The Engineering and Mining Journal 1883-11-03

Total Page:16

File Type:pdf, Size:1020Kb

The Engineering and Mining Journal 1883-11-03 NOVEMBER 3, 1883. THE ENGINEERING AND MINING JOURNAL. 273 respondent desires to obtain, if he will give us a list. It must be stated, EER ING however, that the minor metals are generally controlled by a few parties, Tar ENGINe who allow very little correct and complete information to reach any but a “Manin JOU limited public. Entered at the Post-Office of New York, N. Y., as Second-Class Matter. THE reports of the discovery of tin ore in different parts of the country are multiplying. The Alabama mines, now we believe temporarily idle for Vou. XXXVI. No. 18. want of additional working capital to carry out some improvements, have been followed by the Black Hills tin deposits, so elaborately described RICHARD P, ROTHWELL, 6.E., M.E., by Professor BLAKE in these columns. Some time since, there floated to ROSSITER W. RAYMOND, Ph.D., Editors, us rumors of discoveries of the same metal in Virginia. They are now CHARLES KIRCHHOFF, Jr., M.E., authoritatively confirmed by Prof. Harry D. CAMPBELL, of the Wash- Note.—Communications relative to the editorial management should be addressed to Eprror, P.O. Box 1833, New York. ington and Lee University, Lexington, Va., who has reported on the subject Communications for Mr. RaymMonp should be addressed to Rossiter W. Raymonp P.O. in a letter to The Virginias, an advance-proof of which has been kindly Box 1465, New York. Articles written by Mr. Raymonp will be signed thus * ; and only for articles so signed is he responsible, sent to us by Major JED Hotcuxiss, the editor. The ore, which was seen SuBscripTion Price, including postage, for the United States and Canada, ¥ oe in place by Professor CAMPBELL, is found on Painter Mountain branch of annum ; $2.25 for six months ; all other countries, including postage, $5.00 = 25 francs = 20 marks. All payments must be made in advance. Irish Creek, Rockbridge County, Va., about one and a quarter miles from FiLe Covers will be sent by mail for $1.25 or delivered at office for $1 each. the Nelson County line. It is cassiterite in a vein running east and west, Advertising Rates.—See page vii. several inches thick. The country-rock consists principally of large crys- Mr. C. A. Green is our accredited representative for New York. tals of quartz and feldspar, smaller crystals of mica, and some mica. Mr. A. R. Brown, Jr., is our accredited representative for Boston and the Eastern States. Office, Room 1, Simmons Building, 40 Water street, Boston. Mr. J. Viennot, 150 South Fourth street, Philadelphia, is our accredited representative From California come again strong complaints concerning the present for Philadelphia. Mr, A. H. Taylor is our accredited representative for Chitago and the Northwest. status of the quicksilver industry, which is languishing under low prices, Mr. O. D. Cotton, Columbus, O., is our accredited representative for Ohio, Ken- apparently brought about principally by the extensive importations in tucky, and Indiana. anticipation of the duty of 3°6 cents per pound under the new taniff. Mr. O. J. Frost, care Boston & Colorado Smelting Company, Argo, Colo., is our accredited representative for Denver and vicinity. During the first six monthsof 1882, the imports were 4781 flasks ; for the REMITTANCES should always be made by Post-Oftice Orders or Bank Drafts on New entire year, the heavy importations of the second half carried them up to York, made payable to THE ScrExTIFIC PUBLISHING COMPANY. 13,116 flasks; and in the first six monthsof 1883, they ran up to 12,982 THE SCIENTIFIC PUBLISHING CO., Publishers. flasks. It might be argued that the depression due to this heavy stock R. P. ROTHWELL, Pres. HENRY M. GEER, Sec. and General Manager, would be likely to be only temporary. But the course of prices abroad P.O. Box 1833. 27 Park Place, New York. discourages any such hopes. In September of last year, the price in Lon- don was £6, but it has since declined to £5 5s., while here it has dropped CONTENTS, to 34°5 cents per pound. Nor does there appear to be any prospect of an EDITORIALS : Pace. | Notes: PAGE -| early recovery, because there are fully 100,000 flasks of quicksilver in Is it Coal, or Albertite or—Salt ?...... 27 z , stock in England. Under such pressure, the mines in this country are Prices of the Minor Metals—a Gold Sale of North Carolina Land......... 278 steadily losing ground. The production, according to the leading authors Company in the Market with Ar- ity on the subject, Mr. J. B. RANDOL, of San Francisco, has been as fol- RIE iv eisisica e505 cosas 273 Tin Ore in Virginia .................. 273 | GENERAL Minina News : lows since 1873 PRODUCTION OF QUICKSILVER IN CALIFORNIA. The Languishing Condition of our Quicksilver Industry.. ............. ieee hi e's aie The Meeting of the American Society IN ois 5) daigins sicuhiamrccukin unis of Mechanical Engineers... ... ... Se “CU c a catiines dea a ccasrecicedcea 60,85, MII 5 cin oe vclscue*sonecessunes 52, 732 RMN ivi cesvecncsxc wautunuenckases 283 For the first nine e months of the year 1883, the production of the differ. CORRESPONDENCE : NIN gc ook nts, Sc oN nausea Asc 284 Water-Jackets versus Brick Furnaces ao Kaaoice sia dosieinate sa donncmaanay 284 ent mines was as follows : Flasks Flasks. in Copper Smelting ee or RE Nt te 27 Mexico COCe eeecvceseescoccevcessces 284 HG RIO 5. sa ccicca dees 21, TD CR NS es ois siaaaceewdnxee 1,377 Desilverization of Refined Lead..... 274] Michigan.... .........--.-+++ cesses 284 Napa Consolidated.... ......6.. 0000+ CAEP Wee WAL 5 5c sscnccescccondsceacas 1,132 The Electrolytic Process, as Described Neate Aucnid oa as tatkicteante 284 ORE ENR as ciccais cuvancnecs 3, 104 PRIN as icc wccuacenacnte 1,67 II 6 cecicwacccicaccvceuese 2,182 | _—_— by C. O. Mailloux................608 274 TRING ants “acuresacastaseuns oadene 284 I al cn rivencocecne -evarr oc 1,573 MR ia vecadeucceddnsaseidsedqg aces 35,836 PID aan caccensccic. caccoseast 284 At this rate, the total production of the year will probably not be PNR ooo ccccetosieneerndes 284 higher than 48,000 flasks, and this is only reached because the largest The New York Meeting of the Ameri- MINING sein xsd vaenepeesssaareued |< tess 284 can Society of Mechanical Engineers. 275 miners are straining their capacity to make up in their returns by a heavy Mining at the Boston Exhibition....... 277 output for the falling off in price. The result may be readily foretold. An Endless Trough Conveyer.......... 279 | FINANCIAL : Nearly all the mines will stop dead-work, exhaust their resources, and Among the Iron Workers.—Steelton... 279 close down, or will continue to make as heavy drains on the purses of Investments in Mexican Mines......... 280} Gold and Silver Stocks........- Rsaerrere 285 Mining Matters in Chihuahua .......... 280 OI PROMI Ss 5 cicccccecewsc stececcs 285 their shareholders as the latter will submit to. The producers see only The Lawas Affecting Mining and Metal- one way out of the dilemma to save the heavy amount invested in lupwionl Imheregts.....csccvecsce secce 281 mines and plant and now threatened with ruin. They will probably ask, Furnace, Mill, and Factory........ .... 282 | BULLION MARKET. ........ccccscccccces 285 and it is hoped will obtain, an increase in the duty to 10 cents per MRIs pacts bdo kane wenasaee+ ae sigaiie 285 _ . TRON MARKET REVIEW....... ........0. 288 pound. Moens : Cost, Thame REVIBW. « «0.6.060...0.000 288 Phosphorus - Manganese-Tin-Copper STATISTICS OF CoAL PRODUCTION........ 288 THE meeting of the American Society of Mechanical Engineers, held in Alloy 277 | Advertisers’ Index this city this week, was fairly successful. The number and standard of the papers was not so high as those interested in the welfare of the society Last week, we printed in a letter from a correspondent a report of the might wish ; but this, we happen to know, is due principally to the fact alleged discovery of coal near Clinton, Summit County, O., which was that a number of very interesting papers were withdrawn a short time causing considerable excitement throughout that State. The opinion was before the meeting, because the authors could not complete them. advanced by Professor ORTON that possibly it might be albertite, while There is one matter which occupies entirely too much of the attention others held that it might be the lower coal of the slate series. Mr. of the meetings not to affect the interest and therefore the future of the ANDREW Roy, the State Mine Inspector, however, believes that the hole society unfavorably. There are eternal bickerings as to its by-laws. was salted, and some of the points he brings forward certainly make it There is altogether too general a disposition among the members to take look as though such an operation had been attempted in avery crude way. a share in tinkering with the constitution, insisting on its being carried They pump a material conta ning 80 per cent of carbon out of the hole in out to the letter, however unimportant the points raised may be. The pieces as large as the thumb, a size which no true borings could furnish. Society of Mechanical Engineers should follow the example of the Mining Engineers—elect a good council, have faith in its wisdom and zeal, and AN anonymous correspondent has requested us to insert a price-current leave the management of the affairs of the society to it. Asitis now, of ‘‘the numerous minor metals, which, though not largely dealt in, are hardly a session is passed without some unprofitable discussion, generally matters of considerable interest to those having to do with which at best discourages those intrusted with executive func- ores and metallurgy.” We are fully aware of the interest attaching tions, because they are subject to a constant and often captious to this subject, and to show how such figures may occasionally criticism.
Recommended publications
  • Metal Extraction Processes for Electronic Waste and Existing Industrial Routes: a Review and Australian Perspective
    Resources 2014, 3, 152-179; doi:10.3390/resources3010152 OPEN ACCESS resources ISSN 2079-9276 www.mdpi.com/journal/resources Review Metal Extraction Processes for Electronic Waste and Existing Industrial Routes: A Review and Australian Perspective Abdul Khaliq, Muhammad Akbar Rhamdhani *, Geoffrey Brooks and Syed Masood Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia; E-Mails: [email protected] (A.K.); [email protected] (G.B.); [email protected] (S.M.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-3-9214-8528; Fax: +61-3-9214-8264. Received: 11 December 2013; in revised form: 24 January 2014 / Accepted: 5 February 2014 / Published: 19 February 2014 Abstract: The useful life of electrical and electronic equipment (EEE) has been shortened as a consequence of the advancement in technology and change in consumer patterns. This has resulted in the generation of large quantities of electronic waste (e-waste) that needs to be managed. The handling of e-waste including combustion in incinerators, disposing in landfill or exporting overseas is no longer permitted due to environmental pollution and global legislations. Additionally, the presence of precious metals (PMs) makes e-waste recycling attractive economically. In this paper, current metallurgical processes for the extraction of metals from e-waste, including existing industrial routes, are reviewed. In the first part of this paper, the definition, composition and classifications of e-wastes are described. In the second part, separation of metals from e-waste using mechanical processing, hydrometallurgical and pyrometallurgical routes are critically analyzed.
    [Show full text]
  • Lead Dross Bismuth Rich (Updated 15.11.2019).Xlsx 1
    Lead Dross, Bismuth Rich Substance Name: Substance Information Page: Lead, dross bismuth rich https://echa.europa.eu/registration-dossier/-/registered-dossier/14687 Legend Decisive substance sameness criterion Indicative substance sameness criterion Substance description: EC description: A scum formed on the surface of molten lead during the process of removing No substance sameness bismuth by the addition of calcium and magnesium. It consists of lead containing calcium and criterion magnesium bismuthides. Original / SIEF description: Lead, dross bismuth rich is formed when calcium and/or magnesium are added to molten lead bullion to remove bismuth. Lead dross, bismuth rich consists of variable amounts of lead, zinc, silver, bismuth and other metals in either alloy form or as compounds such as oxides. Substance Identity EC/list name: Lead, dross, bismuth SMILES: not applicable rich IUPAC name: InChl: not applicable Other names Type of substance: UVCB EC/List no.: 273-792-0 origin: Inorganic CAS no.: 69029-46-5 Molecular formula: not applicable Substance listed SID parameters Sameness criteria Indication of variability (fixed, low or high variation) Sources (input materials) The main starting material is lead, bullion (EC 308-011-5) typically from the primary sector but Low may include lead, bullion produced from non-battery scrap and other secondary sources. The lead, bullion starting material has usually been desilverised via the Parkes Process and dezinced by vacuum distillation, as required); calcium and/or magnesium are added to the molten lead bullion bath. Process The manfacture of 'lead, dross, bismuth rich' relies on the formation of high melting point Fixed intermetallic compounds which have lower density than lead via the Kroll-Betterton process in a refining kettle.
    [Show full text]
  • The Metallurgy of Lead & Silver
    BOUGHT WITH THE INCOME FROM THE SAGE ENDOWMENT FUND THE GIFT OF ^.. Henrg W. Sage 1891 AdSJu -L 'i.j.kj.m^. * Cornell University Library The original of tiiis book is in tine Cornell University Library. There are no known copyright restrictions in the United States on the use of the text. http://www.archive.org/details/cu31924004582619 THE METALLURGY OF LEAD AND SILVER. ^^7^12)4(0 GRIFFIN'S METALLURGICAL, SERIES. EDITED BY SiK W. C. ROBERTS-AUSTEN, K.C.B., F.R.S., D.C.L., Chemist and Assayer o/the Royal Mint; Professor ofMetallurgy in the Boyai College of Science. In Large 8to, Handsome Cloth. With Illustrations. Fourth Sdition, Revised and Enlarged. 15s. INTRODUCTION TO THE STUDY OF METALLURGY. BY SIK W. C. ROBEBTS-AUSTEN. With additional Illustrations and Micro-Photographic Plates of Different Varieties of Steel. " No English text-hook at all approaches this in the completeness with which the most modem views on the subject are dealt with. Professor Austen's vnlume will be ikvaluable."—Cft«m. JVeiw.?. Third Edition. 21s. rrxxE: GOX^X*. BY T. KIBKE KOSB, D.SC, Assist. Assayer of the Royal Mint. Thoroughly Revised, Enlarged, and partly Re-written. Including the most recent Improvements in the Cyanide Process. With new Frontispiece and additional Illustrations. "A contribution to Metallurgical Literature of classical value."—iVaiure. In Two Volumes, Each Complete in itself. By H. F. COLLINS, ASSOO.R.S.M., M.lNST.M.M. ' Part I.— LKAD. 16s. Part II.—SILVER. A Complete and Exhaustive Treatise on Comprising Details Regarding the THE MANTJFACTTTRE OF LEAD, SOURCES AND TREATMENT OF SILVER ORES, WITH SECTIONS ON TOGETHER WITH nSSCRIPTIONS OP SMELTING AND DESILVBRISATION, PLANT, MACHINERY, AND PROCESSES OF MANHFACTURE, And Chapters on the Assay and Analysis of the Materials Involved.
    [Show full text]
  • In German Zinc and Lead Production FINAL DRAFT
    Report on Best Available Techniques (BAT) in German Zinc and Lead Production FINAL DRAFT Deutsch-Französisches Institut für Umweltforschung (DFIU) French-German Institute for Environmental Research University of Karlsruhe (TH) o. Prof. Dr. O. Rentz Dipl.-Ing. Stephan Hähre, Dr. Frank Schultmann Karlsruhe, February 1999 On behalf of the German Federal Environmental Agency, Berlin (UBA) in the frame of the Research Project 109 05 006 Contents 3 Contents PREFACE.............................................................................................................................................................13 1 GENERAL INFORMATION.......................................................................................................................... 15 1.1 PRODUCTION AND USE OF ZINC AND LEAD ................................................................................................... 15 1.1.1 Zinc ..................................................................................................................................................... 15 1.1.2 Lead .................................................................................................................................................... 16 1.2 FIRST INDICATION OF ENVIRONMENTAL CONCERNS REGARDING THE PRODUCTION OF ZINC AND LEAD ........ 19 1.2.1 Emissions into the atmosphere............................................................................................................ 19 1.2.2 Potential releases into water..............................................................................................................
    [Show full text]
  • C22 Metallurgy; Ferrous Or Non-Ferrous Alloys; Treatment of Alloys Or Non- Ferrous Metals
    C22B C22 METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON- FERROUS METALS Note(s) [2012.01] (1) Processes or devices specific to the transformation of iron ore or iron carbonyl into iron, either solid or molten, are classified in subclass C21B. (2) Processes or devices specific to: – processing of pig-iron or cast iron; – manufacture of wrought-iron, wrought-steel or carbon steel; – treatment in molten state of ferrous alloys; are classified in subclass C21C. (3) The following processes or devices are classified in subclass C21D: – processes specific to heat treatment of ferrous alloys or steels; – devices for heat treatment of metals or alloys. XXXX C22B C22B XXXX C22B PRODUCTION OR REFINING OF METALS (making metallic powder or suspensions thereof B22F 9/00; production of metals by electrolysis or electrophoresis C25); PRETREATMENT OF RAW MATERIALS Note(s) In this subclass, groups for obtaining metals include obtaining the metals by non-metallurgical processes, and obtaining metal compounds by metallurgical processes. Thus, for example, group C22B 11/00 covers the production of silver by reduction of ammoniacal silver oxide in solution, and group C22B 17/00 covers the production of cadmium oxide by a metallurgical process. Furthermore, although compounds of arsenic and antimony are classified in C01G, production of the elements themselves is covered by C22B, as well as the production of their compounds by metallurgical processes. Subclass indexes PRETREATMENT OF RAW MATERIALS ..................... 1/00, 4/00, REFINING OR REMELTING METALS .................................... 9/00 7/00 OBTAINING SPECIFIC METALS ................................ 11/00-61/00 PROCESSES FOR OBTAINING METALS ..................... 3/00, 4/00, 5/00 1 / 00 Preliminary treatment of ores or scrap [1, 2006.01] 3 / 00 Extraction of metal compounds from ores or 1 / 02 .
    [Show full text]
  • Recovering Gold from Scrap Electronic Solders by Drossing
    Report of Investigations 8169 Recovering Gold From Scrap Electronic Solders by Drossing By E. F. Ferrell RenolMetallurgy Research Center, Reno, Nev. UNITED STATES DEPARTMENT OF THE INTERIOR Thomas S. Kleppe, Secretary BUREA U OF MINES Thomas V. Falkie, Director This publication has been cataloged as follows: Ferrell, Edward F Recovering gold from scrap electronic solders by drossing. [Washington] U.S. Bureau of Mines [1976] 9 p. illus., tables. (U.S. Bureau of Mines. Report of investiga­ tions 8169) Includes bibliography. 1. Gold. I. U.S. Bureau of Mines. II. Title. (Series) TN23.U7 no. 8169 622.06173 U.S. Dept. of the Int. Library CONTENTS Abstract ................. '" ... .. ........ .. .. .. ..... .....• . .•. ...... .... 1 Introduction. .. 1 Materials, equipment, and procedure for drossing......................... 2 Results and discussion................................................... 3 Separation of dross from treated solders........................ .... 4 Recovery of gold from aluminum dross....... ...... ..........•........ 5 Purification of treated solders............ ...... ................... 8 Cone Ius ions. • . 8 References. • . 9 I LLUS TRA TI ON 1. Flowsheet for treatment of scrap electronic solders with aluminum.... 7 TABLES 1. Analyses of some as-received, scrap electronic solders.... ........... 2 2. Density and melting point data............................... ...... 3 3. Extraction of gold from electronic solders with aluminum at 5500 C... 4 4. Recovery of aluminum dross from solder by skimming and filtration.... 5 5. Effect of filtering temperature on solders treated with aluminum..... 5 RECOVERING GOLD FROM SCRAP ELECTRONIC SOLDERS BY DROSSING by E~ F. Ferrell 1 ABSTRACT Gold was recovered from scrap electronic 60-40 (tin-lead) solders by drossing with aluminum or zinc at elevated temperatures. The gold, together with other metallic impurities, collected in the dross phase which could then be separated from the molten solder by skimming or filtering.
    [Show full text]
  • Thermodynamic Studies of Liquid Au-Zn and Ag-Zn Systems
    Thermodynamic Studies of Liquid Au-Zn and Ag-Zn Systems By Akira Yazawa* and Alzbeta Gubcova** In order to clarify the basic principle of the Parkes process, in which precious metals are extracted from the crude lead by the addition of zinc, thermodynamic studies have been carried out for the liquid Au-Zn and Ag-Zn systems for which thermo- dynamic data have not been satisfactorily available. The electromotive force was measured using the following type of the cell: The error arising from volatilization of zinc was carefully avoided. The break points on the electromotive force curves against temperature suggest that the liquidus lines for the Au-Zn system recommended by Hansen are not acceptable, and that higher liquidus temperature may be reasonable. The activity curves obtained from the electromotive force values show considerably negative deviations from Raoult's law, especially in the Au-Zn system, suggesting the large affinity of zinc for gold and silver. In connection with the present data obtained, the properties of alloys between groups IB and II have been discussed in terms of the electronegativity, ionic radius and electron configurations. It is proved phenomenologically that the obtained data may be also interesting from the standpoint of recent stability theories of alloy phases. To understand the principle of the Parkes process, the results in the present study are combined with the data of the Au-Pb and Ag-Pb systems, and the free energy of mixing for the ternary Au-Pb-Zn and Ag-Pb-Zn systems has been calculated. Moreover, the removal limit of the precious metals from lead has been explained under the simplified assumptions.
    [Show full text]
  • "O.Sible II .Xpen4.« but It, Ia Al"'Y8 Better to Build a Small
    Metallurgy of lead Item Type text; Thesis-Reproduction (electronic) Authors Jones, Edward Horton Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 26/09/2021 22:03:32 Link to Item http://hdl.handle.net/10150/306119 D!ALLURGY OF LEAD. Although lead orea are mined and smelted in only one state in the, UUlted Stat•• tor lead alone, the treatment of 1_4 or•• 18 of muoh prant!cal importa.noe, since lead. is used •• a ..4ita for extr&otins other _tales. In smelting goJ.d a or an4 silver or•• , lea4 ores are used aa part ef t�e flux, the lea orea the..elve. etten oarry 1014 and, sil?er In this way the leal "ell.eta tiie prec10ua JIIl.tal. carrying them into the bullion. !he bullion 18 then worked. �. tor the a.,pa�ate metals. It 18 our intention in this article to 4i.cuss, firat, the seleotion of a furnace '.ite and the general arrangement of the Sllant, 'aacon', the pr,inc1pal aethoda ot 8111e1 t1ng lead. cree and thlrct, the _tter of c'btaining th. pure metal. trota t,he, turnace product,. In .elect.ing '. furnaoe 8ite, a i p*lnt. of economy are sought tort teclUlioal con.tel.ration being ot ••concla.rl' r.�our8e. !he �1r.t que.tion that �r�.nt.
    [Show full text]
  • Transport Phenomena at Elevated Temperatures
    TRANSPORT PHENOMENA AT ELEVATED TEMPERATURES - STUDIES RELATED TO DIRECT POLYMETALLIC SMELTING by ROBERT KEITH HANNA A thesis submitted to the Faculty of Engineering of the University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Chemical Engineering, University of Birmingham, P.O. Box 363, Birmingham, B152TT England. February 1990 University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. ABSTRACT The modelling of two key areas of transport phenomena in a new polymetallic smelter has been achieved by using both mathematical and physical models to investigate optimum operating conditions. A study of oxygen mass transfer caused by multiple top-blown, subsonic gas jets contacting water flowing in a full-scale channel model of the smelter converting hearth has been carried out. A liquid phase solute mass transfer model that incorporates a flowing liquid phase has been developed. It has been used to compare mass transfer for both open-packed and close-packed multiple lance arrays of 2.26 mm, 4.95 mm, 10.95 mm and 24.40 mm nozzles delivering the same quantity of gas.
    [Show full text]
  • 6 Lead and Zinc
    Energy and Environmental Profile of the U.S. Mining Industry 6 Lead and Zinc Lead and zinc ores are usually found together with gold and silver. A lead-zinc ore may also contain lead sulfide, zinc sulfide, iron sulfide, iron carbonate, and quartz. When zinc and lead sulfides are present in profitable amounts they are regarded as ore minerals. The remaining rock and minerals are called gangue. Forms of Lead and Zinc Ore The two principal minerals containing lead and zinc are galena and sphalerite. These two minerals are frequently found together along with other sulfide minerals, but one or the other may be predominant. Galena may contain small amounts of impurities including the precious metal silver, usually in the form of a sulfide. When silver is present in sufficient quantities, galena is regarded as a silver ore and called argentiferous galena. Sphalerite is zinc sulfide, but may contain iron. Black sphalerite may contain as much as 18 percent iron. Lead Ore The lead produced from lead ore is a soft, flexible and ductile metal. It is bluish-white, very dense, and has a low melting point. Lead is found in veins and masses in limestone and dolomite. It is also found with deposits of other metals, such as zinc, silver, copper, and gold. Lead is essentially a co-product of zinc mining or a byproduct of copper and/or gold and silver mining. Complex ores are also the source of byproduct metals such as bismuth, antimony, silver, copper, and gold. The most common lead-ore mineral is galena, or lead sulfide (PbS).
    [Show full text]
  • Silver and Gold Coating
    Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org Gold & Silver Coatings By A . T . Kakhia 1 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org 2 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org Part One General Knowledge 3 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org 4 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org Aqua Regia ( Royal Acid ) Freshly prepared aqua regia is colorless, Freshly prepared aqua but it turns orange within seconds. Here, regia to remove metal fresh aqua regia has been added to these salt deposits. NMR tubes to remove all traces of organic material. Contents 1 Introduction 2 Applications 3 Chemistry 3.1 Dissolving gold 3.2 Dissolving platinum 3.3 Reaction with tin 3.4 Decomposition of aqua regia 4 History 1 - Introduction Aqua regia ( Latin and Ancient Italian , lit. "royal water"), aqua regis ( Latin, lit. "king's water") , or nitro – hydro chloric acid is a highly corrosive mixture of acids, a fuming yellow or red solution. The mixture is formed by freshly mixing concentrated nitric acid and hydro chloric acid , optimally in a volume ratio of 1:3. It was named 5 Copyright © Tarek Kakhia. All rights reserved. http://tarek.kakhia.org so because it can dissolve the so - called royal or noble metals, gold and platinum. However, titanium, iridium, ruthenium, tantalum, osmium, rhodium and a few other metals are capable of with standing its corrosive properties. IUPAC name Nitric acid hydro chloride Other names aqua regia , Nitro hydrochloric acid Molecular formula HNO3 + 3 H Cl Red , yellow or gold Appearance fuming liquid 3 Density 1.01–1.21 g / cm Melting point − 42 °C Boiling point 108 °C Solubility in water miscible in water Vapor pressure 21 mbar 2 – Applications Aqua regia is primarily used to produce chloro auric acid, the electrolyte in the Wohl will process.
    [Show full text]
  • Medieval Pb (Cu-Ag) Smelting in the Colline Metallifere District (Tuscany, Italy): Slag Heterogeneity As a Tracer of Ore Provenance and Technological Process
    minerals Article Medieval Pb (Cu-Ag) Smelting in the Colline Metallifere District (Tuscany, Italy): Slag Heterogeneity as a Tracer of Ore Provenance and Technological Process Laura Chiarantini 1,* , Marco Benvenuti 2 , Giovanna Bianchi 3, Luisa Dallai 3, Vanessa Volpi 3,4 and Rosarosa Manca 2 1 Centro di Microscopia Elettronica e Microanalisi, Università di Firenze, Via. G. Capponi 3r, 50121 Florence, Italy 2 Dipartimento di Scienze della Terra, Università di Firenze, Via G. La Pira 4, 50121 Firenze, Italy; m.benvenuti@unifi.it (M.B.); rosarosa.manca@unifi.it (R.M.) 3 Dipartimento di Scienze Storiche e dei Beni Culturali, Università di Siena, Via Roma 56, 53100 Siena, Italy; [email protected] (G.B.); [email protected] (L.D.); [email protected] (V.V.) 4 Dipartimento di Biotecnologie, Chimica e Farmacia, Università di Siena, Via A. Moro 2, 53100 Siena, Italy * Correspondence: laura.chiarantini@unifi.it; Tel.: +39-055-2757792 Abstract: Archaeological investigations of the Colline Metallifere district (Southern Tuscany, Italy) have highlighted several Medieval sites located close to the main Cu-Pb-Fe (Ag) ore occurrences. This study is focused on the investigation of late-medieval slags from Cugnano and Montieri sites using both geochemical and mineralogical methods to understand slag heterogeneities as result of ore differences and technological processes. Matte-rich slags present in both sites (with abundant matte ± speiss and frequent relict phases) represent waste products related to primary sulphide ore smelting to obtain a raw lead bullion. The distribution of slags between the Ca-rich or Fe-rich dominant composition, and the consequent mineralogy, are tracers of the different ore–gangue Citation: Chiarantini, L.; Benvenuti, M.; Bianchi, G.; Dallai, L.; Volpi, V.; association that occurred in the two sites.
    [Show full text]