Plant Regeneration from Nodal Segments and Protocorm-Like Bodies (Plbs) Derived from Cattleya Maxima J

Total Page:16

File Type:pdf, Size:1020Kb

Plant Regeneration from Nodal Segments and Protocorm-Like Bodies (Plbs) Derived from Cattleya Maxima J Propagation of Ornamental Plants Vol. 19, № 1, 2019: 18-23 PLANT REGENERATION FROM NODAL SEGMENTS AND PROTOCORM-LIKE BODIES (PLBS) DERIVED FROM CATTLEYA MAXIMA J. LINDLEY IN RESPONSE TO CHITOSAN AND COCONUT WATER Laura Paris1, Pedro García-Caparrós2, Alfonso Llanderal3, Jaime Teixeira da Silva4, Juan Reca5, and María Teresa Lao2* 1Catholic University of Santiago of Guayaquil Av. C. J. Arosemena Km. 1.5, 09014671 Guayaquil, Ecuador, 2Agronomy Department of Superior School Engineering, University of Almeria, CIAIMBITAL, Agrifood Campus of International Excellence ceiA3, Ctra, Sacramento s/n, La Cañada de San Urbano, 04120 Almería, Spain, *Fax: + 349 500 15939, *E-mail: [email protected] 3Faculty of Technical Education for Development, Agricultural Engineering Degree, Catholic University of Santiago of Guayaquil. Av. C. J. Arosemena, km 1.5, 09014671 Guayaquil, Ecuador, 4P. O. Box 7, Miki-cho post office, Ikenobe 3011-2, Kagawa-ken, 761-0799 Japan. 5Engineering Department of Superior School Engineering, University of Almeria, CIAIMBITAL, Campus of International Excel- lence ceiA3, Carretera, Sacramento s/n, 04120 La Cañada de San Urbano, Almería, Spain REFERENCES BARKA E. A., EULLAFFROY P., CLEMENT C., VERNET G. (2004). Chitosan improves development, and protects Vitis vinifera L. against Botrytis cinerea. Plant Cell Reports, 22: 608-614. CHUGH S., GUHA S., RAO I. U. (2009). Micropropagation of orchids: a review on the potential of different explants. Scientia Horticul- turae, 122: 507-520. DEWANTY R. (2011). The application of chitosan to the formation of protocorm-like body (PLB) in Phalaenopsis sp. L. orchids. PhD Thesis. Faculty of Agriculture, University of Jember, 62 pp. (in Indonesian). DIXON R. A., GONZALE R. A. (1994). Plant Cell Culture: A Practical Approach. 2nd edition. Oxford University Press, New York, 230 pp. DODSON C. (2004). Native Ecuadorian Orchids. Volume 5: Rodríguezia - Zygosepalum. Dodson Publishing. Sarasota, Florida, 232 pp. DZUNG N. A., KHANH V. T. P., DZUNG T. T. (2011). Research on impact of chitosan oligomers on biophysical characteristics, growth, development and drought resistance of coffee. Carbohydrate Polymers, 84: 751-755. FAN S-G. (2008). Tissue culture system of Phalaenopsis in genetic transformation. Journal of Biotechnology, 136: 164-165. GEORGE F. E., SHERRINGTON P. D. (1984). Plant Propagation by Tissue Culture: Handbook and Directory of Commercial Laboratories. Exegetics Ltd, Edington, England, 709 pp. HASEGAWA A., KANECHIKA R., OGUNI S. (2005). Effect of low temperature and chitosan on dormancy breaking and growth of young corms of three Arisaema species. Acta Horticulturae, 673: 603-609. KANANONT N., PICHYANGKURA R., CHANPRAME S., CHADCHAWAN S., LIMPANAVECH P. (2010). Chitosan specificity for the in vitro seed germination of two Dendrobium orchids (Asparagales: Orchidaceae). Scientia Horticulturae, 124: 239-247. MOREL G., WETMORE R. H. (1951). Fern callus tissue culture. American Journal of Botany, 38: 141-143. MURASHIGE T., SKOOG F. (1962). A revised medium for rapid growth and bioassays tobacco tissue cultures. Physiologia Plantarum, 15: 473-497. NAHAR S. J., SHIMASAKI K., HUANG C. L., NARUEMOL K. (2011). Effect of plant growth regulators on organogenesis in protocorm-like body (PLBs) of Cymbidium dayanum in vitro. ARPN Journal of Agricultural Biological Sciences, 6: 28-33. OBSUWAN K., YOODEE S., UTHAIRATANAKIJ A. (2010). Application of chitosan on in vitro growth of Rhynchostylis gigantea protocorms and seedlings. Acta Horticulturae, 878: 283-288. OBSUWAN K., SAWANGSRI K., THONGPUKDEE A., THEPSITHAR C. (2012). The response of growth and development from in vitro seed propagation of Dendrobium orchid to chitosan. Acta Horticulturae, 970: 173-176. PARK S. Y., HUH Y.S., PAEK K. Y. (2018). Common protocols in orchid micropropagation. In: Lee Y.-I., Yeung E. C.-T. (Eds.). Orchid Propagation: From Laboratories to Greenhouses-Methods and Protocols. Humana Press, New York: 179-193. PICHYANGKURA R., CHADCHAWAN S. (2015). Biostimulant activity of chitosan in horticulture. Scientia Horticulturae, 196: 49-65. PORNpieNPAKdee P., SINGHASURASAK R., CHAIYASAP P., PicHYANGKURA R., BUNJONGRAT R., CHAdcHAWAN S., LIMPANAvecH P. (2010). Improving the micropropagation efficiency of hybridDendrobium orchids with chitosan. Scientia Horticulturae, 124: 490-499. PRASERTSONGSKUN S., CHAIPAKDEE W. (2011). Effect chitosan on growth and development of Phalaenopsis cornucervi (Breda) Blume & Rchb.f. Khon. Kaen University (KKU) Science Journal, 39: 113-119. SAMARFARD S., KADIR M. A., KADZIMIN S. B., RAVANFAR S., SAUD H. M. (2013). Genetic stability of in vitro multiplied Phalaenopsis gigantean protocorm-like bodies as affected by chitosan. Notulae Botanicae Horti Agrobotanici, Cluj-Napoca, 41: 177-183. SOPALUN K., THAMMASIRI K., ISHIKAWA K. (2010). Effect of chitosan as growth stimulator for Grammatophyllum speciosum in vitro culture. World Academy of Science, Engineering and Technology, 4: 381-383. SULISTIANA E., SUKMA D. (2014). Growth of Phalaenopsis amabilis orchids on chitosan and salicylic acid treatment. Buletin Agrohorti, 2: 75-85 (in Indonesian with English abstract). SMITH R. H. (2013). Plant tissue culture: techniques and experiments. Academic Press, 208 pp. TANTASAWAT P., WANNAJINDAPORN A., CHANTAWAREE C., WANGPUNGA C., POOMSOM K., SORNTIP A. (2010). Chitosan stimulates growth of micropropagated plantlets. Acta Horticulturae, 878: 205-212. TEIXEIRA DA SILVA J. A., CHAN M. T., CHAI M. L., TANAKA M. (2006). Priming abiotic factors for optimal hydrid Cymbidium (Orchi- daeceae) PLB and callus induction, plantlet formation, and their subsequent cytogenetic stability analysis. Scientia Horticulturae, 109: 368-378. TEIXEIRA DA SILVA J. A. (2013a). Orchids: advances in tissue culture, genetics, phytochemistry and transgenic biotechnology. Floricul- tural Ornamental Biotechnology, 7: 1-52. TEIXEIRA DA SILVA J. A. (2013b). The role of thin cell layers in regeneration and transformation in orchids. Plant Cell, Tissue and Organ Culture, 113: 149-161. TEIXEIRA DA SILVA J. A., CHIN D. P., VAN P. T., MII M. (2011). Transgenic orchids. Scientia Horticulturae, 130: 673-680. TEIXEIRA DA SILVA J. A., DOBRÁNSZKI J. (2013). How timing of sampling can affect the outcome of the quantitative assessment of plant organogenesis. Scientia Horticulturae, 159: 59-66. US-CAMAS R., RIVERA-SOLÍS G., DUARTE-AKÉ F., DE-LA-PEÑA C. (2014). In vitro culture: an epigenetic challenge for plants. Plant Cell, Tissue and Organ Culture, 118: 187-201. UTHAIRATANAKIJ A., TEIXEIRA DA SILVA J. A., OBSUWAN A. (2007). Chitosan for improving orchid production and quality. Orchid Sci- ence Biotechnology, 1: 1-5. YAM T. W., ARDITTI J. (2018). Orchid micropropagation: an overview of approaches and methodologies. In: Orchid Propagation: From Laboratories to Greenhouses-Methods and Protocols. Humana Press, New York: 151-178. YEUNG E. C., LI Y. Y., LEE Y. I. (2018). Understanding seed and protocorm development in orchids. In: Orchid propagation: from laboratories to greenhouses-methods and protocols. Humana Press, New York: 3-26. YONG J. W., GE L., NG Y. F., TAN S. N. (2009). The chemical composition and biological properties of coconut (Cocos nucifera L.) water. Molecules, 14: 5144-5164..
Recommended publications
  • Universidad De Costa Rica)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositorio Institucional del Instituto Tecnologico de Costa Rica Instituto Tecnológico de Costa Rica Escuela de Biología Jardín Botánico Lankester (Universidad de Costa Rica) "Micropropagación de Cattleya skinneri y Cattleya skinneri x Cattleya maxima por cultivo de ápices" Informe de Proyecto de Graduación para optar por el grado de Bachiller en Ingeniería en Biotecnología Carlos Alvarado Ulloa Cartago, 2000 INSTITUTO TECNOLÓGICO DE COSTA RICA ESCUELA DE BIOLOGÍA CARRERA DE INGENIERÍA EN BIOTECNOLOGÍA INFORME DE PRÁCTICA DE ESPECIALIDAD MICROPROPAGACIÓN DE Cattleya skinneri y Cattleya skinneri x Cattleya maxima POR CULTIVO DE ÁPICES Carlos Alvarado Ulloa Cartago 2000 MICROPROPAGACIÓN DE Cattleya skinneri y Cattleya skinneri x Cattleya maxima POR CULTIVO DE ÁPICES Informe presentado a la Escuela de Biología del Instituto Tecnológico de Costa Rica por Carlos Alvarado Ulloa como requisito parcial para optar al título de Bachiller en Ingeniería en Biotecnología Miembros del Tribunal M.Sc Silvana Alvarenga Venutolo Profesora Guía M.Sc Jorge Warner Pineda Lector Lic. Anabelle Muñoz Bustos Lectora DEDICATORIA A Dios Todopoderoso por permitirme llegar hasta esta etapa de mi vida A mi madre con todo mi amor por su apoyo incondicional A mi padre por darme el ejemplo del trabajo y por su apoyo i AGRADECIMIENTOS El autor expresa su más sincero agradecimiento a las siguientes personas e instituciones: Al todo el Departamento de Biología del ITCR por su por su esfuerzo y dedicación en mi formación como profesional, especialmente a mi profesora guía M.Sc Silvana Alvarenga Venutolo por transmitirme sus conocimientos.
    [Show full text]
  • PC25 Doc. 32.2
    Original language: English PC25 Doc. 32.2 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ___________________ Twenty-fifth meeting of the Plants Committee Online, 2-4, 21 and 23 June 2021 Species specific matters Maintenance of the Appendices Orchids checklists APPENDIX-II ORCHID CHECKLIST 1. This document has been submitted by the Scientific Authority for Flora of the United Kingdom of Great Britain and Northern Ireland.* 2. The context of this document pertains to PC24 Com. 8 (Rev. by Sec.). The UK Scientific Authority and the United Nations Environment Programme – World Conservation Monitoring Centre (UNEP-WCMC) were to prepare a checklist for Orchidaceae, presenting Appendix I and Appendix II species separately. a) This was to be undertaken by generating an output for Orchidaceae from the World Checklist of Selected Plant Families. The output includes accepted names, synonyms and country-level distribution information. b) The dataset for Orchidaceae was provided by The World Checklist of Selected Plant Families. The World Checklist of Selected Plant Families has become an international collaborative programme with more than 150 contributors from 22 countries. The main goal of the World Checklist of Selected Plant Families is to provide high quality peer reviewed baseline data on all accepted taxa included in each family. c) To make the review of proposed changes manageable, a comparison was undertaken between the World Checklist of Selected Plant Families output and the current CITES nomenclature standard references for Orchidaceae. 3. The Appendix I Orchid Checklist was adopted at the 18th CITES Conference of the Parties (Switzerland, 2019). This checklist and the proposed checklist were compiled using the same methodology.
    [Show full text]
  • Agricultural Plant Diversity of the Orchards Along the Bank of Chao Phraya River and Ko Kret Areas in Nonthaburi Province
    Kasetsart J. (Nat. Sci.) 42 : 215 - 225 (2008) Agricultural Plant Diversity of the Orchards along the Bank of Chao Phraya River and Ko Kret Areas in Nonthaburi Province Kittipong Treetaruyanont*, Wanlop Phosunk and Panom Suthisaksopon ABSTRACT A survey of the agricultural plant diversity in the orchards on the bank of Chao Phraya river and Ko Kret areas of Nonthaburi province was conducted in the year 2005. The soil in these areas was Banglen Series : (Bl, clay and silty clay loam) and pH was between 4.2-6.6. Soil fertility was considered to contain high plant nutrients, ranging form good to very good level, and the quality of water was also good. The total plant diversity of 48 orders, 96 families, 246 genera and 429 species of agricultural plants was recorded. The majority of plants was ornamental plants, 52.57 percent. Agricultural crops were categorized into 3 groups, i.e. native species, threatened species and extirpated species. Variability in cultivars of durians and rose apples were decreased. The threatened species were Kruai (Horsfieldia irya Gaertn Warb), Chomphu Mamiao (Syzygium mallacsense L. Merr. & L.M. Perry ST), Somsa (Citrus aurantium L. var. aurantium ExST), Reo (Alpinia nigra gaertn. Burtt H), and Dipli (Piper retrofractum Vahl C). The extirpated species were Chanthet (Myristica fragrans Houtt. ExS), Clove (Syzygium aromaticum (L.) Merr.& L.M. Perry ExST), Langsat (Landsium domesticum), Raksorn (Calotropis giganted R.Br.), Payom (Shorea roxburghii), and purple Chabasorn (Hibiscus rosa-sinensis L.). The results of this survey should be further used as the base line for plant genetic conservation policy and for environmental conservation.
    [Show full text]
  • NHBSS 020 4F Kamemoto Chr
    CHROMOSOME NUM~ERS OF SARCANTHINE ORCHID SPECIES OF THAILAND1 by H. KAMEMOT02, R. SAGARIK3 and S · KASEMSAP4 Sarcanthine orchids constitute a large and diverse taxonomic group of predominantly Old World monopodia! orchids. Dressier and Dodson ( 1960) have listed 106 separate genera in the subtribe Sarcanthinae of the tribe EpidendTeae based primarily on Schlecthter's classification, but some of these may not merit recognition. Thai­ land abounds in species of this group, many of which are well known among orchidists because of their desirable horticultural characteristics. The role of cytology in aiding breeding programs as well as in clarifying taxonomic relationships in orchids is generally recognized. According to · Tanaka and Kamemoto's recent tabulations ( 1963; In press), chromosome numbers for 55 species distributed among 15 genera of the Sarcanthinae have been reported to date by various workers. These counts, however, represent only a small fraction of the known species of this group. Species are the basic building blocks for improved advanced generation hybrids. Since cytological data on many of the horticulturally desirable species of Thailand are lacking, an investigation on the cytogenetics of orchids of Thailand was initiated at Kasetsart University in the Fall of 1962. The present paper reports the finding on the chromosome numbers of species of the sarcanthine or V anda alliance. 1. This investigation was conducted under the auspices of the Kasetsart/Hawaii University Contract in cooperation with USOM/Thailand ( KU/UH Project No. 14) 2. Horticulture Advisor, Kasetsart/ Hawaii University Contract. 3. and 4. Hoticulture Department, Kasetsart University, Bangkhen, Bangkok. 236 KAMEMOTO, SAGAR!K AND KASEMSAP Materials and Methods All plants investigated had been collected from their native habitats in Thailand.
    [Show full text]
  • Uncovering the Trade of Wild-Collected Ornamantal Plants in Thailand, Including Imports from Myanmar and Lao Pdr
    UNCOVERING THE TRADE OF WILD-COLLECTED ORNAMANTAL PLANTS IN THAILAND, INCLUDING IMPORTS FROM MYANMAR AND LAO PDR JACOB PHELPS B.S (Hons.) Michigan State University M.Phil. University of Cambridge THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF BIOLOGICAL SCIENCES NATIONAL UNIVERSITY OF SINGAPORE 2013 Declaration Declaration I hereby declare that the thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously. _______ __________ Jacob Phelps 08 July, 2013 II Summary Summary Wild-collected botanical resources are widely traded across Southeast Asia. There is growing concern over the conservation of commercially-traded ornamental plants— notably the family Orchidaceae, trade in which is regulated under the Convention on International Trade of Endangered Species of Fauna and Flora (CITES). However, there is virtually no baseline data on their regional trade dynamics or conservation. Between May 2011 and June 2012, we interviewed plant harvesters, traders and middlemen (N=158), made market observations and conducted botanical surveys of Thailand’s four largest plant markets, at Jatujak Market (Bangkok), Chedi Sam Ong and Dan Singkorn Markets (Thailand-Myanmar border) and Mukdahan Market (Thailand-Lao PDR border). The multidisciplinary study provides initial baseline data on the ornamental plant trade, and leverages the case to explore broader themes, including wildlife farming, CITES implementation, and conservation rule-breaking. Surveys uncovered a previously undocumented regional trade dominated by Orchidaceae (87.5% of documented trade), including more than 82,000 orchid specimens of 347 species in 93 genera.
    [Show full text]
  • Reaching a Compromise Between Conflicting Nuclear and Plastid
    Phytotaxa 186 (2): 075–086 ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2014 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.186.2.2 Reaching a compromise between conflicting nuclear and plastid phylogenetic trees: a new classification for the genus Cattleya (Epidendreae; Epidendroideae; Orchidaceae) CÁSSIO VAN DEN BERG Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Av. Transnordestina s.n., Feira de Santana, Bahia, 44036-900, Brazil; e-mail: [email protected] Abstract A new classification for the 114 species Cattleya is proposed, based on and compatible with previously published nuclear, plastid and combined phylogenetic trees. Cattleya is divided into four subgenera, three sections and five series. A key to the infrageneric categories and a table listing all species and their placement is presented. Key words: Laeliinae, Laelia, Sophronitis, infrageneric classification Introduction Cattleya Lindley (1824: t. 33) is a Neotropical genus with 114 species of outstanding horticultural importance (van den Berg 2005, 2008). On the basis of molecular phylogenetic results based on nuclear internal transcribed spacer (ITS) and plastid trnL-F (intron and intergenic spacer), matK and rbcL (van den Berg et al. 2000 , van den Berg 2009, van den Berg et al. 2009), Sophronitis Lindley (1828a: t. 1147) and all Brazilian species previously included in Laelia Lindley (1831a: 115) were transferred to Cattleya (van den Berg 2008). In the last paper, the rationale justifying lumping as a better option than splitting Cattleya in smaller genera was presented. The alternative option of splitting into several genera would the number of narrowly defined genera and create many thousand nothogenera in horticulture.
    [Show full text]
  • (L.) Blume Orchid
    HAYATI Journal of Biosciences 24 (2017) 201e205 HOSTED BY Contents lists available at ScienceDirect HAYATI Journal of Biosciences journal homepage: http://www.journals.elsevier.com/ hayati-journal-of-biosciences Original Research Article The Influence of Thidiazuron on Direct Somatic Embryo Formation from Various Types of Explant in Phalaenopsis amabilis (L.) Blume Orchid * Windi Mose,1 Ari Indrianto,1 Aziz Purwantoro,2 Endang Semiarti1 1 Graduate Study Program, Faculty of Biology, Gadjah Mada University, Yogyakarta, Indonesia. 2 Faculty of Agriculture, Gadjah Mada University, Yogyakarta, Indonesia. article info abstract Article history: Phalaenopsis amabilis is an important national flower of Indonesia as a parent for orchid breeding, so that Received 7 October 2017 needs a good strategy to produce high number of plants. The objective of this research is to analyze the Received in revised form use of thidiazuron (TDZ) for producing high number of plantlets, through directly induction of somatic 29 November 2017 embryos (SEs) from various explants. The method was used 20 each of protocorms, leaves, stems and Accepted 29 November 2017 roots as explants. The explants were dissected transversely, then put on various culture media: New Available online 11 December 2017 À Phalaenopsis (NP) and NP + (1, 2, 3) mgL 1 TDZ. Cultures were maintained at 25C with continous white light. The formation of SEs was observed every week for 8 weeks. The results showed that SEs formation KEYWORDS: New Phalaenopsis medium, increased inline with the addition of TDZ concentration to the NP medium, for both velocity and amount ± Phalaenopsis amabilis orchid, of SEs formation. In NP0, SEs were formed at (26.07 0.73) days after inoculation of protocorm, whereas À1 somatic embryo, on NP + (1, 2, and 3 mgL ) TDZ, SEs were formed at (17.85 ± 0.67) days, (15 ± 0.64) days, and (11 ± 0.64) À thidiazuron, days, respectively.
    [Show full text]
  • Book CMUJ Nat.Indb
    ➔ CMU. J. Nat. Sci. (2013) Vol. 12(1) 43 Determination of Volatile Constituents of Thai Fragrant Orchids by Gas Chromatography-Mass Spectrometry with Solid-Phase Microextraction Jakaphun Julsrigival1*, Thanapat Songsak2, Chalermpol Kirdmanee3 and Sunee Chansakaow1 1Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand 2Department of Pharmacognosy, Faculty of Pharmacy, Rangsit University, Patumtani 12000, Thailand 3National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Patumtani 12120, Thailand *Corresponding author. E-mail: [email protected] ABSTRACT Volatile constituents of four Thai fragrant orchid species, Rhynchostylis gigantea Ridl., Rhynchostylis gigantea var. harrisonianum Holtt., Vanda coerulea and Dendrobium parishii Rchb. f., were examined by Gas Chromatography-Mass Spectrometry (GC-MS). Three parts of each plant sample (the flowers, leaves and roots) were analyzed for volatile compounds using the Headspace – Solid-Phase Microextraction method (HS-SPME). Alcohols, aldehydes, alkanes, esters, ethers, ketones, monoterpenes and sesquiterpenes were identified quantitatively from the volatile compounds isolated from the flower parts. The aromatic compounds isolated differed among the orchid species. The major aromatic compounds of the flowers of R. gigantea, R. gigantea var. harrisonianum, V. coerulea and D. parishii. were nerol (25.42%), 2,3-dihydrofarnesol (34.30%), nonanal (34.69%) and 2-pentadecanone (43.47%), respectively. Keywords: Rhynchostylis gigantea, Rhynchostylis gigantea var. harrisonianum Holtt., Vanda coerulea, Dendrobium parishii, Volatile compounds, HS-SPME, GC-MS INTRODUCTION Many volatile compounds from plant flowers are pleasant to humans and have potential applications as components of perfumes. Thus, there is demand to characterize and synthesize new aromatic compounds to fulfill these purposes.
    [Show full text]
  • Higher Plants Part A1
    APPLICATION FOR CONSENT TO RELEASE A GMO – HIGHER PLANTS PART A1: INFORMATION REQUIRED UNDER SCHEDULE 1 OF THE GENETICALY MODIFIED ORGANISMS (DELIBERATE RELEASE) REGULATIONS 2002 PART 1 General information 1. The name and address of the applicant and the name, qualifications and experience of the scientist and of every other person who will be responsible for planning and carrying out the release of the organisms and for the supervision, monitoring and safety of the release. Applicant: Rothamsted Research, West Common, Harpenden Hertfordshire, AL5 2JQ UK 2. The title of the project. Study of aphid, predator and parasitoid behaviour in wheat producing aphid alarm pheromone PART II Information relating to the parental or recipient plant 3. The full name of the plant - (a) family name, Poaceae (b) genus, Triticum (c) species, aestivum (d) subspecies, N/A (e) cultivar/breeding line, Cadenza (f) common name. Common wheat/ bread wheat 4. Information concerning - (a) the reproduction of the plant: (i) the mode or modes of reproduction, (ii) any specific factors affecting reproduction, (iii) generation time; and (b) the sexual compatibility of the plant with other cultivated or wild plant species, including the distribution in Europe of the compatible species. ai) Reproduction is sexual leading to formation of seeds. Wheat is approximately 99% autogamous under natural field conditions; with self-fertilization normally occurring before flowers open. Wheat pollen grains are relatively heavy and any that are released from the flower remain viable for between a few minutes and a few hours. Warm, dry, windy conditions may increase cross- pollination rates on a variety to variety basis (see also 6 below).
    [Show full text]
  • An Orchid Checklist of Mt. Popa, Central Myanmar
    Bull. Natl. Mus. Nat. Sci., Ser. B, 41(2), pp. 69–89, May 22, 2015 An Orchid Checklist of Mt. Popa, Central Myanmar Nobuyuki Tanaka1, Tomohisa Yukawa2,*, Khin Myo Htwe3 and Jin Murata4 1 Kochi Prefectural Makino Botanical Garden, Godaisan 4200–6, Kochi 781–8125, Japan; Present address: Department of Botany, National Museum of Nature and Science, Amakubo 4–1–1, Tsukuba, Ibaraki 305–0005, Japan 2 Department of Botany, National Museum of Nature and Science, Amakubo 4–1–1, Tsukuba, Ibaraki 305–0005, Japan 3 Popa Mountain Park, Nature and Wildlife Conservation Division, Environmental Conservation and Forestry, Kyaukpadaung Township, Mandalay Region, Union of Myanmar 4 Botanical Gardens, Graduate School of Sciences, the University of Tokyo, Hakusan 3–7–1, Bunkyo-ku, Tokyo 112–0001, Japan * E-mail: [email protected] (Received 20 February 2015; accepted 25 March 2015) Abstract As part of floristic inventory work of Myanmar, a preliminary orchid flora of Mt. Popa, central Myanmar, is provided. We herein record 102 taxa of orchids representing 42 genera from this region. Key words : checklist, Orchidaceae, Mt. Popa, Myanmar Introduction central Myanmar (Fig. 1). Working in the 1930s, Frederik Garrett Dickason was probably the first Myanmar (old Burma) is located south of the botanist to make collections on Mt. Popa (Tanaka Himalayan region and, with a land area of et al., 2006). Yin Yin Kyi reported on the vegeta- 676,500 km2 (approximately twice the size of Japan), spans tropical evergreen, mixed decidu- ous, savanna and alpine vegetation types (Tanaka, 2005). An updated checklist of the gym- nosperms and flowering plants of Myanmar has been published (Kress et al., 2003) based on pre- vious or preceding works by Lace (1912), Rod- ger (1922), Hundley and Chit (1961) and Hund- ley (1987), and with additional records accumulated from floras of neighbouring regions.
    [Show full text]
  • Flower Color Inheritance of Rhynchostylis Gigantea (Lindl.) Ridl
    THE AGRICULTURAL SCIENCE SOCIETY OF THAILAND Flower color inheritance of Rhynchostylis gigantea (Lindl.) Ridl. N. Sumaythachotphong1,*, W. Bundithya1,2 and N. Potapohn1 1 Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand 2 Center of Excellence on Agricultural Biotechnology, Science and Technology Postgraduate Education and Research Development Office, Commission on Higher Education, Ministry of Education (AG-BIO/PERDO-CHE), Nakhon Pathom 73140, Thailand * Corresponding author: [email protected] Submission: 30 April 2019 Revised: 3 August 2020 Accepted: 11 August 2020 ABSTRACT Rhynchostylis gigantea has been subjected to a conventional breeding program in order to determine genetic inheritance of flower color. Generally, there are three varieties with four different flower patterns, i.e., white, white with red−pink spots, white with red blotches and red. The pure red is called R. gigantea var. rubrum Sagarik whereas the pure white is called R. gigantea var. harrisonianum HolH., and the white with red−pink spots or blotches is called R. gigantea. Recently, another color, orange−peach, has been developed. The objectives of this study were to determine genetic inheritance and conduct chemical component analysis of flower color inR. gigantea. Chemical analysis of all colors was conducted to identify major color components of the flowers using liquid chromatography−mass spectrometry (LC−MS). Three major components, cyanidin, peonidin and delphinidin were found in the red, white with red blotches and white with red−pink spots forms, whereas pelargonidin was found only in the orange−peach flowers. Anthocyanins were not found in the white color flower. Hybridization was carried out in order to determine color inheritance in these four−color forms: white, white with red blotches, white with red−pink spots and red.
    [Show full text]
  • Orchid Research Newsletter No. 66
    Orchid Research Newsletter No. 66 When the Molecular Systematics Laboratory at the Royal Botanic Gardens, Kew, first opened under the leadership of Mark Chase and Mike Bennett as Keeper of the Jodrell, the main target marker was rbcL for family-wide systematic studies of Orchidaceae and other families. Internal transcribed spacers of nuclear ribosomal DNA were used for studies below the family level. Those of us unfortunate to have lived through those days of manual sequencing in the early 1990s know how laborious it was to label nucleotides with radioactive phosphorus 32 or sulfur 35 with all the safety measures that that entailed, pour polyacrylamide gels between two glass plates without even the smallest air bubble, expose the sequencing gel to x-ray film, and then manually call the bases one by one off the autoradiogram, hoping to get 100 bases of the more than 1300 base pairs in the rbcL sequence and then enter them into the computer database. In many cases, the results were ambiguous, which entailed judgment calls. And this did not even include data analysis with software much, much slower than today. All this work produced only a trickle of data and a lack of strong support for many branches leading to the major clades. Manna from heaven came in the form of automated sequencing later that decade. Automated sequencers used the Sanger method, which relied on the introduction of dideoxynucleotides into the growing DNA strand by DNA polymerase, creating fragments separated by size on the gel by electrophoresis. Nucleotides were labeled by fluorescent dyes rather than sulfur 35, and read by a laser.
    [Show full text]