Colonisation Larvaire Et Grossissement De Deux Espèces De Stomatopodes - Les Squilles (Varo) Lysiosquillina Maculata Et Lysisquillina Sulcata

Total Page:16

File Type:pdf, Size:1020Kb

Colonisation Larvaire Et Grossissement De Deux Espèces De Stomatopodes - Les Squilles (Varo) Lysiosquillina Maculata Et Lysisquillina Sulcata COMPOSANTE 2A - Projet 2A1 Développement capture et culture de post-larves Septembre 2009 RAPPORT INTERMÉDIAIRE Colonisation larvaire et grossissement de deux espèces de Stomatopodes - les squilles (varo) Lysiosquillina maculata et Lysisquillina sulcata Bora Bora (Polynésie française) Auteurs : François Chevalier, Corentine Favre Le CRISP est un programme mis en œuvre dans le cadre de la politique développée par le Programme régional océanien de l’Environnement afi n de contribuer à la protection et la gestion durable des récifs coralliens des pays du Pacifi que. Le CRISP est un programme mis en œuvre dans le cadre de la politique développée par le Pro- gramme Régional Océanien de l’Environnement afi n de contribuer à la protection et la gestion durable des récifs coralliens des pays du Pacifi que. L’initiative pour la protection et la gestion des récifs coralliens dans le Pacifi que, engagée par la France et ouverte à toutes les contributions, a pour but de développer pour l’avenir une vision de ces milieux uniques et des peuples qui en dépendent ; elle se propose de mettre en place des stratégies et des projets visant à préserver leur biodiversité et à développer les services économiques et environnementaux qu’ils rendent, tant au niveau local que global. Elle est conçue en outre comme un vecteur d’intégration régionale entre états développés et pays en voie de développement du Pacifi que. Le CRISP est structuré en trois composantes comprenant respectivement divers projets : - Composante 1A : Aires marines protégées et gestion côtière intégrée - Projet 1A1 : Planifi cation de la stratégie de conservation de la biodiversité marine - Projet 1A2 : Aires Marines Protégées (AMP) - Projet 1A3 : Renforcement institutionnel - Projet 1A4 : Gestion intégrée des zones lagonaires et des bassins versants Cellule de Coordination CRISP (CCU) - Comp. 2 : Connaissance, gestion, restauration et valorisation des écosystèmes coralliens Chef de Programme : Eric CLUA - 2A : Connaissance, gestion, suivi et valorisation des écosystèmes coralliens CPS- BP D5 - 2B : Restauration récifale 98848 Nouméa Cedex - 2C : Valorisation des substances Actives Marines Nouvelle-Calédonie - 2D : Mise en place d’une base de données régionale (Reefbase Pacifi que) Tél./Fax : (687) 26 54 71 - Composante 3 : Appui institutionnel et technique E-mail : [email protected] - 3A : Capitalisation, valorisation et vulgarisation des acquis du programme CRISP www.crisponline.net - 3B : Coordination, promotion et développement du programme CRISP COMPOSANTE 2A Connaissance, gestion, suivi et valorisation des récifs coralliens PROJET 2A-1 : Capture et Culture des Postlarves (PCC) de poissons et crustacés des récifs coralliens PROJET 2A-2 : Amélioration de la connaissance et des modalités de gestion des écosystèmes coral- Responsable composante : liens René GALZIN PROJET 2A-3 : UMR 5244 CNRS-EPHE-UPVD Développement des outils et processus de suivi de l’état de santé des récifs coralliens 52, Av. Paul Alduy PROJET 2A-4 : 66860 Perpignan Mise au point et test de méthodes novatrices de rétrocession de l’information à France destination des usagers et gestionnaires des écosystèmes coralliens Tél. : (33) 4 68 66 20 55 PROJET 2A-5 : Fax : (33) 4 68 50 36 86 Etudes spécifi ques sur i) l’eff et de l’augmentation du CO2 sur la santé des récifs E-mail : [email protected] coralliens et ii) contribution au développement de l’écotourisme CRISP is funded by the following partners : Sommaire 1 INTRODUCTION ....................................................................................................................................... 1 2 RAPPEL DE LA CONVENTION .............................................................................................................. 1 2.1 NATURE DE L’INTERVENTION DU PRESTATAIRE ......................................................................................... 1 2.2 OBLIGATIONS DES CO-CONTRACTANTS ET MODALITES FINANCIERES ........................................................ 2 3 OBJECTIFS ET RESULTATS ATTENDUS DE L’ETUDE .................................................................. 3 4 RAPPEL ET ADAPTATION DES PROTOCOLES EXPERIMENTAUX ........................................... 3 4.1 PREMIER OBJECTIF – ACQUISITION DE DONNEES D’ELEVAGE .................................................................... 3 4.1.1 Conduite d’élevage .......................................................................................................................... 3 4.1.2 Biométrie ......................................................................................................................................... 3 4.2 DEUXIEME OBJECTIF – SUIVI DE LA COLLECTE .......................................................................................... 4 4.2.1 Matériels et sites de collecte ........................................................................................................... 4 4.2.2 Recueil des données de collecte ...................................................................................................... 4 5 RESULTATS PRELIMINAIRES .............................................................................................................. 5 5.1 PREMIER OBJECTIF – ACQUISITION DE DONNEES D’ELEVAGE .................................................................... 5 5.1.1 Varos issus de Rangiroa .................................................................................................................. 5 5.1.2 Varos nouvellement mis en élevage ............................................................................................... 10 5.2 DEUXIEME OBJECTIF – SUIVI DE LA COLLECTE ........................................................................................ 12 5.2.1 Résultats bruts ............................................................................................................................... 12 5.2.2 Etude de la colonisation larvaire .................................................................................................. 13 6 PLANNING REVISE DE REALISATION DES TACHES ................................................................... 15 7 LA BIBLIOGRAPHIE EXISTANTE ...................................................................................................... 16 7.1 LES LYSIOSQUILLIDAE ............................................................................................................................ 16 7.2 TRANSPORT ET DISPERSION LARVAIRE .................................................................................................... 16 7.3 COMPORTEMENT, BIOLOGIE DES STOMATOPODES ................................................................................... 16 7.4 VARIABILITE TEMPORELLE DES STOMATOPODES ..................................................................................... 17 7.5 COLLECTE DE POST LARVES DE POISONS ET INVERTEBRES : OUTILS ET VARIABILITE TEMPORELLE .......... 17 7.6 DESCRIPTION DES ESPECES DE STOMATOPODES ...................................................................................... 17 7.7 DISTRIBUTION DES STOMATOPODES ........................................................................................................ 20 Etude de la colonisation larvaire et du grossissement de deux espèces de Stomatopodes à Bora-Bora 2009 Convention N°8.0031 / MPA / SPE – Rapport intermédiaire 1 Introduction Suite à des résultats prometteurs de test de maintien des larves de Stomatopodes en élevage, la société Tropical Fish Tahiti (TFT) a mené une étude en collaboration avec le Service de la Pêche (SPE) et le Centre de Recherches Insulaires et Observatoire de l’Environnement (CRIOBE) de juillet 2007 à juillet 2008 sur un co-financement SPE-CRISP (Coral Reef InitiativeS for the Pacific). Cette étude menée à Rangiroa concernait notamment : - l’acquisition des premières données d’élevage en laboratoire de deux espèces de Stomatopodes d’intérêt aquacole en Polynésie Française : les squilles (varo) Lysiosquillina maculata (Frabricius, 1793) et L. sulcata (Manning, 1978), - l’étude comparative de la colonisation larvaire des varos dans un hoa de Rangiroa et un hoa de Bora-Bora via une collaboration avec la société BoraEcoFish (BEF). Suite aux résultats obtenus lors de cette étude (Brié et Santos, 2008), et étant donné l’arrêt des activités de la société Tropical Fish Tahiti, le Service de la Pêche de Polynésie a émis le souhait de continuer l’élevage des varos initié à Rangiroa et a fait appel à la société BoraEcoFish afin de poursuivre l’acquisition des données d’élevage sur le même lot que celui utilisé à Rangiroa pendant une durée de un an. Par ailleurs, afin d’identifier une éventuelle continuité interannuelle de la colonisation, et inter-sites au sein d’une même île, la présente étude consistera à poursuivre le recueil des données de collecte sur un an d’une part dans 2 hoa de Bora-Bora et d’autre part avec un light-trap situé à proximité du site de la ferme d’élevage. Si une collecte suffisante venait à se présenter, un nouveau lot de varo de chaque espèce sera mis en élevage selon le protocole défini suite à l’étude de 2007-2008, afin de valider les premiers résultats obtenus par Tropical Fish Tahiti. La présente étude a débuté le 30 novembre 2008 pour s’achever le 31 mars 2010 et est co- financée par le SPE et le CRISP. 2 Rappel de la convention La convention N°8.0031/MPA/SPE du 25/11/08 établie entre le Service de la Pêche (SPE), la société BoraEcoFish (BEF) en tant que prestataire et le programme « Coral Reef
Recommended publications
  • The Role of Neaxius Acanthus
    Wattenmeerstation Sylt The role of Neaxius acanthus (Thalassinidea: Strahlaxiidae) and its burrows in a tropical seagrass meadow, with some remarks on Corallianassa coutierei (Thalassinidea: Callianassidae) Diplomarbeit Institut für Biologie / Zoologie Fachbereich Biologie, Chemie und Pharmazie Freie Universität Berlin vorgelegt von Dominik Kneer Angefertigt an der Wattenmeerstation Sylt des Alfred-Wegener-Instituts für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft In Zusammenarbeit mit dem Center for Coral Reef Research der Hasanuddin University Makassar, Indonesien Sylt, Mai 2006 1. Gutachter: Prof. Dr. Thomas Bartolomaeus Institut für Biologie / Zoologie Freie Universität Berlin Berlin 2. Gutachter: Prof. Dr. Walter Traunspurger Fakultät für Biologie / Tierökologie Universität Bielefeld Bielefeld Meinen Eltern (wem sonst…) Table of contents 4 Abstract ...................................................................................................................................... 6 Zusammenfassung...................................................................................................................... 8 Abstrak ..................................................................................................................................... 10 Abbreviations ........................................................................................................................... 12 1 Introduction ..........................................................................................................................
    [Show full text]
  • Stomatopod Interrelationships: Preliminary Results Based on Analysis of Three Molecular Loci
    Arthropod Systematics & Phylogeny 91 67 (1) 91 – 98 © Museum für Tierkunde Dresden, eISSN 1864-8312, 17.6.2009 Stomatopod Interrelationships: Preliminary Results Based on Analysis of three Molecular Loci SHANE T. AHYONG 1 & SIMON N. JARMAN 2 1 Marine Biodiversity and Biodescurity, National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington, New Zealand [[email protected]] 2 Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania 7050, Australia [[email protected]] Received 16.iii.2009, accepted 15.iv.2009. Published online at www.arthropod-systematics.de on 17.vi.2009. > Abstract The mantis shrimps (Stomatopoda) are quintessential marine predators. The combination of powerful raptorial appendages and remarkably developed sensory systems place the stomatopods among the most effi cient invertebrate predators. High level phylogenetic analyses have been so far based on morphology. Crown-group Unipeltata appear to have diverged in two broad directions from the outset – one towards highly effi cient ‘spearing’ with multispinous dactyli on the raptorial claws (dominated by Lysiosquilloidea and Squilloidea), and the other towards ‘smashing’ (Gonodactyloidea). In a preliminary molecular study of stomatopod interrelationships, we assemble molecular data for mitochondrial 12S and 16S regions, combined with new sequences from the 16S and two regions of the nuclear 28S rDNA to compare with morphological hypotheses. Nineteen species representing 9 of 17 extant families and 3 of 7 superfamilies were analysed. The molecular data refl ect the overall patterns derived from morphology, especially in a monophyletic Squilloidea, a monophyletic Lysiosquilloidea and a monophyletic clade of gonodactyloid smashers. Molecular analyses, however, suggest the novel possibility that Hemisquillidae and possibly Pseudosquillidae, rather than being basal or near basal in Gonodactyloidea, may be basal overall to the extant stomatopods.
    [Show full text]
  • Mantis Shrimp - Wikipedia
    Mantis shrimp - Wikipedia https://en.wikipedia.org/wiki/Mantis_shrimp Mantis shrimp Mantis shrimps , or stomatopods , are marine crustaceans of the Mantis shrimp order Stomatopoda . Some species have specialised calcified "clubs" that can strike with great power, while others have sharp forelimbs used Temporal range: 400–0 Ma to capture prey. They branched from other members of the class Pre Є Є O S D C P T J K Pg N Malacostraca around 340 million years ago. [2] Mantis shrimps typically grow to around 10 cm (3.9 in) in length. A few can reach up to 38 cm (15 in). [3] The largest mantis shrimp ever caught had a length of 46 cm (18 in); it was caught in the Indian River near Fort Pierce, Florida, in the United States.[4] A mantis shrimp's carapace (the bony, thick shell that covers crustaceans and some other species) covers only the rear part of Odontodactylus scyllarus the head and the first four segments of the thorax. Varieties range from shades of brown to vivid colors, as more than 450 species of mantis Scientific classification shrimps are known. They are among the most important predators in Kingdom: Animalia many shallow, tropical and subtropical marine habitats. However, Phylum: Arthropoda despite being common, they are poorly understood, as many species spend most of their lives tucked away in burrows and holes. [5] Subphylum: Crustacea Called "sea locusts" by ancient Assyrians, "prawn killers" in Australia, [6] Class: Malacostraca and now sometimes referred to as "thumb splitters"—because of the Subclass: Hoplocarida [7] animal's ability to inflict painful gashes if handled incautiously Order: Stomatopoda —mantis shrimps have powerful claws that are used to attack and kill Latreille, 1817 prey by spearing, stunning, or dismembering.
    [Show full text]
  • ASFIS ISSCAAP Fish List February 2007 Sorted on Scientific Name
    ASFIS ISSCAAP Fish List Sorted on Scientific Name February 2007 Scientific name English Name French name Spanish Name Code Abalistes stellaris (Bloch & Schneider 1801) Starry triggerfish AJS Abbottina rivularis (Basilewsky 1855) Chinese false gudgeon ABB Ablabys binotatus (Peters 1855) Redskinfish ABW Ablennes hians (Valenciennes 1846) Flat needlefish Orphie plate Agujón sable BAF Aborichthys elongatus Hora 1921 ABE Abralia andamanika Goodrich 1898 BLK Abralia veranyi (Rüppell 1844) Verany's enope squid Encornet de Verany Enoploluria de Verany BLJ Abraliopsis pfefferi (Verany 1837) Pfeffer's enope squid Encornet de Pfeffer Enoploluria de Pfeffer BJF Abramis brama (Linnaeus 1758) Freshwater bream Brème d'eau douce Brema común FBM Abramis spp Freshwater breams nei Brèmes d'eau douce nca Bremas nep FBR Abramites eques (Steindachner 1878) ABQ Abudefduf luridus (Cuvier 1830) Canary damsel AUU Abudefduf saxatilis (Linnaeus 1758) Sergeant-major ABU Abyssobrotula galatheae Nielsen 1977 OAG Abyssocottus elochini Taliev 1955 AEZ Abythites lepidogenys (Smith & Radcliffe 1913) AHD Acanella spp Branched bamboo coral KQL Acanthacaris caeca (A. Milne Edwards 1881) Atlantic deep-sea lobster Langoustine arganelle Cigala de fondo NTK Acanthacaris tenuimana Bate 1888 Prickly deep-sea lobster Langoustine spinuleuse Cigala raspa NHI Acanthalburnus microlepis (De Filippi 1861) Blackbrow bleak AHL Acanthaphritis barbata (Okamura & Kishida 1963) NHT Acantharchus pomotis (Baird 1855) Mud sunfish AKP Acanthaxius caespitosa (Squires 1979) Deepwater mud lobster Langouste
    [Show full text]
  • Western Central Pacific
    FAOSPECIESIDENTIFICATIONGUIDEFOR FISHERYPURPOSES ISSN1020-6868 THELIVINGMARINERESOURCES OF THE WESTERNCENTRAL PACIFIC Volume2.Cephalopods,crustaceans,holothuriansandsharks FAO SPECIES IDENTIFICATION GUIDE FOR FISHERY PURPOSES THE LIVING MARINE RESOURCES OF THE WESTERN CENTRAL PACIFIC VOLUME 2 Cephalopods, crustaceans, holothurians and sharks edited by Kent E. Carpenter Department of Biological Sciences Old Dominion University Norfolk, Virginia, USA and Volker H. Niem Marine Resources Service Species Identification and Data Programme FAO Fisheries Department with the support of the South Pacific Forum Fisheries Agency (FFA) and the Norwegian Agency for International Development (NORAD) FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 1998 ii The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers and boundaries. M-40 ISBN 92-5-104051-6 All rights reserved. No part of this publication may be reproduced by any means without the prior written permission of the copyright owner. Applications for such permissions, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, via delle Terme di Caracalla, 00100 Rome, Italy. © FAO 1998 iii Carpenter, K.E.; Niem, V.H. (eds) FAO species identification guide for fishery purposes. The living marine resources of the Western Central Pacific. Volume 2. Cephalopods, crustaceans, holothuri- ans and sharks. Rome, FAO. 1998. 687-1396 p.
    [Show full text]
  • Date : July 2, 2021 to : JEMMA LOU B. PANOTES the Following Is the List
    Date : July 2, 2021 To : JEMMA LOU B. PANOTES OIC, FCS The following is the list of registered live food fish exporters as of 30 June 2021 for your reference and perusal. NATIONAL CAPITAL REGION (NCR) NO. COMPANY NAME ADDRESS COMMODITY REGISTRATION NO. Grouper (Epinephelus spp.), Crabs (Scylla serrata), Lobster (Panulirus Afow Marine Lot16 Blk 4 Topland Subd., San Isidro, 1 ornatus), Nylon shell (Pahia LFNCR-PRQ-131-17 Product Parañaque City undulata), Eel (Anguilla bicolor), Sea Mantis (Odontyculatus scyllarus) Yellow eel (Monopterus albus), Black eel (Ophichtus melope), Crab (Scylla #40 Banana Road, Brgy. Potrero, serrata), Nylon shell (Paphia 2 Ahao Fish Trading LFNCR-PMC-154-18 Malabon City undulata), Lobster (Panulirus longipes), Grouper (Plectropomus leopardus) 9560 Cecile St., Baltao Subd., Vitalez, 3 AK Seafood Trading Crabs (Scylla serrata) LFNCR-PRQ-172-19 Parañaque City 0019D Hyacinth St., South 4 Alma Eel Trading Eel (Anguilla bicolor, A. marmorata) LFNCR-MTP-166-19 Greenheights Putatan, Muntinlupa City Bonnathan Seafoods 9566 Jaime St. Airport Village, Vitalez, 5 Crabs (Scylla serrata) LFNCR-PRQ-134-17 Trading Parañaque City Chen-Kao Marine 9555 Mango Rd., Brgy. Vitalez Airport 6 Nylon shell (Paratapes undulatus) LFNCR-PRQ-02-09 Corporation Village, Parañaque City 433 Quirino Ave., Don Galo, Parañaque Crabs (Scylla serrata), Nylon shell 7 Canny Trading LFNCR-PRQ-102-15 City (Undulata venus) Grouper (Plectropomus leopardus), Crabs (Scylla serrata), Ricefield Eel Coastal Aquamarine 9473 Alejandro St., Airport Village (Monopterus albus), Lobster 8 International LFNCR-PRQ-159-19 Parañaque City (Panulirus sp.), Slipper lobster Exports and Trading (Scyllaridae spp.), Sea mantis (Stomatopoda) Crabiz Marine 7 Leonardo Compound, Palanyag Road, 9 Crabs (Scylla serrata) LFNCR-PRQ-168-19 Products Parañaque City Crabs (Scylla serrata), Seamantis, Fong Bros.
    [Show full text]
  • Ultraviolet Filters in Stomatopod Crustaceans: Diversity, Ecology and Evolution Michael J
    © 2015. Published by The Company of Biologists Ltd | The Journal of Experimental Biology (2015) 218, 2055-2066 doi:10.1242/jeb.122036 RESEARCH ARTICLE Ultraviolet filters in stomatopod crustaceans: diversity, ecology and evolution Michael J. Bok*,§, Megan L. Porter‡ and Thomas W. Cronin ABSTRACT 1988; Marshall et al., 1991a) and at least five receptors sensitive to Stomatopod crustaceans employ unique ultraviolet (UV) optical filters various spectral ranges of ultraviolet (UV) light (Kleinlogel and in order to tune the spectral sensitivities of their UV-sensitive Marshall, 2009; Marshall and Oberwinkler, 1999). Underlying photoreceptors. In the stomatopod species Neogonodactylus oerstedii, these diverse visual sensitivities is an array of optical and retinal we previously found four filter types, produced by five distinct structural modifications (Horridge, 1978; Marshall et al., 1991a; mycosporine-like amino acid pigments in the crystalline cones of their Schiff et al., 1986), the expression of a great number of opsins specialized midband ommatidial facets. This UV-spectral tuning array resulting in the most visual pigments yet described in a single eye produces receptors with at least six distinct spectral sensitivities, (Cronin and Marshall, 1989b; Cronin et al., 1993; Porter et al., 2009, despite expressing only two visual pigments. Here, we present a 2013), and the tuning of spectral sensitivity via serial filtering broad survey of these UV filters across the stomatopod order, effects due to more distal visual pigments as well as photostable examining their spectral absorption properties in 21 species from colored pigments (Cronin and Marshall, 1989a; Cronin et al., seven families in four superfamilies. We found that UV filters are 1994a,b, 2014; Marshall, 1988; Marshall et al., 1991b; Porter et al., present in three of the four superfamilies, and evolutionary character 2010).
    [Show full text]
  • © the Authors 2019. All Rights Reserved
    © The Authors 2019. All rights reserved. www.publish.csiro.au Index Note: Bold page numbers refer to illustrations. abalones 348 tenella 77 Acanthaster 134, 365, 367, 393 tenuis 272 mauritiensis 134, 135 white syndrome 152 planci 134 Acroporidae 136, 274–5, 276 solaris 367 Acrozoanthus australiae 264, 265 cf. solaris 134, 135, 144, 165, 270, 275, 339, 345, 366 acrozooid polyps 287 sp. A nomen nudum 134 Actaeomorpha 337 Acanthaster outbreaks 134–5 scruposa 335 causes 134–5, 144–6, 163–4, 165, 367 Acteonidae 349 management 135 Actinaria 257, 259–63 see also crown-of-thorns starfish (COTS) outbreaks anatomical features 258 Acanthasteridae 367 cnidae types in 260 Acanthastrea echinata 279 Actiniidae 263 Acanthella cavernosa 236, 238 Actinocyclidae 349 Acanthochitonidae 349 Actinodendron glomeratum 261 Acanthogorgia 302, 306 Actinopyga 369, 370 sp. 302 echinites 372 Acanthogorgiidae 302 miliaris 372 Acanthopargus spp. 126 sp. 372 Acanthopleura gemmata 107, 110 Aegiceras corniculatum 221, 222, 223 Acanthuridae 390, 396 Aegiridae 349 Acanthurus aeolid nudibranchs 346, 347, 349 blochii 396 Aeolidiidae 349 lineatus 395, 396 Aequorea 202 mata 393 Afrocucumis africana 368, 370 olivaceus 395 Agariciidae 275, 276 Acartia sp. 192 Agelas axifera 236, 238 accessory pigments 89 aggressive mimicry 401 Acetes 333 Agjajidae 349 sp. 192 agricultural activities, sediments and nutrients from 161–5 Achelata 333, 334–6 Ailsastra sp. 368 acorn barnacles 328 Aiptasia pulchella 260 acorn dog whelk 346, 347 Aipysurus 415, 416 Acropora 31, 33, 59, 135, 136, 150, 184, 211, 272, 273, 274–5, 339 duboisii 412, 413, 415 brown band disease 152 laevis 412, 413, 415, 416 clathrata 79 mosaicus 415 echinata 276 Alcyonacea 67, 283, 290–309 global diversity 186 Alcyonidium sp.
    [Show full text]
  • Zoologica Scripta
    Zoologica Scripta Phylogenetic position, systematic status, and divergence time of the Procarididea (Crustacea: Decapoda) HEATHER D. BRACKEN,SAMMY DE GRAVE,ALICIA TOON,DARRYL L. FELDER &KEITH A. CRANDALL Submitted: 10 June 2009 Bracken, H. D., De Grave, S., Toon, A., Felder, D. L. & Crandall, K. A. (2010). Phylo- Accepted: 1 September 2009 genetic position, systematic status, and divergence time of the Procarididea (Crustacea: doi:10.1111/j.1463-6409.2009.00410.x Decapoda).—Zoologica Scripta, 39, 198–212. Ever since discovery of the anchialine shrimp, Procaris ascensionis Chace & Manning 1972, there has been debate as to its systematic position in relationship to other shrimp-like decapods. Several morphological characters have suggested a close affinity among Proc- arididae, Dendrobranchiata and Stenopodidea, whereas other physical features unite Proc- arididae with Caridea. Few molecular studies have examined the phylogenetic position of procaridid shrimp due to limited available material for genetic analyses. Those studies show procaridids as sister to carideans but lack sufficient taxon and locus sampling to vali- date the relationship. Here, we present a molecular phylogeny of selected individuals across decapod infraorders and superfamilies to clarify the phylogenetic position of proca- ridid shrimp. One mitochondrial (16S) and three nuclear genes (18S, 28S, H3) have been chosen to elucidate relationships. We used Bayesian molecular dating methods imple- mented in multidivtime to estimate and compare the divergence times among procaridids and other lineages. Findings secure the placement of the procaridids as a sister clade to carideans. Results provide evidence for the recognition of procaridids as a separate infra- order (Procarididea Felgenhauer & Abele 1983) within the Decapoda on the basis of mole- cular and morphological data.
    [Show full text]
  • Lysiosquillina Lisa, a New Species of Mantis Shrimp from the Indo-West Pacific (Stomatopoda: Lysiosquillidae)
    J. South Asian Nat. Hist., ISSN 1022-0828. May, 2001. Vol. 5, No. 2, pp. 167-172,3 figs. © 2001, Wildlife Heritage Trust of Sri Lanka, 95 Cotta Road, Colombo 8, Sri Lanka. Lysiosquillina lisa, a new species of mantis shrimp from the Indo-West Pacific (Stomatopoda: Lysiosquillidae) Shane T. Ahyong* & John E. Randall** * Dept of Marine Invertebrates, Australian Museum, 6 College St, Sydney, New South Wales 2010, Australia. ** Bishop Museum, 1525 Bernice St., Honolulu, Hawaii 96817-2704, USA. Abstract Lysiosquillina lisa sp. nov., from Indonesia is the fourth species of the genus to be recognised. This new species has frequently been observed by scuba divers at depths of 20-25 m on volcanic sands at the base of coral reefs ranging from the Andaman Sea to Indonesia, Papua New Guinea and the Philippines. Lysiosquillina lisa is readily recognised by its bright, orange-brown coloration but is also the only known member of the Lysiosquillidae bearing a 2- instead of 3-segmented mandibular palp. A key to the species of Lysiosquillina is given. Key words: Lysiosquillidae, Lysiosquillina lisa, taxonomy, Stomatopoda. Introduction The lysiosquillid genus Lysiosquillina was erected by the midline and excludes the rostral plate. Propodal Manning (1995) for two Indo-West Pacific species L. index (PI) of the raptorial claw is given as 100CL maculata (Fabricius, 1793), L. sulcata (Manning, 1978), divided by the propodus length. Other abbreviations: and one western Atlantic species, L. glabriuscula antennule (Al), antenna (A2), abdominal somite (AS), (Lamarck, 1818). For much of the last decade, scuba maxilliped (MXP), pleopod (PLP), thoracic somite (TS). divers in the Andaman Sea, Indonesian Archipelago, Specimens are deposited in the Australian Museum, and the Philippines have reported sightings of a large, Sydney (AM), the Museum Zoologicum Bogoriense, orangish-brown banded species of stomatopod, Indonesia (MZB) and the National Museum of which clearly belongs to an undescribed species of Natural History, Smithsonian Institution (USNM).
    [Show full text]
  • Abwakina Ae Katauaki Kainibaire Aika a Onoti
    T M N I E N I M S P T O R L Y E O V F E F D I S S E H C ER R IE U S SO & MARINE RE Kainibaire iaan te tua MAX MAX MAX MAX KG KG 5KG 2KG Kiribati fisheriesJ1254B regulations5 J1254B 2 Were Kima Te angMAX MAX Giant clam Giant clam 1Opieces MAX MAX Spider1Opieces conch 5KG 2KG TridacnaJ1254B maxima Tridacna gigas Lambis lambis 15 cm MAX 1Opieces Were Neitoro Te bun MAX MAX MAX MAX MAX MAX Giant clam 5KG 2KG Giant clam 5KG 2KG Ark shell KG KG J1254B J1254B 5 2 J1254B Tridacna squamosa Hippopus hippopus Anadara sp. 20 cm 4 cm MAX MAX MAX 1Opieces 1Opieces 1Opieces MAX MAX MAX MAX 5KG 2KG J1254B 5KG 2KG J1254B Te nnewe Te on Rock lobster MAX MAX Turtles MAX 5KG 2KG MAX MAX MAX J1254B Panulirus sp. 5KG 2KG J1254B 1Opieces 1Opieces 8.5 cm (carapace) MAX MAX 1Opieces MAX MAX 5KG 1Opieces2KG J1254B MAX 1Opieces Waro Mantis shrimp Lysiosquillina maculata MAX MAX 5KG 2KG 18 cm (eye to startJ1254B of caudal fin) MAX 1Opieces Te on - Tabwakea Hawksbill Eretmochelys imbricata 68 cm (carapace) Te on Green turtle Chelonia mydas 86 cm (carapace) ©SPC, 2020 - Illustrations Boris Rochel and design: Colas by O’Shea - Layout MAX MAX Kainibaire aikaMAX a onotiMAX Te on ae kanikinaeaki Abwakina ae katauaki 5KG 2KG 5KG 2KG J1254B Measurements for Special restrictionsJ1254B Ban on fishing for tagged turtles minimum size limits MAX E Ooko MAX MAX MAX 2 kg iaon temanna MAX MAX Bunimoan 1Opieceste on MAX MAX 5KG1Opieces 2KG MAX MAX KG KG Abwakina katoto 20 cm J1254B 5 2 Ban on fishing for J1254B 5KG 2KG Max 2 kg per person KG KG J1254B MAX MAX 5 2 J1254B Ban onMAX
    [Show full text]
  • Devries Phd Dissertation
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title The Feeding Morphology and Ecology of Stomatopod Crustaceans Permalink https://escholarship.org/uc/item/8518z4ct Author Devries, Maya Susanna Publication Date 2012 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California The Feeding Morphology and Ecology of Stomatopod Crustaceans by Maya Susanna deVries A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Integrative Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Sheila N. Patek, Co-Chair Professor Todd E. Dawson, Co-Chair Professor Roy L. Caldwell Professor Steven E. Beissinger Professor Peter C. Wainwright Fall 2012 The Feeding Morphology and Ecology of Stomatopod Crustaceans © 2012 by Maya Susanna deVries Abstract The Feeding Morphology and Ecology of Stomatopod Crustaceans by Maya Susanna deVries Doctor of Philosophy in Integrative Biology Professors Sheila N. Patek and Todd E. Dawson, Co-Chairs The paradigm that animals with specialized feeding morphology consume specific prey types is central to current understanding of ecological and evolutionary processes seen in nature. Mantis shrimp, or stomatopod crustaceans, are often hailed as having highly specialized feeding morphology; their raptorial appendages produce among the fastest, most powerful strikes ever reported in the animal kingdom, allowing species to capture fast-moving prey or to crush hard- shelled prey. While all stomatopods have appendages that produce fast movements, their appendage forms differ dramatically, which has led researchers to divide stomatopods into two groups: spearers that unfurl streamlined appendages to capture soft-bodied, evasive prey, and smashers that generate enough force to crush hard-shelled prey with hammer-like appendages.
    [Show full text]