determination (e.g., stylus- prescribed bit combinations pad) 56 .To or from multi-level codes 6 .With directional discrimination 57 ..Binary to or from ternary 7 .Antiambiguity feature 58 .To or from minimum d.c. level 8 .Real and complementary patterns codes 9 .Having combined (e.g., 59 .To or from run length limited denominational, combination codes code) coding pattern 60 .To or from packed format 10 ..Constant distance code 61 .Data rate conversion 11 .Incremental 62 .BCD (binary-coded-decimal) to or 12 .Cathode ray from decimal 13 .Optical 63 .To or from bit count codes 14 ..Having optical waveguide 64 .To or from number of pulses 15 .Magnetic, inductive or 65 ..To or from Huffman codes capacitive 66 ..To or from Morse code 16 .Brush and contacts or conductive 67 .To or from variable length codes pattern 68 .To or from NRZ (nonreturn-to- 17 .Actuated by physical projection zero) codes 20 BODILY ACTUATED CODE GENERATOR 69 ..Return-to-zero to or from NRZ 21 .For handicapped user (nonreturn-to-zero)
    [Show full text]
  • Fiber Optic Communications
    FIBER OPTIC COMMUNICATIONS EE4367 Telecom. Switching & Transmission Prof. Murat Torlak Optical Fibers Fiber optics (optical fibers) are long, thin strands of very pure glass about the size of a human hair. They are arranged in bundles called optical cables and used to transmit signals over long distances. EE4367 Telecom. Switching & Transmission Prof. Murat Torlak Fiber Optic Data Transmission Systems Fiber optic data transmission systems send information over fiber by turning electronic signals into light. Light refers to more than the portion of the electromagnetic spectrum that is near to what is visible to the human eye. The electromagnetic spectrum is composed of visible and near -infrared light like that transmitted by fiber, and all other wavelengths used to transmit signals such as AM and FM radio and television. The electromagnetic spectrum. Only a very small part of it is perceived by the human eye as light. EE4367 Telecom. Switching & Transmission Prof. Murat Torlak Fiber Optics Transmission Low Attenuation Very High Bandwidth (THz) Small Size and Low Weight No Electromagnetic Interference Low Security Risk Elements of Optical Transmission Electrical-to-optical Transducers Optical Media Optical-to-electrical Transducers Digital Signal Processing, repeaters and clock recovery. EE4367 Telecom. Switching & Transmission Prof. Murat Torlak Types of Optical Fiber Multi Mode : (a) Step-index – Core and Cladding material has uniform but different refractive index. (b) Graded Index – Core material has variable index as a function of the radial distance from the center. Single Mode – The core diameter is almost equal to the wave length of the emitted light so that it propagates along a single path.
    [Show full text]
  • Adv. Communication Lab 6Th Sem E&C
    TH ADV. COMMUNICATION LAB 6 SEM E&C • the line-coded signal can directly be put on a transmission line, in the form of variations of the voltage or current (often using differential signaling). • the line-coded signal (the "base-band signal") undergoes further pulse shaping (to reduce its frequency bandwidth) LINE CODING and then modulated (to shift its frequency bandwidth) to create the "RF signal" that can be sent through free space. Line coding consists of representing the digital signal to be • the line-coded signal can be used to turn on and off a light transported by an amplitude- and time-discrete signal that is in Free Space Optics, most commonly infrared remote optimally tuned for the specific properties of the physical channel control. (and of the receiving equipment). The waveform pattern of • the line-coded signal can be printed on paper to create a voltage or current used to represent the 1s and 0s of a digital bar code. data on a transmission link is called line encoding. The common • the line-coded signal can be converted to a magnetized types of line encoding are unipolar, polar, bipolar and spots on a hard drive or tape drive. Manchester encoding. • the line-coded signal can be converted to a pits on optical For reliable clock recovery at the receiver, one usually imposes a disc. maximum run length constraint on the generated channel Unfortunately, most long-distance communication sequence, i.e. the maximum number of consecutive ones or channels cannot transport a DC component. The DC zeros is bounded to a reasonable number.
    [Show full text]
  • Codificação De Dados Códigos De Transmissão E Modulações Digitais
    C 1 Codificação de Dados Códigos de Transmissão e Modulações Digitais FEUP/DEEC RCOM – 2006/07 MPR/JAR C 2 Representação de Dados » Dados digitais, sinal digital » Dados analógicos, sinal digital » Dados digitais, sinal analógico » Dados analógicos, sinal analógico C 3 Dados Digitais, Sinal Digital (Códigos de Transmissão) ♦ Admitimos, sem perda de generalidade, que a informação digital é representada por um código binário, isto é, os dados a transmitir constituem uma sequência de símbolos de um alfabeto binário (0 e 1) ♦ Para transmissão num canal passa-baixo, os dados binários podem ser representados directamente por um sinal digital, isto é, por uma sequência de impulsos que se sucedem a uma cadência fixa (sincronizada por um relógio) » No caso mais simples cada símbolo binário é representado por um sinal elementar que pode ter um de dois níveis (transmissão binária) » É possível agrupar símbolos binários e representar grupos de símbolos binários (dibit, tribit, etc.) por impulsos que podem ter um de L níveis (L = 4, 8, …). A frequência dos sinais elementares (modulation rate), expressa em baud, deixa de ser igual à frequência dos símbolos binários iniciais (data rate), expressa em bit/s, excepto no caso em que L = 2 DR = MR log2 L DR = 1 / T2 L = 4 DR = 2 MR TL = T2 log2 L MR = 1 / TL T4 = 2 T2 » É possível estabelecer outro tipo de relações entre os dados binários e a sequência de sinais elementares que os representam. Os Códigos de Transmissão exploram estas relações; um “símbolo” do código pode ser constituído pela combinação de
    [Show full text]
  • Solid State Relays Are Ideally Suited for Use in Flammable Surroundings, and in Environments with High Electrical and Magnetic Noise
    Clare Overview Clare is a wholly owned subsidiary of IXYS Corporation, and is conveniently located close to Boston, Massachusetts, USA. Clare designs, manufactures, and markets a wide variety of semiconductor devices, and is a major designer and manufacturer of optically isolated electronic products. Clare manufactures one of the industry’s broadest lines of Solid State Relays (SSR), featuring galvanic input-to-output electrical isolation from 1500Vrms up to 5000Vrms; a wide selection of optocouplers and linear optocouplers; and optically isolated AC Power Switches. Clare SSR products are rapidly replacing electromechanical relays in many applications, making it a leading supplier to the Telecommunications, Medical, Security, Utility Metering, and Industrial Control industries. Replacing electromechanical relays with smaller, more-reliable optically isolated SSRs improves safety and lowers costs, while minimizing equipment size and enhancing overall system performance. With no moving parts, no coils, and no contacts, Solid State Relays are ideally suited for use in flammable surroundings, and in environments with high electrical and magnetic noise. For the Telecommunications Industry, Clare manufactures a broad range of products that includes phone-line interface and monitoring devices, DC Termination devices for xDSL and ISDN applications, and Central Office products. Clare’s newest entries into the Central Office market include several new Line Card Access Switch devices with high transient immunity: 1500V/ms. These robust devices have led to the development of monolithic high voltage switching ICs, powered from 3.3V digital supplies, that interface to industrial controls, instrumentation, automatic test equipment, and medical applications (see the new CPC7514). Clare’s expertise in high-voltage and power devices supports a growing line of standard devices.
    [Show full text]
  • Telecom Acronym Guide
    Telecom Acronym Guide Fourth Edition Telecom Acronym Guide Fourth Edition Numerics ACAC Actual Call Admission Control 2F Two-fiber ACEG Alternating Current Equipment Ground 10 GbE 10 Gigabit Ethernet ACK Acknowledge 10 GFC 10 Gigabit Fibre Channel (Same as FC1200) ACL Active Control List; Access Control List 100G 100 Gigabits ACO Alarm Cutoff 16-QAM 16 (points) Quadrature Amplitude Modulation ACQ Acquire 3D Three-dimensional ACR Allowed Cell Rate 3G Third Generation ACS Automatic Channel Shutdown; Alarm Correlation and Suppression 3GPP Third Generation Partnership Project ACSE Association Control Service Element 40G 40 Gigabits ACSS Automatic Channel Shutdown Suppression; 4C Consortium of Intel, IBM, Matsushita, and Toshiba Automatic Channel Shutdown State 4F Four-fiber ACT Active 4G Fourth Generation ADC Analog-to-Digital Converter; Add/Drop Coupler 5C Consortium of Intel, Sony, Matsushita, Toshiba, ADI Asset Distribution Interface and Hitachi ADM Add/Drop Multiplexer 5G Fifth Generation ADP Actual Departure Potential; Automatic A Data Processing ADSL Asymmetric Digital Subscriber Line A/D Analog-to-digital ADT Actual Departure Time; Automatic AAL ATM Adaptation Layer Data Transmission AAL0 ATM Adaptation Layer Type 0 AE Automation Engine; Automation Environment A AL1 ATM Adaptation Layer Type 1 AES Advanced Encryption Standard; AAL2 ATM Adaptation Layer 2 Transport Application Environment Specific AAL3/4 ATM Adaptation Layer Types 3 and 4 AESA ATM End System Address; ATM End Station AAL5 ATM Adaptation Layer 5 Address ABR Available Bit
    [Show full text]
  • Section 9: DSP Applications
    DSP APPLICATIONS SECTION 9 DSP APPLICATIONS I High Performance Modems for Plain Old Telephone Service (POTS) I Remote Access Server (RAS) Modems I ADSL (Assymetric Digital Subscriber Line) I Digital Cellular Telephones I GSM Handset Using SoftFone™ Baseband Processor and Othello™ Radio I Analog Cellular Basestations I Digital Cellular Basestations I Motor Control I Codecs and DSPs in Voiceband and Audio Applications I A Sigma-Delta ADC with Programmable Digital Filter 9.a DSP APPLICATIONS 9.b DSP APPLICATIONS SECTION 9 DSP APPLICATIONS Walt Kester HIGH PERFORMANCE MODEMS FOR PLAIN OLD TELEPHONE SERVICE (POTS) Modems (Modulator/Demodulator) are widely used to transmit and receive digital data using analog modulation over the Plain Old Telephone Service (POTS) network as well as private lines. Although the data to be transmitted is digital, the telephone channel is designed to carry voice signals having a bandwidth of approximately 300 to 3300Hz. The telephone transmission channel suffers from delay distortion, noise, crosstalk, impedance mismatches, near-end and far-end echoes, and other imperfections. While certain levels of these signal degradations are perfectly acceptable for voice communication, they can cause high error rates in digital data transmission. The fundamental purpose of the transmitter portion of the modem is to prepare the digital data for transmission over the analog voice line. The purpose of the receiver portion of the modem is to receive the signal which contains the analog representation of the data , and reconstruct the original digital data at an acceptable error rate. High performance modems make use of digital techniques to perform such functions as modulation, demodulation, error detection and correction, equalization, and echo cancellation.
    [Show full text]
  • An Efficient 2-Level-Inversion Coding Scheme for Digital Data Transmission Over Bandlimited Channels
    www.ijaceeonline.com ISSN: 2456 - 3935 International Journal of Advances in Computer and Electronics Engineering Volume 2, Issue 6, June 2017, pp. 41–47 2-LIB: An Efficient 2-Level-Inversion Coding Scheme for Digital Data Transmission over Bandlimited Channels Dr. Olakanmi Oladayo Senior Lecturer, Department of Electrical and Electronic Engineering, University of Ibadan, Nigeria Department of Author, Affiliation, Country Email: [email protected], [email protected] Dr. Nsionu Ifeanyi Chief Lecturer, Department of Computer Engineering, Federal Polytechnic Oko, Nigeria. Email: [email protected] Abstract: A low bandwidth required coding scheme is needed for an effective digital data transmission over a bandlimited channels. Most of the existing coding schemes have some performance issues such as lack of synchronisation feature, high bandwidth requirement and considerable DC component. These make them imperfect choice especially for digital data transmission between heterogeneous devices over bandlimited channels. In this paper, a new coding scheme called 2-LIB is proposed to replace Non Return to Zero (NRZ) and AMI schemes used in RS232C/EIA-232 and 100-base-T Ethernet signaling respectively. The Power Spectral Density (PSD) of 2-LIB was derived, analysed and compared with that of some of the existing schemes. The results showed that 2-LIB has the best performance in terms of bandwidth requirement, strong synchronisation feature, and no DC component with minimal spectral content. The major strength of the scheme is that it does not only maintain all the good properties of both NRZ and Manchester but consumes the lowest bandwidth. Keyword: Power spectral Density; Coding; DC component; Data Communication.
    [Show full text]
  • Digital Baseband Communication Systems for More Information: Read Chapters 1, 6 and 7 in Your Textbook Or Visit
    EE 421: Communications I Prof. Mohammed Hawa Introduction to Digital Baseband Communication Systems For more information: read Chapters 1, 6 and 7 in your textbook or visit http://wikipedia.org/. Remember that communication systems in general can be classified into four categories: Analog Baseband Systems, Analog Carrier Systems ( using analog modulation), Digital Baseband Systems and Digital Carrier Systems ( using digital modulation). Digital baseband and digital carrier transmission systems have many advantages over their analog counterparts. Some of these advantages are: 1. Digital transmission systems are more immune to noise due to threshold detection at the receiver; and the availability of regenerative repeaters, which can be used instead of analog amplifiers at intermediate points throughout the transmission channel. 2. Digital transmission systems allow multiplexing at both the baseband level (e.g., TDM) and carrier level (e.g., FDM, CDMA and OFDMA), which means we can easily carry multiple conversations (signals) on a single physical medium (channel). 3. The ability to use spread spectrum techniques in digital systems help overcome jamming and interference and allows us to hide the transmitted signal within noise if necessary. In addition, the use of orthogonality is easier and allows increasing the transmission rate by overcoming impairments such as fading. 4. The possibility of using channel coding techniques (i.e., error correcting codes) in digital communications reduces bit errors at the receiver (i.e., it effectively improves the signal-to-noise ratio (SNR)). 5. The possibility of using source coding techniques (i.e., compression) in digital communications reduces the amount of bits being transmitted, and hence, allows for more bandwidth efficiency.
    [Show full text]
  • Gradually Introduced Efficiencies Into the Traditional Loop Architecture, Such As Digital Loop Carrier
    gradually introduced efficiencies into the traditional loop architecture, such as digital loop carrier ("DLC") systems at the remote terminal that used multiplexers and other electronics and the addition ofhigh-~ap_a<;ity feeder plant, in order to enhance the transmission functionality ofthe loop to better accommodate voice service. Even with significant gains in technology that greatly improved the efficiencies for transmitting voice service, however, the traditional ILEC loop architecture could only support transmission rates of56 kpbs (nominally) in best-case configurations. 12. As consumer demand for bandwidth-rich data services grows, the inherent constraints in the ll..ECs' traditional loop architecture have caused the ll..ECs to explore and implement a "next generation" architecture that better utilizes the full transmission functionality ofboth the low and high frequencies ofthe local loop in order to provide a wider range of telecommunications services to a broader cross-section ofend-users. In particular, I discuss how the ll..ECs have enhanced their loops by incorporating a much greater use offiber, introducing splitting and additional multiplexing functions at remote terminals and additional demultiplexing functions at the central office and elsewhere. These loop enhancements have made it possible to greatly increase and improve the transmission functionality ofthe loop. Indeed, the introduction ofnext-generation architecture permits ll..ECs and their data affiliates to provide a whole host of new services, and higher-quality existing services, to their customers while also increasing the ll..ECs' own economies in their loop plant. 13. I also explain that the transmission functionality provided in next generation RT architecture is no different than that the transmission functionality delivered in a more traditional DLC architecture.
    [Show full text]