New Jersey Amber Mayflies: the First North American Mesozoic Members of the Order (Insecta; Ephemeroptera)

Total Page:16

File Type:pdf, Size:1020Kb

New Jersey Amber Mayflies: the First North American Mesozoic Members of the Order (Insecta; Ephemeroptera) New Jersey amber mayflies: the first North American Mesozoic members of the order (Insecta; Ephemeroptera) Nina D. Sinitshenkova Paleontological Institute ofthe Russian Academy ofSciences, Profioyuznaya Street 123, Moscow 117647, Russia Abstract The following new genera and species of mayflies are described from Upper Cretaceous (Turonian) amber from Sayreville, New Jersey, U.S.A: Cretomitarcys lu=ii (imago male), (Polymitarcyidae: Cretomitarcyinae, new subfamily), Borephemera goldmani (imago male, Australiphemeridae), Amerogenia macrops (imago female) (Heptageniidae) and Palaeometropus cassus (subadult male) (Ametropodidae). Previously no mayflies were described from the Mesozoic of North America. Ametropodidae and Heptageniidae are newly recorded for the Mesozoic, and Australiphemeridae for the Upper Cretaceous. The mayflies in this amber probably inhabited a medium-sized or large river. Zoogeography of Upper Cretaceous mayflies is briefly discussed; with particular emphasis on significant faunistic differences between the temperate and subtropical areas. Introduction often abundant in drift of modern rivers, lotic nymphs seem to be very rare in the fossil record Through the kindness of Dr. D. Grimaldi like other insects inhabiting running waters (Department of Entomology, American Museum (Zherikhin, 1980; Sinitshenkova, 1987). The of Natural History, New York) I have had an alate mayflies are extremely short-lived, and the opportunity to examine five mayfly specimens probability is quite low of an occasional burial for found among a large collection of fossil insects the flying stages of a lotic species in lake sedi­ enclosed in Late Cretaceous amber of New Jersey. ments. Thus, probably the largest part of past This material is interesting and important in sev­ mayfly diversity became lost as a result of eral respects. taphonomy. In contrast, the winged stages of The fossil record of mayflies is rather good in mayflies are not rare in fossilized resins, and in comparison to many other insect orders, and this case lotic species seem to be represented many extinct taxa have been named (Hubbard, much better. Both subadult and adult mayflies 1987). The mode of mayfly burial and preserva­ often rest at tree trunks, where they can be easily tion as fossils has never been a subject of special trapped by and entirely engulfed by liquid resin. study but undoubtedly the remains of nymphs Taphonomy of the Sayreville, New Jersey amber and nymphal exuvia of lentic species constitute deposit indicates that the amber was deposited the bulk of the material. It is not surprising very close to the source and in a deltaic environ­ because ancient lake sediments provide the main ment with deep sands, clays, and organic debris, source of information on fossil insects in general. including wood. Resin is easily transported by However, the lacustrine assemblages of mayflies flowing rivers along with drift wood and bark. are usually poor in species, and many families Also, lotic insects are rather common among seem to be unrepresented or at least strongly amber inclusions (Ulmer, 1912; Wichard and underrepresented. Though mayfly nymphs are Weitschat, 1996). Thus mayflies enclosed in Studies on fossils in amber, with particular reference to the Cretaceous ofNew Jersey, pp. 111-125 Edited by David Grimaldi © 2000 Backhuys Publishers, Leiden, The Netherlands 112 ND. Sinitshenkova amber may compensate for the most significant Cretaceous deposits, mainly lacustrine, of Asia bias in the rock fossil record of the order. (Zherikhin, 1978), Europe (Martinez-Deldos, Up to now mayflies inclusions in amber have 1991), Australia (Jell and Duncan, 1986), and been recorded from the Upper Cretaceous of South America (McCafferty, 1990). It can prob­ Taymyr Peninsula, North Siberia (Tshernova, ably be explained as a result of the large-scale 1971; Kluge, 1993, 1997); from the Eocene extinction of typical Mesozoic lacustrine biota Baltic amber, Europe (Larsson, 1978; Kluge, near the Early/Late Cretaceous boundary 1993; Wichard and Weitschat, 1996); Fushun (Zherikhin, 1978; Sinitshenkova, 1987). amber, China (Hong, 1979); from the Oligocene A comparison between mayfly faunas of the and Miocene ambers of the Dominican Republic Taymyr and New Jersey ambers is especially (Poinar, 1992) and Chiapas, Mexico (Wichard interesting because both assemblages, probably and Weitschat, 1996), as well as from the very comparable in taphonomic respect, origi­ Saxonian amber (Wichard and Weitschat, 1996), nate from very different climatic regions of the but they have been only partially described and a Late Cretaceous. Paleobotanically, it is well few are named. A single mayfly inclusion is dis­ demonstrated that at this time the Taymyr area covered in the collection of apparently was situated within the East Siberian paleofloris­ Cretaceous Burmese amber in the Natural tic province of the temperate Siberian-Canadian History Museum, London (Sinitshenkova, realm, possibly even northwards of the polar cir­ 2000). A mayfly from the New Jersey Late cle, while New Jersey lay within the Potomac Cretaceous amber, from the same deposit as the province of the subtropical Euro-Chinese realm material described here, has been mentioned by (Vakhrameev, 1988). Thus the discovery of Gelhaus and Johnson (1996). mayflies in the New Jersey amber opens the door The taxa described below are the first North to studies in Late Cretaceous mayfly paleozoo­ American Mesozoic mayflies known. Moreover, geography. up to now the mayflies from the Taymyr amber All five specimens in hand are enclosed in the were the only named Late Cretaceous mayflies. transparent yellow substance described by Few mayfly fossils have been discovered in Grimaldi et aL (1989) as the second type of the Cenomanian tuffaceous mudstones at New Jersey amber. They are rather well preserved Obeshchayushchy Creek in the Magadan Region and identifiable. The specimen mentioned by and in Cenomanian or T uronian days at Gelhaus and Johnson (1996) was not available Timmerdyakh-Khaya in Jakutia, Russia as well as for study. in Turonian clays at Kzyl-Dzhar, Kazakhstan The mayfly classification system below is in (Zherikhin, 1978) but the nymphal remains accordance with McCafferty (1991), and Wang from these sites are poorly preserved and unde­ and McCafferty (1995). scribed. A mayfly from Arkhara in the Amur Region, Russia, also mentioned by Zherikhin (1978), is probably Danian, and not Cretaceous, Acknowledgments in age (Krassilov, 1976). The traces of activity of burrowing mayfly nymphs in fossilized wood I am very grateful to Dr. David Grimaldi, have been figured by Nessov (1988) from American Museum of Natural History, New Cenomanian deposits at Khodzhakul in York, U.S.A., for the loan of these most interest­ Karakalpakia, Northern Uzbekistan; similar ich­ ing mayflies for study; Prof. Javier Alba Tercedor, nofossils have been discovered also in the Amur University Granada, Spain, for copies of some Region, Russia, together with Maastrichtian important papers; and to Dr. Vladimir V dinosaur bones (see below). This scarcity of the Zherikhin, Paleontological Institute of the Upper Cretaceous record of mayflies is in strong Russian Academy of Sciences, Moscow, Russia, contrast to their common occurrence in Lower for the comments on the manuscript. New jersey amber Mayflies: the first North American Mesozoic members ofthe order (Insecta; Ephemeroptera) 113 Systematics both antennae can not be excluded with absolute certainty. However, the structure of the antennae Family Polymitarcyidae Banks, 1900 is in any case peculiar, with a pedicel which is dis­ CRETOMITARCYINAE Sinitshenkova, tinctly wider than the scape and possesses a small NEW SUBFAMILY apical tubercle that may represent the rudiment of the flagellum. Diagnosis: Imago, male. Antennae situated close Phylogenetic position. Cretomitarcys is based to each other, short and strongly thickened; seg­ on a single male specimen; thus its phylogenetic mentation not observable but tumourous subglo­ affinities may be discussed only on the basis of a bose apical part seems to represent pedicel; fla­ reduced set of features that do not include phy­ gellum perhaps reduced to small apical tubercle logenetically important female (presence/absence on pedicel. Middle and hind legs well developed, of the imaginal stage) and nymphal characters. more so than the fore ones, fore tarsi clearly five­ The phylogeny of ephemeroid taxa in general is segmented. Vein MA of forewings forked more still controversial and not well-grounded on distally than the last fork of RS; two long and many points (McCafferty, 1991). Not suprising­ straight cubital intercalaries originating from ly for an ancient lineage, Cretomitarcys retains wing base. Intercalaries near outer margin wing many primitive character states. Especially the long, with additional shorter ones mostly on middle and hind legs are unusually well devel­ both sides of the main one; crossveins at the mar­ oped, showing no tendency to the reduction in gin absent. Anal veins almost straight, not less all living polymitarcyid genera (the leg structure than three. Crossvenation well developed. Hind is not known for the Early Cretaceous genus wing with numerous longitudinal intercalaries, Pristiplocia McCaff, constituting an extinct sub­ crossveins few and restricted to wing base. family of its own). This character may indicate Forceps long, four-segmented. Two caudal fila­ that Cretomitarcys forms a sister group to all other ments, rudiment of paracercus very
Recommended publications
  • CHAPTER 4: EPHEMEROPTERA (Mayflies)
    Guide to Aquatic Invertebrate Families of Mongolia | 2009 CHAPTER 4 EPHEMEROPTERA (Mayflies) EPHEMEROPTERA Draft June 17, 2009 Chapter 4 | EPHEMEROPTERA 45 Guide to Aquatic Invertebrate Families of Mongolia | 2009 ORDER EPHEMEROPTERA Mayflies 4 Mayfly larvae are found in a variety of locations including lakes, wetlands, streams, and rivers, but they are most common and diverse in lotic habitats. They are common and abundant in stream riffles and pools, at lake margins and in some cases lake bottoms. All mayfly larvae are aquatic with terrestrial adults. In most mayfly species the adult only lives for 1-2 days. Consequently, the majority of a mayfly’s life is spent in the water as a larva. The adult lifespan is so short there is no need for the insect to feed and therefore the adult does not possess functional mouthparts. Mayflies are often an indicator of good water quality because most mayflies are relatively intolerant of pollution. Mayflies are also an important food source for fish. Ephemeroptera Morphology Most mayflies have three caudal filaments (tails) (Figure 4.1) although in some taxa the terminal filament (middle tail) is greatly reduced and there appear to be only two caudal filaments (only one genus actually lacks the terminal filament). Mayflies have gills on the dorsal surface of the abdomen (Figure 4.1), but the number and shape of these gills vary widely between taxa. All mayflies possess only one tarsal claw at the end of each leg (Figure 4.1). Characters such as gill shape, gill position, and tarsal claw shape are used to separate different mayfly families.
    [Show full text]
  • TB142: Mayflies of Maine: an Annotated Faunal List
    The University of Maine DigitalCommons@UMaine Technical Bulletins Maine Agricultural and Forest Experiment Station 4-1-1991 TB142: Mayflies of aine:M An Annotated Faunal List Steven K. Burian K. Elizabeth Gibbs Follow this and additional works at: https://digitalcommons.library.umaine.edu/aes_techbulletin Part of the Entomology Commons Recommended Citation Burian, S.K., and K.E. Gibbs. 1991. Mayflies of Maine: An annotated faunal list. Maine Agricultural Experiment Station Technical Bulletin 142. This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Technical Bulletins by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. ISSN 0734-9556 Mayflies of Maine: An Annotated Faunal List Steven K. Burian and K. Elizabeth Gibbs Technical Bulletin 142 April 1991 MAINE AGRICULTURAL EXPERIMENT STATION Mayflies of Maine: An Annotated Faunal List Steven K. Burian Assistant Professor Department of Biology, Southern Connecticut State University New Haven, CT 06515 and K. Elizabeth Gibbs Associate Professor Department of Entomology University of Maine Orono, Maine 04469 ACKNOWLEDGEMENTS Financial support for this project was provided by the State of Maine Departments of Environmental Protection, and Inland Fisheries and Wildlife; a University of Maine New England, Atlantic Provinces, and Quebec Fellow­ ship to S. K. Burian; and the Maine Agricultural Experiment Station. Dr. William L. Peters and Jan Peters, Florida A & M University, pro­ vided support and advice throughout the project and we especially appreci­ ated the opportunity for S.K. Burian to work in their laboratory and stay in their home in Tallahassee, Florida.
    [Show full text]
  • A Comparison of Aquatic Invertebrate Assemblages Collected from the Green River in Dinosaur National Monument in 1962 and 2001
    A Comparison of Aquatic Invertebrate Assemblages Collected from the Green River in Dinosaur National Monument in 1962 and 2001 Final Report for United States Department of the Interior National Park Service Dinosaur National Monument 4545 East Highway 40 Dinosaur, Colorado 81610-9724 Report Prepared by: Dr. Mark Vinson, Ph.D. & Ms. Erin Thompson National Aquatic Monitoring Center Department o f Fisheries and Wildlife Utah State University Logan, Utah 84322-5210 www.usu.edu/buglab 22 January 2002 i Foreword The work described in this report was conducted by personnel of the National Aquatic Monitoring Center, Utah State University, Logan, Utah. Mr. J. Matt Tagg aided in the identification of the aquatic invertebrates. Ms. Leslie Ogden provided computer assistance. Several people at Dinosaur National Monument helped us immensely with various project details. Steve Petersburg, Dana Dilsaver, and Dennis Ditmanson provided us with our research permit. Ann Elder helped with sample archiving. Christy Wright scheduled our trip and provided us with our river permit. We thank them all for all their help and good spirit. We also thank Mr. Walter Kittams (National Park Service, Regional Office, Omaha Nebraska) and Mr. Earl M. Semingsen (Superintendent, Dinosaur National Monument) for funding the study and the members of the 1962 University of Utah expedition: Dr. Angus M. Woodbury, Dr. Stephen Durrant, Mr. Delbert Argyle, Mr. Douglas Anderson, and Dr. Seville Flowers for their foresight to conduct the original study nearly 40 years ago. The concept and value of long-term ecological data is often bantered about, but its value is never more apparent then when we conduct studies like that presented here.
    [Show full text]
  • Higher Classification of the Burrowing Mayflies (Ephemeroptera: Scapphodonta)1
    84 ENTOMOLOGICAL NEWS HIGHER CLASSIFICATION OF THE BURROWING MAYFLIES (EPHEMEROPTERA: SCAPPHODONTA)1 W. P. McCafferty' ABSTRACT: A revised cladogram of the monophyletic groups of genera constituting the tusked bur­ rowing mayflies (infraorder Scapphodonta) is presented, based in part on new analyses of relationships that have recently appeared in the literature. A new strict phylogenetic higher classification of Scapphodonta that incorporates both extant and extinct taxa and that reflects the revised cladogram is presented. Aspects include the new superfamilies Potamanthoidea (Potamanthidae and Australiphe­ meridae) and Euthyplocioidea (Euthyplociidae and Pristiplociidae), and a newly restricted Ephem­ eroidea (Ichthybotidae, Ephemeridae s.s., Palingeniidae and Polymitarcyidae s.s.). Sequencing con­ ventions allow recognition of multiple scapphodont superfamilies, ephemeroid families and polymitar­ cyid subfamilies. Pentagenia is placed in Palingeniidae, and Cretomitarcys is removed from the Scapphodonta. KEY WORDS: Higher classification, burrowing mayflies, Ephemeroptera, Scapphodonta The Ephemeroptera infraorder Scapphodonta is equivalent to what was recently considered the superfamily Ephemeroidea by McCafferty (1991) and others. It is a grouping hypothesized to be the sister clade of the infraorder Pannota, or the pan­ note mayflies, within the suborder Furcatergalia (Mccafferty and Wang 2000). The Scapphodonta are technically the "tusked burrowing mayflies" and as a mono­ phyletic group demonstrate a defining apomorphy of having larval tusks derived from the outer body of the mandible (e.g., see Bae and Mccafferty 1995). Scap­ phodonta does not include other furcatergalian mayflies constituting the Behningi­ idae (the infraorder Palpotarsa, or tuskless "primitive burrowing mayflies") or the few specialized Leptophlebiidae (infraorder Lanceolata) that are also known to bur­ row and may possess tusks that are not homologous with scapphodont tusks (e.g., see Bae and McCafferty 1995, Edmunds and McCafferty 1996).
    [Show full text]
  • Mayfly Biodiversity (Insecta, Ephemeroptera) of the Russian Far East
    Евразиатский энтомол. журнал. Том 11. Прил. 2: 27–34 © EUROASIAN ENTOMOLOGICAL JOURNAL, 2012 Mayfly biodiversity (Insecta, Ephemeroptera) of the Russian Far East Áèîðàçíîîáðàçèå ïîä¸íîê (Insecta, Ephemeroptera) ðîññèéñêîãî Äàëüíåãî Âîñòîêà T.M. Tiunova Ò.Ì. Òèóíîâà Institute of Biology and Soil Sciences, Russian Academy of Sciences, Far East Branch, 100 let Vladivostoku ave. 159, Vladivostok 690022 Russia. E-mail: [email protected]. Биолого-почвенный институт ДВО РАН, просп. 100 лет Владивостоку 159, Владивосток 690022 Россия. Key words: Ephemeroptera, mayfly, fauna, Russian Far East. Ключевые слова: подёнки, фауна, Дальний Восток, Россия. Abstract. The mayfly fauna of the Russian Far East Наибольшее сходство видового состава подёнок currently includes 176 species from 39 genera and 18 fami- Дальнего Востока России с прилегающими территория- lies (i.e. 70 % of the total number of species known in ми отмечено для Японии и Кореи. Russia). The greatest diversity of mayflies is recorded from В биогеографическом отношении в фауне подёнок the southern part of the Russian Far East, including the доминируют палеархеарктические виды, составляющие basins of the Ussuri River, Amur, and the Sea of Japan. более 43 % фауны подёнок Дальнего Востока России. Species with Palaearchearctic ranges represent 43 % of the Наиболее обильны по числу видов с палеархеарктичес- mayfly fauna of the Russian Far East. Mayfly species com- ким и восточно-палеарктическим типами ареалов водо- position of the Russian Far East is similar to surrounding токи бассейнов рек Уссури, Амура и Японского моря. territories of Japan and Korea. Резюме. Фауна подёнок Дальнего Востока России Introduction представлена 176 видами из 39 родов и 18 семейств, что Biological diversity presents balance between for- составляет около 70 % фауны подёнок России и около mation and extinction of species over the course of the 4 % мировой фауны.
    [Show full text]
  • Entomological News
    Vol. 109, No. 3, May & June, 1998 213 SCIENTIFIC NOTE: NEW DISTRIBUTIONS FOR RAPTOHEPTAGENIA CRUENTATA AND AMETROPUS NEAVEI (EPHEMEROPTERA: HEPTAGENIIDAE, AMETROPODIDAE)! 2 4 R.D. Waltz, G. F. Edmunds, Jr?, Gary Lester Large river habitats possess some of the least known mayfly species in North America (McCafferty et al. 1990). Difficulty in sampling such habitats has undoubtedly contributed to the report of widely disjunct distributions of large river species. Decline in the quality of large river habitat has also possibly contributed to localized extirpations and further increased the apparent disjunction of reported distributions (see Whiting and Lehmkuhl 1987, McCafferty et al. 1990). Herein, two large river species, which are rarely collected, are newly reported from Montana. One of these two species is also newly reported from Minnesota. Raptoheptagenia cruentata (Walsh) has been reported previously from nine states or prov- inces in North America based on available literature (see Whiting and Lehmkuhl 1987, Edmunds and Waltz 1995). Reports of larval collections cited in the preceding papers include Arkansas, Illinois, Indiana, Montana, Ohio, and Saskatchewan. McCafferty (1988) designated the neotype of R. cruentata based on a larva in Indiana, which is housed in the Purdue Entomological Re- search Collection (PERC), West Lafayette, IN. Adult collections have been reported from Illi- nois, Indiana, Nebraska, Tennessee, and Manitoba. Two R. cruentata larvae taken in the Powder River, by G. Romero, with the following col- lection data: MT: Custer Co., Powder R., 11 -XI- 1976(1 larva), and same locale, 11 -VIII -1976 (2 larvae) were the source of the previously unpublished Montana record reported by Edmunds and Waltz (1995).
    [Show full text]
  • Zootaxa, the Nymph of Tortopus Harrisi Traver
    Zootaxa 2436: 65–68 (2010) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Correspondence ZOOTAXA Copyright © 2010 · Magnolia Press ISSN 1175-5334 (online edition) The nymph of Tortopus harrisi Traver (Ephemeroptera: Polymitarcyidae) CARLOS MOLINERI1, ANA E. SIEGLOCH2, & KARINA O. RIGHI-CAVALLARO2 1CONICET, Facultad de Ciencias Naturales e IML, M. Lillo 205, San Miguel de Tucumán, 4000, Tucumán, Argentina. E-mail: [email protected] 2Universidade de São Paulo, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Depto de Biologia, Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo, Brasil Polymitarcyidae is a family of burrowing mayflies (Ephemeroptera: Ephemeroidea) distributed throughout the world but with highest diversity in the Neotropics. Tortopus Needham & Murphy, with a Panamerican distribution, is known from twelve species described in the adult stage. Nymphs are only known for three species: T. puella (Pictet), T. obscuripennis Domínguez and T. sarae Domínguez, and present a rather homogeneous morphology (Molineri 2008). They were firstly described for T. puella by Scott et al. (1959) and later Molineri (2008) described the other two. Both studies reported that these species burrow U-shaped tunnels in clay banks of rivers and streams, thus preventing them from being sampled in most limnological studies (that use surbers, drags, or drift nets). The aim of the present contribution is to describe and illustrate the previously unknown nymph of Tortopus harrisi Traver that shows important anatomical differences with the other nymphs known in the genus. This morphological differentiation suggests a different habitat use by these nymphs, sampled with drag and surber samplers in sandy substrate. New locality records are given for T.
    [Show full text]
  • Fossil Calibrations for the Arthropod Tree of Life
    bioRxiv preprint doi: https://doi.org/10.1101/044859; this version posted June 10, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. FOSSIL CALIBRATIONS FOR THE ARTHROPOD TREE OF LIFE AUTHORS Joanna M. Wolfe1*, Allison C. Daley2,3, David A. Legg3, Gregory D. Edgecombe4 1 Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA 2 Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK 3 Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PZ, UK 4 Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK *Corresponding author: [email protected] ABSTRACT Fossil age data and molecular sequences are increasingly combined to establish a timescale for the Tree of Life. Arthropods, as the most species-rich and morphologically disparate animal phylum, have received substantial attention, particularly with regard to questions such as the timing of habitat shifts (e.g. terrestrialisation), genome evolution (e.g. gene family duplication and functional evolution), origins of novel characters and behaviours (e.g. wings and flight, venom, silk), biogeography, rate of diversification (e.g. Cambrian explosion, insect coevolution with angiosperms, evolution of crab body plans), and the evolution of arthropod microbiomes. We present herein a series of rigorously vetted calibration fossils for arthropod evolutionary history, taking into account recently published guidelines for best practice in fossil calibration.
    [Show full text]
  • A Revision of the V Leptophlebiidae of the ¥ West Indies (Ephemeroptera)
    WILLIAM L. PETE A Revision of the V Leptophlebiidae of the ¥ West Indies (Ephemeroptera) SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY NUMBER 62 SERIAL PUBLICATIONS OF THE SMITHSONIAN INSTITUTION The emphasis upon publications as a means of diffusing knowledge was expressed by the first Secretary of the Smithsonian Institution. In his formal plan for the Insti- tution, Joseph Henry articulated a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge not strictly professional." This keynote of basic research has been adhered to over the years in the issuance of thousands of titles in serial publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Annals of Flight Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Z0°l°gy Smithsonian Studies in History and Technology In these series, the Institution publishes original articles and monographs dealing with the research and collections of its several museums and offices and of professional colleagues at other institutions of learning. These papers report newly acquired facts, synoptic interpretations of data, or original theory in specialized fields. Each publica- tion is distributed by mailing lists to libraries, laboratories, institutes, and interested specialists throughout the world. Individual copies may be obtained from the Smith- sonian Institution Press as long as stocks are available.
    [Show full text]
  • Aquatic Macroinvertebrate Identification with Insect Families
    MiCorp Site ID#___________________ Identification verified by:_________________(optional) AQUATIC MACROINVERTEBRATE IDENTIFICATION WITH INSECT FAMILIES Use letter code [R (rare) = 1-10, C (common) = 11 or more] to record the approximate numbers of organisms in each taxa found in the stream reach. Only use the blank by the main taxa heading (i.e. ANNELIDA, COLEOPTERA) when there are organisms that cannot be identified to the lower taxonomic levels. Enter both the family level data as well as the order level data into the Michigan Data Exchange. ANNELIDA— Segmented Worm______ DIPTERA— continued Hirudinea Syrphidae Oligochaeta Tabanidae Tipulidae COLEOPTERA — Beetles___________ Chrysomelidae EPHEMEROPTERA — Mayflies____ Curculionidae Acanthametropodidae Dryopidae Ameletidae Dytiscidae Ametropodidae Elmidae Arthropleidae Gyrinidae Baetidae Haliplidae Baetiscidae Hydraenidae Caenidae Hydrophilidae Ephemerellidae Lampyridae Ephemeridae Lutrochidae Heptageniidae Noteridae Isonychiidae Psephenidae Leptohyphidae Ptilodactylidae Leptophlebiidae Scirtidae Metretopodidae Staphylinidae Neoephemeridae Oligoneuridae COLLEMBOLA — Springtail_________ Polymitarcyidae Potamanthidae CRUSTACEA— Crustaceans________ Pseudironidae Amphipoda Siphlonuridae Decapoda Tricorythidae Isopoda GASTROPODA — Snails, Limpets__ DIPTERA — True Flies______________ Ancylidae Athericidae Physidae Blephariceridae Planorbidae Ceratopogonidae Right-handed snail Chaoboridae Chironomidae HEMIPTERA — True Bugs_________ Culicidae Belostomatidae Dixidae Corixidae Dolichopodidae Gelastocoridae
    [Show full text]
  • Facultative Parthenogenesis in the Burrowing Mayfly, Ephoron Eophilum (Ephemeroptera: Polymitarcyidae) with an Extremely Short Alate Stage
    Eur. J. Entomol. 112(4): 606–612, 2015 doi: 10.14411/eje.2015.074 ISSN 1210-5759 (print), 1802-8829 (online) Facultative parthenogenesis in the burrowing mayfly, Ephoron eophilum (Ephemeroptera: Polymitarcyidae) with an extremely short alate stage KAZUKI SEKINÉ 1, 2, KOJI TOJO 3, 4 and YEON JAE BAE 1, 2, 5, * 1 BK21 Plus Eco-Leader Education Center, Korea University, Seoul 136-713, Korea; e-mail: [email protected] 2 Korean Entomological Institute, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea 3 Department of Biology, Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano 390-8621, Japan; e-mail: [email protected] 4 Institute of Mountain Science, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano 390-8621, Japan 5 Division of Environmental Science and Ecological Engineering, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Korea; e-mail: [email protected] Key words. Ephemeroptera, Ephoron eophilum, facultative parthenogenesis, diploid thelytoky, Hardy-Weinberg equilibrium, exon-primed intron-crossing (EPIC) markers, short adult stage Abstract. Facultative parthenogenesis is important for mayflies with short alate stages because females are able to reproduce without mating. We studied facultative parthenogenesis in Ephoron eophilum, a mayfly with an extremely short alate stage. We examined the survival rates of embryos from unfertilized eggs, in addition to investigating the number of chromosomes in parthenogenetic offspring and the mode of inheritance by nuclear genetic analyses using Exon-Primed Intron-Crossing markers. The survival rate of thelytokous embryos was 0–70.2% (16.7 ± 26.7%, mean ± S.D.).
    [Show full text]
  • BOOK REVIEW: Heckman CH.W.: ENCYCLOPEDIA of SOUTH
    in the oxidation of firefly luciferin. Photochem. Photobiol. ment in the firefly, Photuris pennsylvanica. J. Insect Physiol. 10: 153–170. 25: 339–347. NEWPORT G. 1857: On the natural history of the glowworm TYLER J. 1986: The ecology and conservation of the glow worm, (Lampyris noctiluca). J. Linn. Soc. Zool. 1: 40–71. Lampyris noctiluca (L.) in Britain. Atala 12: 17–19. OBA Y., OJIKA M. & INOUYE S. 2003: Firefly luciferase is a TYLER J. 1994: Glow-worms. Tyler-Scagell, Sevenoaks. bifunctional enzyme: ATP-dependent monooxygenase and a VIVIANI V.R. 2002: The origin, diversity, and structure function long chain fatty acyl-CoA synthetase. FEBS Letters 540: relationships of insect luciferases. Cell Mol. Life Sci. 59: 251–254. 1833–1850. SALA-NEWBY G.B., THOMSON C.M. & CAMPBELL A.K. 1996: VIVIANI V.R. & BECHARA E.J.V. 1996: Larval Tenebrio molitor Sequence and biochemical similarities between the luciferases (Coleoptera: Tenebrionidae) fat body extracts catalyze firefly of the glow-worm Lampyris noctiluca and the firefly Photinus D-luciferin- and ATP-dependent chemiluminescence: a pyralis. Biochem. J. 313: 761–767. luciferase-like enzyme. Photochem. Photobiol. 63: 713–718. SELIGER H.H., BUCK J.B., FASTIE W.G. & MCELROY W.D. 1964: VIVIANI V.R., BECHARA E.J. & OHMIYA Y. 1999: Cloning, The spectral distribution of firefly light. J. Gen. Physiol. 48: sequence analysis, and expression of active Phrixothrix 95–104. railroad-worms luciferases: relationship between biolumines- STOLZ U., VELEZ S., WOOD K.V., WOOD M. & FEDER J.L. 2003: cence spectra and primary structures. Biochemistry 38: Darwinian natural selection for orange bioluminescent color 8271–8279.
    [Show full text]