Phylogenetic Profiling of the Arabidopsis Thaliana Proteome

Total Page:16

File Type:pdf, Size:1020Kb

Phylogenetic Profiling of the Arabidopsis Thaliana Proteome Open Access Research2004Gutiérrezet al.Volume 5, Issue 8, Article R53 Phylogenetic profiling of the Arabidopsis thaliana proteome: what comment proteins distinguish plants from other organisms? Rodrigo A Gutiérrez*†§, Pamela J Green‡, Kenneth Keegstra*† and John B Ohlrogge† Addresses: *Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824-1312, USA. †Department of Plant Biology, Michigan State University, East Lansing, MI 48824-1312, USA. ‡Delaware Biotechnology Institute, University of Delaware, 15 § Innovation Way, Newark, DE 19711, USA. Current address: Department of Biology, New York University, 100 Washington Square East, New reviews York, NY 10003, USA. Correspondence: Rodrigo A Gutiérrez. E-mail: [email protected] Published: 15 July 2004 Received: 16 March 2004 Revised: 10 May 2004 Genome Biology 2004, 5:R53 Accepted: 7 June 2004 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2004/5/8/R53 reports © 2004 Gutiérrez et al.; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL Phylogenetic<p>Theopportunitycodingof life</p> genes availability to profilingof decipher <it>Arabidopsis of theof the the complete genetic Arabidopsis thaliana genomefactors </it>onthaliana that sequence define the proteome: ofbasis plant <it>Arab of form whattheir idopsisand proteinspattern function. thaliana of distingu sequence To </it>together beginish similarityplants this task, from wi to thwe other organismsthose have organisms? of classified other across organisms the the nuc threlear proe domains protein-vides an deposited research Abstract Background: The availability of the complete genome sequence of Arabidopsis thaliana together with those of other organisms provides an opportunity to decipher the genetic factors that define plant form and function. To begin this task, we have classified the nuclear protein-coding genes of Arabidopsis thaliana on the basis of their pattern of sequence similarity to organisms across the three domains of life. refereed research refereed Results: We identified 3,848 Arabidopsis proteins that are likely to be found solely within the plant lineage. More than half of these plant-specific proteins are of unknown function, emphasizing the general lack of knowledge of processes unique to plants. Plant-specific proteins that are membrane- associated and/or targeted to the mitochondria or chloroplasts are the most poorly characterized. Analyses of microarray data indicate that genes coding for plant-specific proteins, but not evolutionarily conserved proteins, are more likely to be expressed in an organ-specific manner. A large proportion (13%) of plant-specific proteins are transcription factors, whereas other basic cellular processes are under-represented, suggesting that evolution of plant-specific control of gene expression contributed to making plants different from other eukaryotes. interactions Conclusions: We identified and characterized the Arabidopsis proteins that are most likely to be plant-specific. Our results provide a genome-wide assessment that supports the hypothesis that evolution of higher plant complexity and diversity is related to the evolution of regulatory mechanisms. Because proteins that are unique to the green plant lineage will not be studied in other model systems, they should be attractive priorities for future studies. information Background than 99% of the terrestrial biomass and support most of the Plants have played a major role in the geochemical and cli- biodiversity on Earth), plants are essential for humans as the matic evolution of our planet. Today, in addition to their fun- main source of food, provide raw materials for many types of damental ecological importance (plants account for more industry and chemicals for medical applications. It is thus Genome Biology 2004, 5:R53 R53.2 Genome Biology 2004, Volume 5, Issue 8, Article R53 Gutiérrez et al. http://genomebiology.com/2004/5/8/R53 daunting to realize how little we understand about them. For processes that can tell us about the unique aspects of plants example, only approximately 10% of the genes of Arabidopsis and other organisms. One way to promote discoveries that are thaliana, the best explored model system for plant biologists, of special significance to plants or other lineages is to focus have been characterized experimentally [1]. attention on those genes that are found preferentially in that lineage. However, few comparative genomic studies have What makes plants different from other organisms? This is a been carried out that focus on lineage-specific aspects of the central question in plant biology that has a complex, multilay- sequenced genomes [5]. The recent availability of several ered answer. The genomic sequence of Arabidopsis, pub- complete genome sequences from all three domains of life lished in December 2000, allows us to begin answering this (Eukarya, Bacteria, Archaea) makes comparative genomic fundamental question from the perspective of genetic infor- strategies particularly attractive to tackle this issue. mation. By identifying the similarities and the differences in the gene content of this model plant as compared with organ- As a first step towards identifying plant-specific genes, we isms in other phylogenetic lineages, one can begin to differen- classified the nuclear-encoded protein-coding genes of Arabi- tiate ancient processes that are shared by cells in plants and dopsis on the basis of their pattern of sequence similarity to other organisms, from those that evolved independently in protein sequences of organisms that belong to Eukarya, Bac- the plant lineage and contributed to determining plant form teria and Archaea. We then used this initial classification to and function. identify 3,848 Arabidopsis proteins that are likely to be found only in green plants. We believe that these plant-specific pro- The vast majority of the genes in Arabidopsis are encoded in teins may play important roles in processes that are unique to the nuclear genome. Most of the original genetic content of and of significance to green plants. We found that many the cyanobacterial ancestor of the chloroplast and the proteo- plant-specific proteins are known or putative transcription bacterial ancestor of the mitochondrion have been trans- factors, indicating that evolution of plant-specific mecha- ferred to the plant cell nucleus. The remaining 79 chloroplast- nisms of regulating gene transcription was important for the encoded proteins are mostly components of the photosystem evolution of the plant lineage. However, many plant-specific and electron-transport chain or are involved in protein syn- proteins have no known function. From our analysis of the thesis [2]. Most of the 58 genes encoded in the mitochondrial latter proteins, we suggest that plant-specific processes that genome are devoted to components of the respiratory chain occur in chloroplasts or mitochondria, and/or that are associ- and tRNAs [3]. ated with membranes, are the most understudied. Interest- ingly, plant genes encoding plant-specific proteins were often The initial analysis of the sequenced Arabidopsis genome expressed in an organ-specific manner. To facilitate the func- suggested that 70% of the Arabidopsis gene products can be tional characterization of plant-specific proteins, we have assigned to functional categories on the basis of sequence compiled and integrated information from multiple public similarity to genes of known function in other organisms [1]. databases (for example, TIGR, MIPS, TAIR, SIGNAL) and However, the proportion of Arabidopsis genes with related computer prediction programs into a searchable database counterparts in other organisms with completed genome that is accessible from the worldwide web [6]. sequences (Escherichia coli, Synechocystis sp. PC6803, Sac- charomyces cerevisiae, Caenorhabditis elegans, Drosophila melanogaster and Homo sapiens) vary greatly depending on Results the functional category: from 8-23% in transcription to 48- Arabidopis protein-coding genes exhibit diverse 60% in protein synthesis when using a stringent BLASTP cut- phylogenetic profiles off value of E < 10-30. These results suggest that plant tran- To try and understand what makes plants different from scription factors have evolved independently, but that other organisms at the genetic level, we sought to identify and proteins that participate in other cellular processes are highly characterize the Arabidopsis protein-coding genes that are conserved in the plant lineage [1]. present in plant species but not in organisms outside the Plantae. As a first step we investigated the pattern of similar- Determining the function of proteins deduced from genomic ity of Arabidopsis protein sequences among organisms that sequences is a central goal in this post-genomic era. The belong to the three domains of life (Eukarya, Bacteria and importance of this pursuit is emphasized by the observation Archaea). We determined the phylogenetic profile (PP) of that even for some of the most extensively studied organisms, each Arabidopsis protein sequence by recording the presence such as E. coli, a high proportion of the predicted genes are as or absence of similar sequences in protein sets from other yet uncharacterized [4]. How do we prioritize the characteri- organisms.
Recommended publications
  • Maternally Inherited Pirnas Direct Transient Heterochromatin Formation
    RESEARCH ARTICLE Maternally inherited piRNAs direct transient heterochromatin formation at active transposons during early Drosophila embryogenesis Martin H Fabry, Federica A Falconio, Fadwa Joud, Emily K Lythgoe, Benjamin Czech*, Gregory J Hannon* CRUK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, United Kingdom Abstract The PIWI-interacting RNA (piRNA) pathway controls transposon expression in animal germ cells, thereby ensuring genome stability over generations. In Drosophila, piRNAs are intergenerationally inherited through the maternal lineage, and this has demonstrated importance in the specification of piRNA source loci and in silencing of I- and P-elements in the germ cells of daughters. Maternally inherited Piwi protein enters somatic nuclei in early embryos prior to zygotic genome activation and persists therein for roughly half of the time required to complete embryonic development. To investigate the role of the piRNA pathway in the embryonic soma, we created a conditionally unstable Piwi protein. This enabled maternally deposited Piwi to be cleared from newly laid embryos within 30 min and well ahead of the activation of zygotic transcription. Examination of RNA and protein profiles over time, and correlation with patterns of H3K9me3 deposition, suggests a role for maternally deposited Piwi in attenuating zygotic transposon expression in somatic cells of the developing embryo. In particular, robust deposition of piRNAs targeting roo, an element whose expression is mainly restricted to embryonic development, results in the deposition of transient heterochromatic marks at active roo insertions. We hypothesize that *For correspondence: roo, an extremely successful mobile element, may have adopted a lifestyle of expression in the [email protected] embryonic soma to evade silencing in germ cells.
    [Show full text]
  • "Phylogenetic Profiling"
    Introductory Review Phylogenetic p rofiling Matteo Pellegrini, Todd O. Yeates and David Eisenberg Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA, USA Sorel T. Fitz-Gibbon IGPP Center for Astrobiology, University of California at Los Angeles, Los Angeles, CA, USA 1. Introduction Biology has been profoundly changed by the development of techniques to se- quence DNA. The advent of rapid sequencing in conjunction with the capability to assemble sequence fragments into complete genome sequences enables researchers to read and analyze entire genomes of organisms. Parallel progress has been made in algorithms to study the evolutionary history of proteins. The techniques rely on the ability to measure the similarity of protein sequences in order to determine the likelihood that different proteins are descended from a common ancestor. It is therefore possible to reconstruct families of proteins that share a common ancestor. Combining these two capabilities, we can now not only determine which proteins are coded within an organism’s genome but we can also discover the evolutionary relationships between the proteins of multiple organisms. Phylogenetic profiling is the study of which protein types are found in which organisms. In order to perform phylogenetic profiling, one must first establish a classification of proteins into families. An example of such a classification scheme across a broad range of fully sequenced organisms is the Clusters of Orthologous Groups (Tatusov, 1997), where an attempt is made to group together proteins that perform a similar function. Next, each organism is described in terms of which protein families are coded or not coded in its genome.
    [Show full text]
  • Pellegrini M. Using Phylogenetic Profiles To
    Chapter 9 Using Phylogenetic Profiles to Predict Functional Relationships Matteo Pellegrini Abstract Phylogenetic profiling involves the comparison of phylogenetic data across gene families. It is possible to construct phylogenetic trees, or related data structures, for specific gene families using a wide variety of tools and approaches. Phylogenetic profiling involves the comparison of this data to determine which families have correlated or coupled evolution. The underlying assumption is that in certain cases these couplings may allow us to infer that the two families are functionally related: that is their function in the cell is coupled. Although this technique can be applied to noncoding genes, it is more commonly used to assess the function of protein coding genes. Examples of proteins that are functionally related include subunits of protein complexes, or enzymes that perform consecutive steps along biochemical pathways. We hypothesize the deletion of one of the families from a genome would then indirectly affect the function of the other. Dozens of different implementations of the phylogenetic profiling technique have been developed over the past decade. These range from the first simple approaches that describe phylogenetic profiles as binary vectors to the most complex ones that attempt to model to the coevolution of protein families on a phylogenetic tree. We discuss a set of these implementations and present the software and databases that are available to perform phylogenetic profiling. Key words: Phylogenetic profiles, Coevolution, Functional associations, Comparative genomics, Coevolving proteins 1. Introduction The remarkable improvements in sequencing technology that have occurred over the past few decades have made the sequenc- ing of genomes an ever more routine task.
    [Show full text]
  • The Biogrid Interaction Database
    D470–D478 Nucleic Acids Research, 2015, Vol. 43, Database issue Published online 26 November 2014 doi: 10.1093/nar/gku1204 The BioGRID interaction database: 2015 update Andrew Chatr-aryamontri1, Bobby-Joe Breitkreutz2, Rose Oughtred3, Lorrie Boucher2, Sven Heinicke3, Daici Chen1, Chris Stark2, Ashton Breitkreutz2, Nadine Kolas2, Lara O’Donnell2, Teresa Reguly2, Julie Nixon4, Lindsay Ramage4, Andrew Winter4, Adnane Sellam5, Christie Chang3, Jodi Hirschman3, Chandra Theesfeld3, Jennifer Rust3, Michael S. Livstone3, Kara Dolinski3 and Mike Tyers1,2,4,* 1Institute for Research in Immunology and Cancer, Universite´ de Montreal,´ Montreal,´ Quebec H3C 3J7, Canada, 2The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada, 3Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA, 4School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, UK and 5Centre Hospitalier de l’UniversiteLaval´ (CHUL), Quebec,´ Quebec´ G1V 4G2, Canada Received September 26, 2014; Revised November 4, 2014; Accepted November 5, 2014 ABSTRACT semi-automated text-mining approaches, and to en- hance curation quality control. The Biological General Repository for Interaction Datasets (BioGRID: http://thebiogrid.org) is an open access database that houses genetic and protein in- INTRODUCTION teractions curated from the primary biomedical lit- Massive increases in high-throughput DNA sequencing erature for all major model organism species and technologies (1) have enabled an unprecedented level of humans. As of September 2014, the BioGRID con- genome annotation for many hundreds of species (2–6), tains 749 912 interactions as drawn from 43 149 pub- which has led to tremendous progress in the understand- lications that represent 30 model organisms.
    [Show full text]
  • Flybase: Updates to the Drosophila Melanogaster Knowledge Base Aoife Larkin 1,*, Steven J
    Published online 21 November 2020 Nucleic Acids Research, 2021, Vol. 49, Database issue D899–D907 doi: 10.1093/nar/gkaa1026 FlyBase: updates to the Drosophila melanogaster knowledge base Aoife Larkin 1,*, Steven J. Marygold 1, Giulia Antonazzo1, Helen Attrill 1, Gilberto dos Santos2, Phani V. Garapati1, Joshua L. Goodman3,L.SianGramates 2, Gillian Millburn1, Victor B. Strelets3, Christopher J. Tabone2, Jim Thurmond3 and FlyBase Consortium† 1 Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge Downloaded from https://academic.oup.com/nar/article/49/D1/D899/5997437 by guest on 15 January 2021 CB2 3DY, UK, 2The Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA and 3Department of Biology, Indiana University, Bloomington, IN 47405, USA Received September 15, 2020; Revised October 13, 2020; Editorial Decision October 14, 2020; Accepted October 22, 2020 ABSTRACT In this paper, we highlight a variety of new features and improvements that have been integrated into FlyBase since FlyBase (flybase.org) is an essential online database our last review (3). We have introduced a number of new fea- for researchers using Drosophila melanogaster as a tures that allow users to more easily find and use the data in model organism, facilitating access to a diverse ar- which they are interested; these include customizable tables, ray of information that includes genetic, molecular, improved searching using expanded Experimental Tool Re- genomic and reagent resources. Here, we describe ports, more links to and from other resources, and bet- the introduction of several new features at FlyBase, ter provision of precomputed bulk files. We have upgraded including Pathway Reports, paralog information, dis- tools such as Fast-Track Your Paper and ID validator.
    [Show full text]
  • Integrating Genomic Data to Predict Transcription Factor Binding
    Integrating Genomic Data to Predict Transcription Factor Binding Dustin T. Holloway 1 Mark Kon 2 Charles DeLisi 3 [email protected] [email protected] [email protected] 1 Molecular Biology Cell Biology and Biochemistry, 3 Boston University, Boston, MA 02215, U.S.A. Bioinformatics and Systems Biology, 2 Boston University, Boston, MA 02215, U.S.A. Department of Mathematics and Statistics, Boston University, Boston, MA 02215 , U.S.A. Abstract Transcription factor binding sites (TFBS) in gene promoter regions are often predicted by using position specific scoring matrices (PSSMs), which summarize sequence patterns of experimentally determined TF binding sites. Although PSSMs are more reliable than simple consensus string matching in predicting a true binding site, they generally result in high numbers of false positive hits. This study attempts to reduce the number of false positive matches and generate new predictions by integrating various types of genomic data by two methods: a Bayesian allocation procedure, and support vector machine classification. Several methods will be explored to strengthen the prediction of a true TFBS in the Saccharomyces cerevisiae genome: binding site degeneracy, binding site conservation, phylogenetic profiling, TF binding site clustering, gene expression profiles, GO functional annotation, and k-mer counts in promoter regions. Binding site degeneracy (or redundancy) refers to the number of times a particular transcription factor’s binding motif is discovered in the upstream region of a gene. Phylogenetic conservation takes into account the number of orthologous upstream regions in other genomes that contain a particular binding site. Phylogenetic profiling refers to the presence or absence of a gene across a large set of genomes.
    [Show full text]
  • Scalable Phylogenetic Profiling Using Minhash Uncovers Likely Eukaryotic Sexual Reproduction Genes
    bioRxiv preprint doi: https://doi.org/10.1101/852491; this version posted November 22, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Scalable Phylogenetic Profiling using MinHash Uncovers Likely Eukaryotic Sexual Reproduction Genes 1,2,3,* 1,2,3 4,5 1,2,3,6,7,* David Moi ​ ,​ Laurent Kilchoer ,​ Pablo S. Aguilar ​ and Christophe Dessimoz ​ ​ ​ ​ 1 2 Department​ of Computational Biology, University of Lausanne, Switzerland; Center​ for Integrative Genomics, ​ 3 4 University of Lausanne, Switzerland; SIB​ Swiss Institute of Bioinformatics, Lausanne, Switzerland; Instituto​ de ​ ​ 5 Investigaciones Biotecnologicas (IIBIO), Universidad Nacional de San Martín Buenos Aires, Argentina; Instituto​ de ​ 6 Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Department​ of Genetics, Evolution, and ​ 7 Environment, University College London, UK; Department​ of Computer Science, University College London, UK. ​ *Corresponding authors: [email protected] and [email protected] Abstract Phylogenetic profiling is a computational method to predict genes involved in the same biological process by identifying protein families which tend to be jointly lost or retained across the tree of life. Phylogenetic profiling has customarily been more widely used with prokaryotes than eukaryotes, because the method is thought to require many diverse genomes. There are now many eukaryotic genomes available, but these are considerably larger, and typical phylogenetic profiling methods require quadratic time or worse in the number of genes. We introduce a fast, scalable phylogenetic profiling approach entitled HogProf, which leverages hierarchical orthologous groups for the construction of large profiles and locality-sensitive hashing for efficient retrieval of similar profiles.
    [Show full text]
  • Review Article Protein-Protein Interaction Detection: Methods and Analysis
    Hindawi Publishing Corporation International Journal of Proteomics Volume 2014, Article ID 147648, 12 pages http://dx.doi.org/10.1155/2014/147648 Review Article Protein-Protein Interaction Detection: Methods and Analysis V. Srinivasa Rao,1 K. Srinivas,1 G. N. Sujini,2 and G. N. Sunand Kumar1 1 Department of CSE, VR Siddhartha Engineering College, Vijayawada 520007, India 2 Department of CSE, Mahatma Gandhi Institute of Technology, Hyderabad 500075, India Correspondence should be addressed to V. Srinivasa Rao; [email protected] Received 26 October 2013; Revised 5 December 2013; Accepted 20 December 2013; Published 17 February 2014 Academic Editor: Yaoqi Zhou Copyright © 2014 V. Srinivasa Rao et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Protein-protein interaction plays key role in predicting the protein function of target protein and drug ability of molecules. The majority of genes and proteins realize resulting phenotype functions as a set of interactions. The in vitro and in vivo methods like affinity purification, Y2H (yeast 2 hybrid), TAP (tandem affinity purification), and so forth have their own limitations like cost, time, and so forth, and the resultant data sets are noisy and have more false positives to annotate the function of drug molecules. Thus, in silico methods which include sequence-based approaches, structure-based approaches, chromosome proximity, gene fusion, in silico 2 hybrid, phylogenetic tree, phylogenetic profile, and gene expression-based approaches were developed. Elucidation of protein interaction networks also contributes greatly to the analysis of signal transduction pathways.
    [Show full text]
  • Mapping Global and Local Co-Evolution Across 600 Species to Identify Novel Homologous Recombination Repair Genes
    Downloaded from genome.cshlp.org on October 9, 2021 - Published by Cold Spring Harbor Laboratory Press Mapping global and local co-evolution across 600 species to identify novel homologous recombination repair genes Dana Sherill-Rofe1*, Dolev Rahat1,2*, Steven Findlay3,4,#, Anna Mellul1,#, Irene Guberman1, Maya Braun1, Idit Bloch1, Alon Lalezari1, Arash Samiei 3,4, Ruslan Sadreyev5,6,7, Michal 8 3,4,9,10 2,† 1,†, Goldberg , Alexandre Orthwein , Aviad Zick and Yuval Tabach 1Department of Developmental Biology and Cancer Research, Institute for Medical Research- Israel-Canada, Hebrew University of Jerusalem, Jerusalem, Israel. 2Sharett Institute of Oncology, Hadassah Medical Center, Ein-Kerem, Jerusalem, Israel. 3Lady Davis Institute for Medical Research, Segal Cancer Centre, Jewish General Hospital, Montreal, Quebec, Canada. 4Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada. 5Department of Molecular Biology, Massachusetts General Hospital, Boston, MA USA. 6Department of Genetics, Harvard Medical School, Boston, MA USA. 7Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA USA. 8Department of Genetics, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem, Israel. 9Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada. 10Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada. *These authors contributed equally to this work. # These authors contributed equally to this work.
    [Show full text]
  • Annual Scientific Report 2011 Annual Scientific Report 2011 Designed and Produced by Pickeringhutchins Ltd
    European Bioinformatics Institute EMBL-EBI Annual Scientific Report 2011 Annual Scientific Report 2011 Designed and Produced by PickeringHutchins Ltd www.pickeringhutchins.com EMBL member states: Austria, Croatia, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Israel, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden, Switzerland, United Kingdom. Associate member state: Australia EMBL-EBI is a part of the European Molecular Biology Laboratory (EMBL) EMBL-EBI EMBL-EBI EMBL-EBI EMBL-European Bioinformatics Institute Wellcome Trust Genome Campus, Hinxton Cambridge CB10 1SD United Kingdom Tel. +44 (0)1223 494 444, Fax +44 (0)1223 494 468 www.ebi.ac.uk EMBL Heidelberg Meyerhofstraße 1 69117 Heidelberg Germany Tel. +49 (0)6221 3870, Fax +49 (0)6221 387 8306 www.embl.org [email protected] EMBL Grenoble 6, rue Jules Horowitz, BP181 38042 Grenoble, Cedex 9 France Tel. +33 (0)476 20 7269, Fax +33 (0)476 20 2199 EMBL Hamburg c/o DESY Notkestraße 85 22603 Hamburg Germany Tel. +49 (0)4089 902 110, Fax +49 (0)4089 902 149 EMBL Monterotondo Adriano Buzzati-Traverso Campus Via Ramarini, 32 00015 Monterotondo (Rome) Italy Tel. +39 (0)6900 91402, Fax +39 (0)6900 91406 © 2012 EMBL-European Bioinformatics Institute All texts written by EBI-EMBL Group and Team Leaders. This publication was produced by the EBI’s Outreach and Training Programme. Contents Introduction Foreword 2 Major Achievements 2011 4 Services Rolf Apweiler and Ewan Birney: Protein and nucleotide data 10 Guy Cochrane: The European Nucleotide Archive 14 Paul Flicek:
    [Show full text]
  • The Drosophila Melanogaster Transcriptome by Paired-End RNA Sequencing
    Downloaded from genome.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Resource The Drosophila melanogaster transcriptome by paired-end RNA sequencing Bryce Daines,1,2,6 Hui Wang,2,6 Liguo Wang,3,6 Yumei Li,1,2 Yi Han,2 David Emmert,4 William Gelbart,4 Xia Wang,1,2 Wei Li,3,5 Richard Gibbs,1,2,7 and Rui Chen1,2,7 1Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA; 2Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA; 3Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA; 4Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA; 5Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA RNA-seq was used to generate an extensive map of the Drosophila melanogaster transcriptome by broad sampling of 10 developmental stages. In total, 142.2 million uniquely mapped 64–100-bp paired-end reads were generated on the Illumina GA II yielding 3563 sequencing coverage. More than 95% of FlyBase genes and 90% of splicing junctions were observed. Modifications to 30% of FlyBase gene models were made by extension of untranslated regions, inclusion of novel exons, and identification of novel splicing events. A total of 319 novel transcripts were identified, representing a 2% increase over the current annotation. Alternate splicing was observed in 31% of D. melanogaster genes, a 38% increase over previous estimations, but significantly less than that observed in higher organisms. Much of this splicing is subtle such as tandem alternate splice sites.
    [Show full text]
  • Rnacentral: Progress in the Development of the Non-Coding RNA Sequence Database
    RNAcentral: Progress in the Development of the Non-coding RNA Sequence Database Other potential titles: ● RNAcentral: New Developments in the Non-coding RNA Sequence Database ● RNAcentral: Three Years of ncRNA Data Integration Anton I. Petrov​1,​ Blake A. Sweeney​1,​ Boris Burkov​1*,​ Simon Kay​1,​ Rob Finn​1,​ Alex Bateman​1,​ and The RNAcentral Consortium European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD *To whom correspondence should be addressed: [email protected] BACKGROUND More than fifty major specialised resources exist in the area of non-coding RNA (ncRNA) research. RNAcentral (h​ttp://rnacentral.org)​ provides a unified interface that aggregates information from over twenty of them, including: - larger databases (e.g. RefSeq, ENA, Ensembl!) - databases with specific content type (e.g. Rfam, PDBe) - RNA type-specific databases (e.g. miRBase, GtRNAdb, snoPY) - organism-specific databases (e.g. HGNC, FlyBase, PomBase). RESULTS Launched in 2014 [2], RNAcentral currently contains over 10 million ncRNA sequences from more than 20 RNA databases and Is updated several times a year. Recent updates include ncRNA data from: - HGNC - Ensembl - FlyBase - Rfam (most of sequences in RNAcentral are annotated with Rfam families, while the rest are candidates for producing new Rfam families) There are three main ways of browsing the data through the RNAcentral website. - The text search makes it easy to explore all ncRNA sequences, compare data across different resources, and discover what is known about each ncRNA. - Using the sequence similarity search one can search data from multiple RNA databases starting from a sequence. - Finally, one can explore ncRNAs in select species by genomic location using an integrated genome browser.
    [Show full text]