Research Article 1785 Oxygen-regulated expression of the RNA-binding proteins RBM3 and CIRP by a HIF-1-independent mechanism Sven Wellmann1, Christoph Bührer2,*, Eva Moderegger1, Andrea Zelmer1, Renate Kirschner1, Petra Koehne2, Jun Fujita3 and Karl Seeger1 1Department of Pediatric Oncology/Hematology and the 2Department of Neonatology, Charité Campus Virchow-Klinikum, Medical University of Berlin, 13353 Berlin, Germany 3Department of Clinical Molecular Biology, Kyoto University, Kyoto 606-8507, Japan *Author for correspondence (e-mail:
[email protected]) Accepted 1 December 2003 Journal of Cell Science 117, 1785-1794 Published by The Company of Biologists 2004 doi:10.1242/jcs.01026 Summary The transcriptional regulation of several dozen genes in target. In contrast, iron chelators induced VEGF but not response to low oxygen tension is mediated by hypoxia- RBM3 or CIRP. The RBM3 and CIRP mRNA increase after inducible factor 1 (HIF-1), a heterodimeric protein hypoxia was inhibited by actinomycin-D, and in vitro composed of two subunits, HIF-1α and HIF-1β. In the HIF- nuclear run-on assays demonstrated specific increases in 1α-deficient human leukemic cell line, Z-33, exposed to RBM3 and CIRP mRNA after hypoxia, which suggests that mild (8% O2) or severe (1% O2) hypoxia, we found regulation takes place at the level of gene transcription. significant upregulation of two related heterogenous Hypoxia-induced RBM3 or CIRP transcription was nuclear ribonucleoproteins, RNA-binding motif protein 3 inhibited by the respiratory chain inhibitors NaN3 and (RBM3) and cold inducible RNA-binding protein (CIRP), cyanide in a dose-dependent fashion. However, cells which are highly conserved cold stress proteins with RNA- depleted of mitochondria were still able to upregulate binding properties.