The Drosophila Melanogaster Transcriptome by Paired-End RNA Sequencing

Total Page:16

File Type:pdf, Size:1020Kb

The Drosophila Melanogaster Transcriptome by Paired-End RNA Sequencing Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Resource The Drosophila melanogaster transcriptome by paired-end RNA sequencing Bryce Daines,1,2,6 Hui Wang,2,6 Liguo Wang,3,6 Yumei Li,1,2 Yi Han,2 David Emmert,4 William Gelbart,4 Xia Wang,1,2 Wei Li,3,5 Richard Gibbs,1,2,7 and Rui Chen1,2,7 1Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA; 2Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA; 3Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA; 4Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA; 5Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA RNA-seq was used to generate an extensive map of the Drosophila melanogaster transcriptome by broad sampling of 10 developmental stages. In total, 142.2 million uniquely mapped 64–100-bp paired-end reads were generated on the Illumina GA II yielding 3563 sequencing coverage. More than 95% of FlyBase genes and 90% of splicing junctions were observed. Modifications to 30% of FlyBase gene models were made by extension of untranslated regions, inclusion of novel exons, and identification of novel splicing events. A total of 319 novel transcripts were identified, representing a 2% increase over the current annotation. Alternate splicing was observed in 31% of D. melanogaster genes, a 38% increase over previous estimations, but significantly less than that observed in higher organisms. Much of this splicing is subtle such as tandem alternate splice sites. [Supplemental material is available for this article. The sequencing data from this study have been submitted to the NCBI Sequence Read Archive (http://www.ncbi.nlm.nih.gov/Traces/sra/sra.cgi) under accession no. SRA012173 and to the NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/) under accession no. GSE24324.] High-throughput sequencing of cDNA libraries (RNA-seq) is an ef- splicing isoforms is enabled without dependence on prior knowl- fective and accurate method for transcriptome profiling. RNA-seq edge. While splicing variants can also be detected with custom has been applied in many organisms including humans (Campbell microarrays, probes must be specifically designed to interrogate et al. 2008; Cloonan and Grimmond 2008; Cloonan et al. 2008; exon–exon junctions and are thus limited in scope to known or Marioni et al. 2008; Mortazavi et al. 2008; Mudge et al. 2008; predicted junctions. Finally, direct annotation of gene models and Nagalakshmi et al. 2008; Pan et al. 2008; Shendure 2008; Sultan novel transcript discovery are possible with RNA-seq (Yassour et al. et al. 2008; Wang et al. 2008; Filichkin et al. 2009; Levin et al. 2009; 2009). This can be accomplished by alignment of reads to a refer- Perkins et al. 2009; Wurtzel et al. 2009). RNA-seq is not dependent ence genome and inference of transcript models from coverage on prior knowledge and requires no design work, thus reducing and splicing data. While genome-tiling arrays can also be used to labor and enabling de novo discovery. Several additional features identify novel transcriptional units, RNA-seq is not subject to the of RNA-seq make it likely to supplant microarrays as the key tech- inherent limitations of hybridization platforms. Due to the several nology for transcriptome profiling, including accurate and sensi- advantages of the RNA-seq approach we have applied this tech- tive measuring of expression level, identification of alternate splic- nology to characterize the transcriptome of D. melanogaster. ing isoforms, and direct discovery of novel transcripts (Graveley D. melanogaster is an important model organism and has 2008; Shendure 2008). contributed significantly to our understanding of gene expression Highly accurate digital measurement of gene expression by and development. The transcriptome of D. melanogaster is well RNA-seq can be obtained by counting the number of sequencing annotated and functionally characterized. Analysis of transcript reads which map to annotated transcripts from appropriately expression using spotted arrays has yielded insight into the de- prepared libraries (Mortazavi et al. 2008; Wang et al. 2009). In this velopmental expression patterns of annotated D. melanogaster way, RNA-seq offers increased sensitivity and larger dynamic range transcripts; however, this platform is limited to a subset of anno- over microarray, effectively detecting rare transcripts with greater tated genes (Arbeitman et al. 2002). Additionally, tilling arrays sensitivity and abundant transcripts with superior discrimination have been used to demonstrate that >29% of unnanotated introns (Marioni et al. 2008). Furthermore, RNA-seq generates reads which and intergenic regions are transcribed within the first 24 h of de- straddle exon–exon junctions (junction reads). When junction velopment at specific time points in development (Manak et al. reads are properly aligned to a reference genome the associated 2006). Tilling arrays, however, are limited in their resolution by the splice event can be inferred. Thus, direct discovery of alternate size of probes used. Expressed sequence tags (ESTs) provide the primary evidence for annotation efforts. Although more than 800,000 D. melanogaster ESTs have been sequenced, not all pre- 6 These authors contributed equally to this work. dicted or annotated genes are supported by ESTs (Stapleton et al. 7Corresponding authors. 2002a,b). Furthermore, these EST efforts have focused primarily E-mail [email protected]. on embryo and adult libraries, specifically adult head and gonad E-mail [email protected]. Article published online before print. Article, supplemental material, and pub- tissues, leaving intermediate stages of development underrep- lication date are at http://www.genome.org/cgi/doi/10.1101/gr.107854.110. resented. Continuation of Sanger-based EST sequencing efforts is 21:315–324 Ó 2011 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/11; www.genome.org Genome Research 315 www.genome.org Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Daines et al. not an ideal solution for improvement of gene models because of set of curated models. Other annotations based on experimental its higher cost in comparison to next-generation sequencing and computational analysis are also available; a prominent ex- platforms. More recently, high throughput sequencing has been ample is the gene models (MB7) produced by the modENCODE recognized as an ideal solution for transcriptome profiling with consortium (http://www.modENCODE.org/). For robustness we base pair resolution. In D. melanogaster the 59-end SAGE method used both of these annotations as references throughout our has been combined with Illumina sequencing to generate a de- analysis of RNA-seq data. tailed profile of transcription start sites throughout development Read alignment with BLAT enabled the direct detection of (Ahsan et al. 2009). RNA-seq will enable interrogation of all tran- junction reads. These reads are essential to the identification of scripts, including potentially unannotated transcripts without the exon–exon junctions and alternate splicing. To maximize sensi- need for further EST characterization (Torres et al. 2008). We tivity for detecting junction reads we used two independent therefore propose that characterization of the D. melanogaster computational approaches (see Supplemental materials). Approx- transcriptome by RNA-seq technology will greatly facilitate on- imately 6% of all uniquely aligned reads were junction reads, of going annotation efforts. which, 94% are consistent with annotated FlyBase events, sug- gesting high concordance between experimental evidence and existing annotations. In total, 90.6% of annotated junctions Results (46,820) were observed with 93.6% consistency between the two approaches (see Supplemental Table 1; Supplemental Fig. 1). Ad- Extensive transcriptome profiling of D. melanogaster by RNA-seq ditionally, junction reads supported ;120,000 candidate novel In order to gain a broad sampling of the D. melanogaster tran- junctions. Analytical methods were used to reduce these to 7776 scriptome, RNA-seq experiments were performed at all stages of well-supported candidates (see Supplemental materials), of which the D. melanogaster life cycle. Poly(A)+ transcripts from 10 distinct 2012 (25.9%) are reported in the modENCODE MB7 gene models. stages during the live cycle of D. melanogaster were isolated to To determine the technical robustness of RNA-seq we con- generated cDNA libraries which were sequenced on the Illumina sidered the positive predictive value (PPV) and sensitivity of the GA II instrument. As shown in Table 1, 12 independent cDNA li- platform. The PPV of RNA-seq for expressed sequences is defined as braries were generated, including embryonic, larval, pupal, and the percent of uniquely aligned reads which overlap with anno- adult. Some libraries were staged as specific windows: 2–4-h em- tated transcripts. Across all samples, 97.6% of uniquely aligned bryo, 14–16-h embryo, third instar larva, 3-d pupa, and 17-d adult. reads overlap with annotated sequences, suggesting that RNA-seq is Additional libraries were derived from broadly staged mixed sam- highly specific to expressed sequences (Table 1). The sensitivity of ples: embryo, larvae, and pupa. Three-day-old male and female
Recommended publications
  • Maternally Inherited Pirnas Direct Transient Heterochromatin Formation
    RESEARCH ARTICLE Maternally inherited piRNAs direct transient heterochromatin formation at active transposons during early Drosophila embryogenesis Martin H Fabry, Federica A Falconio, Fadwa Joud, Emily K Lythgoe, Benjamin Czech*, Gregory J Hannon* CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom Abstract The PIWI-interacting RNA (piRNA) pathway controls transposon expression in animal germ cells, thereby ensuring genome stability over generations. In Drosophila, piRNAs are intergenerationally inherited through the maternal lineage, and this has demonstrated importance in the specification of piRNA source loci and in silencing of I- and P-elements in the germ cells of daughters. Maternally inherited Piwi protein enters somatic nuclei in early embryos prior to zygotic genome activation and persists therein for roughly half of the time required to complete embryonic development. To investigate the role of the piRNA pathway in the embryonic soma, we created a conditionally unstable Piwi protein. This enabled maternally deposited Piwi to be cleared from newly laid embryos within 30 min and well ahead of the activation of zygotic transcription. Examination of RNA and protein profiles over time, and correlation with patterns of H3K9me3 deposition, suggests a role for maternally deposited Piwi in attenuating zygotic transposon expression in somatic cells of the developing embryo. In particular, robust deposition of piRNAs targeting roo, an element whose expression is mainly restricted to embryonic development, results in the deposition of transient heterochromatic marks at active roo insertions. We hypothesize that *For correspondence: roo, an extremely successful mobile element, may have adopted a lifestyle of expression in the [email protected] embryonic soma to evade silencing in germ cells.
    [Show full text]
  • The Biogrid Interaction Database
    D470–D478 Nucleic Acids Research, 2015, Vol. 43, Database issue Published online 26 November 2014 doi: 10.1093/nar/gku1204 The BioGRID interaction database: 2015 update Andrew Chatr-aryamontri1, Bobby-Joe Breitkreutz2, Rose Oughtred3, Lorrie Boucher2, Sven Heinicke3, Daici Chen1, Chris Stark2, Ashton Breitkreutz2, Nadine Kolas2, Lara O’Donnell2, Teresa Reguly2, Julie Nixon4, Lindsay Ramage4, Andrew Winter4, Adnane Sellam5, Christie Chang3, Jodi Hirschman3, Chandra Theesfeld3, Jennifer Rust3, Michael S. Livstone3, Kara Dolinski3 and Mike Tyers1,2,4,* 1Institute for Research in Immunology and Cancer, Universite´ de Montreal,´ Montreal,´ Quebec H3C 3J7, Canada, 2The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada, 3Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA, 4School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK and 5Centre Hospitalier de l’UniversiteLaval´ (CHUL), Quebec,´ Quebec´ G1V 4G2, Canada Received September 26, 2014; Revised November 4, 2014; Accepted November 5, 2014 ABSTRACT semi-automated text-mining approaches, and to en- hance curation quality control. The Biological General Repository for Interaction Datasets (BioGRID: http://thebiogrid.org) is an open access database that houses genetic and protein in- INTRODUCTION teractions curated from the primary biomedical lit- Massive increases in high-throughput DNA sequencing erature for all major model organism species and technologies (1) have enabled an unprecedented level of humans. As of September 2014, the BioGRID con- genome annotation for many hundreds of species (2–6), tains 749 912 interactions as drawn from 43 149 pub- which has led to tremendous progress in the understand- lications that represent 30 model organisms.
    [Show full text]
  • Flybase: Updates to the Drosophila Melanogaster Knowledge Base Aoife Larkin 1,*, Steven J
    Published online 21 November 2020 Nucleic Acids Research, 2021, Vol. 49, Database issue D899–D907 doi: 10.1093/nar/gkaa1026 FlyBase: updates to the Drosophila melanogaster knowledge base Aoife Larkin 1,*, Steven J. Marygold 1, Giulia Antonazzo1, Helen Attrill 1, Gilberto dos Santos2, Phani V. Garapati1, Joshua L. Goodman3,L.SianGramates 2, Gillian Millburn1, Victor B. Strelets3, Christopher J. Tabone2, Jim Thurmond3 and FlyBase Consortium† 1 Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge Downloaded from https://academic.oup.com/nar/article/49/D1/D899/5997437 by guest on 15 January 2021 CB2 3DY, UK, 2The Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA and 3Department of Biology, Indiana University, Bloomington, IN 47405, USA Received September 15, 2020; Revised October 13, 2020; Editorial Decision October 14, 2020; Accepted October 22, 2020 ABSTRACT In this paper, we highlight a variety of new features and improvements that have been integrated into FlyBase since FlyBase (flybase.org) is an essential online database our last review (3). We have introduced a number of new fea- for researchers using Drosophila melanogaster as a tures that allow users to more easily find and use the data in model organism, facilitating access to a diverse ar- which they are interested; these include customizable tables, ray of information that includes genetic, molecular, improved searching using expanded Experimental Tool Re- genomic and reagent resources. Here, we describe ports, more links to and from other resources, and bet- the introduction of several new features at FlyBase, ter provision of precomputed bulk files. We have upgraded including Pathway Reports, paralog information, dis- tools such as Fast-Track Your Paper and ID validator.
    [Show full text]
  • Annual Scientific Report 2011 Annual Scientific Report 2011 Designed and Produced by Pickeringhutchins Ltd
    European Bioinformatics Institute EMBL-EBI Annual Scientific Report 2011 Annual Scientific Report 2011 Designed and Produced by PickeringHutchins Ltd www.pickeringhutchins.com EMBL member states: Austria, Croatia, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Israel, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom. Associate member state: Australia EMBL-EBI is a part of the European Molecular Biology Laboratory (EMBL) EMBL-EBI EMBL-EBI EMBL-EBI EMBL-European Bioinformatics Institute Wellcome Trust Genome Campus, Hinxton Cambridge CB10 1SD United Kingdom Tel. +44 (0)1223 494 444, Fax +44 (0)1223 494 468 www.ebi.ac.uk EMBL Heidelberg Meyerhofstraße 1 69117 Heidelberg Germany Tel. +49 (0)6221 3870, Fax +49 (0)6221 387 8306 www.embl.org [email protected] EMBL Grenoble 6, rue Jules Horowitz, BP181 38042 Grenoble, Cedex 9 France Tel. +33 (0)476 20 7269, Fax +33 (0)476 20 2199 EMBL Hamburg c/o DESY Notkestraße 85 22603 Hamburg Germany Tel. +49 (0)4089 902 110, Fax +49 (0)4089 902 149 EMBL Monterotondo Adriano Buzzati-Traverso Campus Via Ramarini, 32 00015 Monterotondo (Rome) Italy Tel. +39 (0)6900 91402, Fax +39 (0)6900 91406 © 2012 EMBL-European Bioinformatics Institute All texts written by EBI-EMBL Group and Team Leaders. This publication was produced by the EBI’s Outreach and Training Programme. Contents Introduction Foreword 2 Major Achievements 2011 4 Services Rolf Apweiler and Ewan Birney: Protein and nucleotide data 10 Guy Cochrane: The European Nucleotide Archive 14 Paul Flicek:
    [Show full text]
  • Rnacentral: Progress in the Development of the Non-Coding RNA Sequence Database
    RNAcentral: Progress in the Development of the Non-coding RNA Sequence Database Other potential titles: ● RNAcentral: New Developments in the Non-coding RNA Sequence Database ● RNAcentral: Three Years of ncRNA Data Integration Anton I. Petrov​1,​ Blake A. Sweeney​1,​ Boris Burkov​1*,​ Simon Kay​1,​ Rob Finn​1,​ Alex Bateman​1,​ and The RNAcentral Consortium European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD *To whom correspondence should be addressed: [email protected] BACKGROUND More than fifty major specialised resources exist in the area of non-coding RNA (ncRNA) research. RNAcentral (h​ttp://rnacentral.org)​ provides a unified interface that aggregates information from over twenty of them, including: - larger databases (e.g. RefSeq, ENA, Ensembl!) - databases with specific content type (e.g. Rfam, PDBe) - RNA type-specific databases (e.g. miRBase, GtRNAdb, snoPY) - organism-specific databases (e.g. HGNC, FlyBase, PomBase). RESULTS Launched in 2014 [2], RNAcentral currently contains over 10 million ncRNA sequences from more than 20 RNA databases and Is updated several times a year. Recent updates include ncRNA data from: - HGNC - Ensembl - FlyBase - Rfam (most of sequences in RNAcentral are annotated with Rfam families, while the rest are candidates for producing new Rfam families) There are three main ways of browsing the data through the RNAcentral website. - The text search makes it easy to explore all ncRNA sequences, compare data across different resources, and discover what is known about each ncRNA. - Using the sequence similarity search one can search data from multiple RNA databases starting from a sequence. - Finally, one can explore ncRNAs in select species by genomic location using an integrated genome browser.
    [Show full text]
  • Basic Bioinformatics
    Basic Bioinformatics Purpose of this protocol: From your literature reading, you might find proteins from other model systems (for example mouse) that have known roles in apoptosis, either upstream or downstream of IAPs. You will need to find out: A Search GenBank for the mammalian gene(s) mentioned in the literature, get the GenBank accession numbers of these genes; B Search FlyBase to identify Drosophila homologs and to find out more information on these genes – CG number of the gene, coding and 5’ and 3’-UTR sequences, and other information on the function of this gene. Also find out if it has alternative isoforms; C Search OpenBiosystems to find out if they carry RNAi clones of these genes, and get the clone ID and catalog number; This protocol has three sections, to answer the above three questions. Part A: Find genes in GenBank by name. 1) Go to NCBI website: http://www.ncbi.nlm.nih.gov/ . Under “Search”, select “Nucleotide” and type in the gene name and species that you want to search for. Use Booleans, and tags which you can find at the PubMed help page: http://www.ncbi.nlm.nih.gov/entrez/query/static/help/pmhelp.html#SearchFieldD escriptionsandTags If you know the author who published the paper on the gene you are interested, you can also include the author name in your search along with the gene name and species. Note: You will usually get more than one result. Read the title of each to screen out the ones that are obviously not what you are looking for.
    [Show full text]
  • Flybase 2.0: the Next Generation Jim Thurmond1, Joshua L
    Published online 26 October 2018 Nucleic Acids Research, 2019, Vol. 47, Database issue D759–D765 doi: 10.1093/nar/gky1003 FlyBase 2.0: the next generation Jim Thurmond1, Joshua L. Goodman1, Victor B. Strelets1, Helen Attrill2, L. Sian Gramates 3, Steven J. Marygold2, Beverley B. Matthews3, Gillian Millburn2, Giulia Antonazzo2, Vitor Trovisco2, Thomas C. Kaufman1, Brian R. Calvi1,* and the FlyBase Consortium† 1Department of Biology, Indiana University, Bloomington, IN 47408, USA, 2Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK and 3The Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA Received September 20, 2018; Editorial Decision October 06, 2018; Accepted October 09, 2018 ABSTRACT primary scientific literature covering more than a century of genetics research. Over the years, the consortium has de- FlyBase (flybase.org) is a knowledge base that sup- veloped new formats of data display and new bioinformatic ports the community of researchers that use the fruit tools to mine these data for biological discovery and trans- fly, Drosophila melanogaster, as a model organism. lational research. These efforts have transformed FlyBase The FlyBase team curates and organizes a diverse from a simple database into a powerful knowledge base. array of genetic, molecular, genomic, and develop- The FlyBase site has undergone major changes since our mental information about Drosophila. At the begin- last review two years ago (1). In February 2017, we released ning of 2018, ‘FlyBase 2.0’ was released with a signifi- a beta version of the next-generation website, which we have cantly improved user interface and new tools.
    [Show full text]
  • Phylogenetic Profiling of the Arabidopsis Thaliana Proteome
    Open Access Research2004Gutiérrezet al.Volume 5, Issue 8, Article R53 Phylogenetic profiling of the Arabidopsis thaliana proteome: what comment proteins distinguish plants from other organisms? Rodrigo A Gutiérrez*†§, Pamela J Green‡, Kenneth Keegstra*† and John B Ohlrogge† Addresses: *Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824-1312, USA. †Department of Plant Biology, Michigan State University, East Lansing, MI 48824-1312, USA. ‡Delaware Biotechnology Institute, University of Delaware, 15 § Innovation Way, Newark, DE 19711, USA. Current address: Department of Biology, New York University, 100 Washington Square East, New reviews York, NY 10003, USA. Correspondence: Rodrigo A Gutiérrez. E-mail: [email protected] Published: 15 July 2004 Received: 16 March 2004 Revised: 10 May 2004 Genome Biology 2004, 5:R53 Accepted: 7 June 2004 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2004/5/8/R53 reports © 2004 Gutiérrez et al.; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL Phylogenetic<p>Theopportunitycodingof life</p> genes availability to profilingof decipher <it>Arabidopsis of theof the the complete genetic Arabidopsis thaliana genomefactors </it>onthaliana that sequence define the proteome: ofbasis plant <it>Arab of form whattheir idopsisand proteinspattern function. thaliana of distingu sequence To </it>together beginish similarityplants this task, from wi to thwe other organismsthose have organisms? of classified other across organisms the the nuc threlear proe domains protein-vides an deposited research Abstract Background: The availability of the complete genome sequence of Arabidopsis thaliana together with those of other organisms provides an opportunity to decipher the genetic factors that define plant form and function.
    [Show full text]
  • Arabidopsis Thaliana Functional Genomics Project Annual Report 2008
    The Multinational Coordinated Arabidopsis thaliana Functional Genomics Project Annual Report 2008 Xing Wang Deng [email protected] Chair Joe Kieber [email protected] Co-chair Joanna Friesner [email protected] MASC Coordinator and Executive Secretary Thomas Altmann [email protected] Sacha Baginsky [email protected] Ruth Bastow [email protected] Philip Benfey [email protected] David Bouchez [email protected] Jorge Casal [email protected] Danny Chamovitz [email protected] Bill Crosby [email protected] Joe Ecker [email protected] Klaus Harter [email protected] Marie-Theres Hauser [email protected] Pierre Hilson [email protected] Eva Huala [email protected] Jaakko Kangasjärvi [email protected] Julin Maloof [email protected] Sean May [email protected] Peter McCourt [email protected] Harvey Millar [email protected] Ortrun Mittelsten- Scheid [email protected] Basil Nikolau [email protected] Javier Paz-Ares [email protected] Chris Pires [email protected] Barry Pogson [email protected] Ben Scheres [email protected] Randy Scholl [email protected] Heiko Schoof [email protected] Kazuo Shinozaki [email protected] Klaas van Wijk [email protected] Paola Vittorioso [email protected] Wolfram Weckwerth [email protected] Weicai Yang [email protected] The Multinational Arabidopsis Steering Committee—July 2008 Front Cover Design Philippe Lamesch, Curator at TAIR/Carnegie Institute for Science, and Joanna Friesner, MASC Coordinator at the University of California, Davis, USA Images Map of geographical distribution of ecotypes of Arabidopsis thaliana Updated representation contributed by Philippe Lamesch, adapted from Jonathon Clarke, UK (1993).
    [Show full text]
  • Bioinformatics Approaches for Functional Predictions in Diverse Informatics Environments. Paula Maria Moolhuijzen, Bsc This Thes
    Bioinformatics approaches for functional predictions in diverse informatics environments. Paula Maria Moolhuijzen, BSc This thesis is presented for the degree of Doctor of Philosophy of Murdoch University 2011 i Declaration I declare that this thesis is my own account of my research and contains as its main content work, which has not previously been submitted for a degree at any tertiary education institution. Signature: Name: Paula Moolhuijzen Date: 4th October 2011 ii Abstract Bioinformatics is the scientific discipline that collates, integrates and analyses data and information sets for the life sciences. Critically important in agricultural and biomedical fields, there is a pressing need to integrate large and diverse data sets into biologically significant information. This places major challenges on research strategies and resources (data repositories, computer infrastructure and software) required to integrate relevant data and analysis workflows. These challenges include: ! The construction of processes to integrate data from disparate and diverse resources and legacy systems that have variable data formats, qualities, availability and accessibility constraints. ! Substantially contributing to hypothesis driven research for biologically significant information. The hypothesis proposed in this thesis is that in organisms from divergent origins, with differing data availability and analysis resources, in silico approaches can identify genomic targets in a range of disease systems. The particular aims were to: 1. Overcome data constraints that impact analysis of different organisms. 2. Make functional genomic predictions in diverse biological systems. 3. Identify specific genomic targets for diagnostics and therapeutics in diverse disease mechanisms. iii In order to test the hypothesis three case studies in human cancer, pathogenic bacteria, and parasitic arthropod were selected, the results are as follows.
    [Show full text]
  • Abstracts Selected for Platform Presentation
    Abstracts Selected for Platform Presentation Using semantic similarity analysis based on Human Phenotype Ontology terms to identify genetic etiologies for epilepsy and neurodevelopmental disorders Ingo Helbig1,2,3, Shiva Ganesan1,2, Peter Galer1,2, Colin A. Ellis3, Katherine L. Helbig1,2 1 Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104 USA 2 Department of Biomedical and Health Informatics (DBHi), Children’s Hospital of Philadelphia, Philadelphia, PA, 19104 USA 3 Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104 USA More than 25% of children with intractable epilepsies have an identifiable genetic cause, and the goal of epilepsy precision medicine is to stratify patients based on genetic findings to improve diagnosis and treatment. Large-scale genetic studies in > 15,000 epilepsy patients have provided deep insights into causative genetic changes. However, the understanding of how these changes link to specific clinical features is lagging behind. This deficit is largely due to the lack of frameworks to analyze large-scale phenotypic data, which dramatically impedes the ability to translate genetic findings into improved treatment. The Human Phenotype Ontology (HPO) has been developed as a curated terminology, with formal semantic relationships between more than 13,500 phenotypic terms, and has been adopted by many diagnostic laboratories, the UK’s 100,000 Genomes Project, the NIH Undiagnosed Diseases Network, the GA4GH, and hundreds of global initiatives. The HPO also contains a rich vocabulary for epilepsy-related phenotypes, which we have developed in prior large research networks and expanded in current projects. However, analytical approaches leveraging this rich data resource have not been implemented so far.
    [Show full text]
  • The Zebrafish Information Network: New Support for Non-Coding Genes
    Published online 8 November 2018 Nucleic Acids Research, 2019, Vol. 47, Database issue D867–D873 doi: 10.1093/nar/gky1090 The Zebrafish Information Network: new support for non-coding genes, richer Gene Ontology annotations and the Alliance of Genome Resources Leyla Ruzicka *, Douglas G. Howe, Sridhar Ramachandran, Sabrina Toro, Ceri E. Van Slyke, Yvonne M. Bradford, Anne Eagle, David Fashena, Ken Frazer, Patrick Kalita, Prita Mani, Ryan Martin, Sierra Taylor Moxon, Holly Paddock, Christian Pich, Kevin Schaper, Xiang Shao, Amy Singer and Monte Westerfield The Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA Received September 16, 2018; Revised October 18, 2018; Editorial Decision October 19, 2018; Accepted October 25, 2018 ABSTRACT support for genes and alleles, ZFIN pages for researchers, laboratories and companies, and a wiki for researchers to The Zebrafish Information Network (ZFIN) (https: share antibody and protocol information. Here we describe //zfin.org/) is the database for the model organism, recent updates and additions to the ZFIN resource, includ- zebrafish (Danio rerio). ZFIN expertly curates, orga- ing support for non-coding genes and genomic regions, and nizes and provides a wide array of zebrafish genetic more expressive Gene Ontology annotations. We review the and genomic data, including genes, alleles, trans- role of ZFIN in maintaining the zebrafish reference genome genic lines, gene expression, gene function, mu- sequence and how the community can submit requests for tant phenotypes, orthology, human disease models, updates to the genome sequence. Finally, we discuss ZFIN nomenclature and reagents. New features at ZFIN in- as a member of the Alliance of Genome Resources, a collab- clude increased support for genomic regions and oration among six model organism databases and the Gene for non-coding genes, and support for more expres- Ontology consortium.
    [Show full text]