Downloaded 522 from the NCBI Genome Database in September 2018
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Two Domains of Life, Not Three?
Asgard Archaea Two domains of life, not three? A picture of visual interpretation of the Wagner’s opera Das Rheingold, a part of Richard Wagner’s Der Ring des Nibelungen Loki's Castle is a field of five active hydrothermal vents in the mid-Atlantic Ocean, located at 73 degrees north on the Mid-Atlantic Ridge between Greenland and Norway at a depth of 2,352 metres The vents were discovered in 2008 by a multinational scientific expedition of the university of Bergen, and are the most northerly black smokers to date. The five active chimneys of Loki's Castle are venting water as hot as 300 °C and sit on a vast mound of sulfide minerals. The vent field was given the name Loki's Castle as its shape reminded its discoverers of a fantasy castle. The reference is to the ancient Norse god of trickery, Loki. The top three feet (1 m) of a vent chimney almost 40 feet (12 m) tall at Loki's Castle in mid-July 2008. Visible at left is the arm of a remotely operated vehicle, reaching in to take fluid samples. Loki’s Castle Wents Loki's Castle - a field of five active hydrothermal vents in the mid-Atlantic Ocean - at 73 degrees north on the Mid-Atlantic Ridge - at a depth of 2,352 meters In Norse mythology, Loki is a cunning trickster who has the ability to change his shape and sex. Loki is represented as the companion of the great gods Odin and Thor. Preliminary observations have shown the warm area around the Loki's Castle vents to be alive with diverse and apparently unique microorganisms, unlike vent communities observed elsewhere. -
Functionalized Membrane Domains: an Ancestral Feature of Archaea? Maxime Tourte, Philippe Schaeffer, Vincent Grossi, Phil Oger
Functionalized Membrane Domains: An Ancestral Feature of Archaea? Maxime Tourte, Philippe Schaeffer, Vincent Grossi, Phil Oger To cite this version: Maxime Tourte, Philippe Schaeffer, Vincent Grossi, Phil Oger. Functionalized Membrane Domains: An Ancestral Feature of Archaea?. Frontiers in Microbiology, Frontiers Media, 2020, 11, pp.526. 10.3389/fmicb.2020.00526. hal-02553764 HAL Id: hal-02553764 https://hal.archives-ouvertes.fr/hal-02553764 Submitted on 20 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fmicb-11-00526 March 30, 2020 Time: 21:44 # 1 ORIGINAL RESEARCH published: 31 March 2020 doi: 10.3389/fmicb.2020.00526 Functionalized Membrane Domains: An Ancestral Feature of Archaea? Maxime Tourte1†, Philippe Schaeffer2†, Vincent Grossi3† and Phil M. Oger1*† 1 Université de Lyon, INSA Lyon, CNRS, MAP UMR 5240, Villeurbanne, France, 2 Université de Strasbourg-CNRS, UMR 7177, Laboratoire de Biogéochimie Moléculaire, Strasbourg, France, 3 Université de Lyon, ENS Lyon, CNRS, Laboratoire de Géologie de Lyon, UMR 5276, Villeurbanne, France Bacteria and Eukarya organize their plasma membrane spatially into domains of distinct functions. Due to the uniqueness of their lipids, membrane functionalization in Archaea remains a debated area. -
Archaea and the Origin of Eukaryotes
REVIEWS Archaea and the origin of eukaryotes Laura Eme, Anja Spang, Jonathan Lombard, Courtney W. Stairs and Thijs J. G. Ettema Abstract | Woese and Fox’s 1977 paper on the discovery of the Archaea triggered a revolution in the field of evolutionary biology by showing that life was divided into not only prokaryotes and eukaryotes. Rather, they revealed that prokaryotes comprise two distinct types of organisms, the Bacteria and the Archaea. In subsequent years, molecular phylogenetic analyses indicated that eukaryotes and the Archaea represent sister groups in the tree of life. During the genomic era, it became evident that eukaryotic cells possess a mixture of archaeal and bacterial features in addition to eukaryotic-specific features. Although it has been generally accepted for some time that mitochondria descend from endosymbiotic alphaproteobacteria, the precise evolutionary relationship between eukaryotes and archaea has continued to be a subject of debate. In this Review, we outline a brief history of the changing shape of the tree of life and examine how the recent discovery of a myriad of diverse archaeal lineages has changed our understanding of the evolutionary relationships between the three domains of life and the origin of eukaryotes. Furthermore, we revisit central questions regarding the process of eukaryogenesis and discuss what can currently be inferred about the evolutionary transition from the first to the last eukaryotic common ancestor. Sister groups Two descendants that split The pioneering work by Carl Woese and colleagues In this Review, we discuss how culture- independent from the same node; the revealed that all cellular life could be divided into three genomics has transformed our understanding of descendants are each other’s major evolutionary lines (also called domains): the archaeal diversity and how this has influenced our closest relative. -
How Many Kingdoms of Life? Eukaryotic Phylogeny and Philosophy of Systematics
How many kingdoms of life? Eukaryotic phylogeny and philosophy of systematics Łukasz Lamża Copernicus Center for Interdisciplinary Studies, Jagiellonian University Abstract According to contemporary understanding of the universal tree of life, the traditionally recognized kingdoms of eukaryotic organisms— Protista, Fungi, Animalia and Plantae—are irregularly interspersed in a vast phylogenetic tree. There are numerous groups that in any Linnaean classification advised by phylogenetic relationships (i.e. a Hennigian system) would form sister groups to those kingdoms, therefore requiring us to admit them the same rank. In practice, this would lead to the creation of ca. 25-30 new kingdoms that would now be listed among animals and plants as “major types of life”. This poses problems of an aesthetic and educational nature. There are, broadly speaking, two ways to deal with that issue: a) ignore the aesthetic and educational arguments and propose classification sys- tems that are fully consistent with the Hennigian principles of phylo- genetic classification, i.e. are only composed of monophyletic taxa; CC-BY-NC-ND 4.0 b) ignore Hennigian principles and bunch small, relatively uncharac- • teristic groups into paraphyletic taxa, creating systems that are more 227 – convenient. In the paper, I present the debate and analyze the pros 203 and cons of both options, briefly commenting on the deeper, third resolution, which would be to abandon classification systems entirely. Philosophical Problems in Science (Zagadnienia FilozoficzneNo w Nauce) 66 (2019), pp. 204 Łukasz Lamża Recent advances in eukaryotic classification and phylogeny are com- mented in the light of the philosophical question of the purpose and design principles of biological classification systems. -
Biosynthetic Capacity, Metabolic Variety and Unusual Biology in the CPR and DPANN Radiations Cindy J
Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations Cindy J. Castelle 1,2, Christopher T. Brown 1, Karthik Anantharaman 1,5, Alexander J. Probst 1,6, Raven H. Huang3 and Jillian F. Banfield 1,2,4* 1Department of Earth and Planetary Science, University of California, Berkeley, CA, USA. 2Chan Zuckerberg Biohub, San Francisco, CA, USA. 3Department of Biochemistry, University of Illinois, Urbana-Champaign, IL, USA. 4Department of Environmental Science, Policy, and Management, Lawrence Berkeley National Laboratory, Berkeley, CA, USA. 5Department of Bacteriology, University of WisconsinMadison, Madison, WI, USA. 6Department of Chemistry, Biofilm Center, Group for Aquatic Microbial Ecology, University of Duisburg-Essen, Essen, Germany. *e-mail: [email protected] Abstract Candidate phyla radiation (CPR) bacteria and DPANN (an acronym of the names of the first included phyla) archaea are massive radiations of organisms that are widely distributed across Earth’s environments, yet we know little about them. Initial indications are that they are consistently distinct from essentially all other bacteria and archaea owing to their small cell and genome sizes, limited metabolic capacities and often episymbiotic associations with other bacteria and archaea. In this Analysis, we investigate their biology and variations in metabolic capacities by analysis of approximately 1,000 genomes reconstructed from several metagenomics-based studies. We find that they are not monolithic in terms of metabolism but rather harbour a diversity of capacities consistent with a range of lifestyles and degrees of dependence on other organisms. Notably, however, certain CPR and DPANN groups seem to have exceedingly minimal biosynthetic capacities, whereas others could potentially be free living. -
Genome-Resolved Metagenomics Analysis Provides Insights Into the Ecological Role of Thaumarchaeota in the Amazon River and Its Plume Otávio H
Pinto et al. BMC Microbiology (2020) 20:13 https://doi.org/10.1186/s12866-020-1698-x RESEARCH ARTICLE Open Access Genome-resolved metagenomics analysis provides insights into the ecological role of Thaumarchaeota in the Amazon River and its plume Otávio H. B. Pinto1, Thais F. Silva1, Carla S. Vizzotto1,2, Renata H. Santana3, Fabyano A. C. Lopes4, Bruno S. Silva5, Fabiano L. Thompson5 and Ricardo H. Kruger1* Abstract Background: Thaumarchaeota are abundant in the Amazon River, where they are the only ammonia-oxidizing archaea. Despite the importance of Thaumarchaeota, little is known about their physiology, mainly because few isolates are available for study. Therefore, information about Thaumarchaeota was obtained primarily from genomic studies. The aim of this study was to investigate the ecological roles of Thaumarchaeota in the Amazon River and the Amazon River plume. Results: The archaeal community of the shallow in Amazon River and its plume is dominated by Thaumarchaeota lineages from group 1.1a, which are mainly affiliated to Candidatus Nitrosotenuis uzonensis, members of order Nitrosopumilales, Candidatus Nitrosoarchaeum, and Candidatus Nitrosopelagicus sp. While Thaumarchaeota sequences have decreased their relative abundance in the plume, Candidatus Nitrosopelagicus has increased. One genome was recovered from metagenomic data of the Amazon River (ThauR71 [1.05 Mpb]), and two from metagenomic data of the Amazon River plume (ThauP25 [0.94 Mpb] and ThauP41 [1.26 Mpb]). Phylogenetic analysis placed all three Amazon genome bins in Thaumarchaeota Group 1.1a. The annotation revealed that most genes are assigned to the COG subcategory coenzyme transport and metabolism. All three genomes contain genes involved in the hydroxypropionate/hydroxybutyrate cycle, glycolysis, tricarboxylic acid cycle, oxidative phosphorylation. -
A Scientific Literature Review Comic by Lilja Strang
A scientific literature review comic by Lilja Strang In Norse mythology all of life is contained within nine realms. These realms are connected by Yggdrasil, or the World Tree. A similar concept exists in biology. It’s called the tree of life and it shows the evolutionary connections between all life on earth. These two trees have more in common than most people think. To begin our story, think back to your earliest biology class. You probably saw either the 1959 tree of life, organized into Carl Woese—1990 either 5 kingdoms, or the 1990 tree with 3 domains. The 5 kingdoms tree compared life on the basis of how things looked. Microscopic organisms were too small to see easily, and were excluded. Whittaker’s 5 Kingdom Tree (1959) Woese’s 3 Domain Tree (1990) Plantae Fungi Animalia Bacteria Archaea Eucarya Carl Woese’s tree Protista was based on the best DNA evidence Monera of his time. Here, the microscopic Bacteria and Archaea were front and center. In fact, Woese realized that the Archaea were Níðhöggr (Nidhogg) is the dragon that gnaws at the roots of Yggdrasil. very special. In the 1990s, Archaea were thought to only be extremophiles living in very Methanosarcina mazeii produces the methane gas in cow farts. hot/cold, acidic/basic, or There are no known methane otherwise unusual habitats. producing Bacteria, only Archaea. Sulfolobus live in the Geysers of Yellowstone at temperatures of 40–55°C (104–131°F). Methane producers are found in humans too. Ferroplasma acidiphilum live They’re similar to those in the toxic byproducts of found in cows. -
Downloaded from Supplementary Information Supplementary Information Accompanies This Paper At
Pan et al. Microbiome (2020) 8:43 https://doi.org/10.1186/s40168-020-00820-1 RESEARCH Open Access Genomic and transcriptomic evidence of light-sensing, porphyrin biosynthesis, Calvin-Benson-Bassham cycle, and urea production in Bathyarchaeota Jie Pan1, Zhichao Zhou1,2, Oded Béjà3, Mingwei Cai1, Yuchun Yang2, Yang Liu1, Ji-Dong Gu2 and Meng Li1* Abstract Background: Bathyarchaeota, a newly proposed archaeal phylum, is considered as an important driver of the global carbon cycle. However, due to the great diversity of them, there is limited genomic information that accurately encompasses the metabolic potential of the entire archaeal phylum. Results: In the current study, nine metagenome-assembled genomes of Bathyarchaeota from four subgroups were constructed from mangrove sediments, and metatranscriptomes were obtained for evaluating their in situ transcriptional activities. Comparative analyses with reference genomes and the transcripts of functional genes posit an expanded role for Bathyarchaeota in phototrophy, autotrophy, and nitrogen and sulfur cycles, respectively. Notably, the presence of genes for rhodopsins, cobalamin biosynthesis, and the oxygen-dependent metabolic pathways in some Bathyarchaeota subgroup 6 genomes suggest a light-sensing and microoxic lifestyle within this subgroup. Conclusions: The results of this study expand our knowledge of metabolic abilities and diverse lifestyles of Bathyarchaeota, highlighting the crucial role of Bathyarchaeota in geochemical cycle. Keywords: Bathyarchaeota, Rhodopsin, Porphyrin biosynthesis, Calvin-Benson-Bassham cycle, Urea producing, Trimethylamine degradation, Microoxic lifestyle Background the marine sub-seafloor, estimated to have 2.0–3.9 × Bathyarchaeota, formerly named MCG (Miscellaneous 1028 cells in the global ecosystem [3, 12]. The ubiquity Crenarchaeotal Group) [1], is a newly proposed archaeal and high abundance suggested that Bathyarchaeota phylum within the TACK (Proteoarchaeota) superphy- might play a role in the global biogeochemical cycle lum [2–4]. -
Genomic and Evolutionary Exploration of Asgard Archaea
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1861 Genomic and evolutionary exploration of Asgard archaea EVA F. CACERES ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-0761-9 UPPSALA urn:nbn:se:uu:diva-393710 2019 Dissertation presented at Uppsala University to be publicly examined in B22, Biomedical Center (BMC), Husargatan 3, Uppsala, Thursday, 14 November 2019 at 09:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Simonetta Gribaldo (Institut Pasteur, Department of Microbiology). Abstract Caceres, E. F. 2019. Genomic and evolutionary exploration of Asgard archaea. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1861. 88 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0761-9. Current evolutionary theories postulate that eukaryotes emerged from the symbiosis of an archaeal host with, at least, one bacterial symbiont. However, our limited grasp of microbial diversity hampers insights into the features of the prokaryotic ancestors of eukaryotes. This thesis focuses on the study of a group of uncultured archaea to better understand both existing archaeal diversity and the origin of eukaryotes. In a first study, we used short-read metagenomic approaches to obtain eight genomes of Lokiarchaeum relatives. Using these data we described the Asgard superphylum, comprised of at least four different phyla: Lokiarchaeota, Odinarchaeota, Thorarchaeota and Heimdallarchaoeta. Phylogenetic analyses suggested that eukaryotes affiliate with the Asgard group, albeit the exact position of eukaryotes with respect to Asgard archaea members remained inconclusive. Comparative genomics showed that Asgard archaea genomes encoded homologs of numerous eukaryotic signature proteins (ESPs), which had never been observed in Archaea before. -
Lokiarchaea Are Close Relatives of Euryarchaeota, Not
Lokiarchaea are close relatives of Euryarchaeota, not bridging the gap between prokaryotes and eukaryotes Violette da Cunha, Morgan Gaia, Danièle Gadelle, Arshan Nasir, Patrick Forterre To cite this version: Violette da Cunha, Morgan Gaia, Danièle Gadelle, Arshan Nasir, Patrick Forterre. Lokiarchaea are close relatives of Euryarchaeota, not bridging the gap between prokaryotes and eukaryotes. PLoS Ge- netics, Public Library of Science, 2017, 13 (6), pp.e1006810. 10.1371/journal.pgen.1006810. pasteur- 01570207 HAL Id: pasteur-01570207 https://hal-pasteur.archives-ouvertes.fr/pasteur-01570207 Submitted on 28 Jul 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License RESEARCH ARTICLE Lokiarchaea are close relatives of Euryarchaeota, not bridging the gap between prokaryotes and eukaryotes Violette Da Cunha1,2³, Morgan Gaia1³, Daniele Gadelle2, Arshan Nasir3, Patrick Forterre1,2* 1 Institut Pasteur, Unite de Biologie MoleÂculaire du Gène chez les Extrêmophiles (BMGE), DeÂpartement de Microbiologie Paris, France, 2 Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris- Sud, Universite Paris-Saclay, Gif-sur-Yvette cedex, France, 3 Department of Biosciences, COMSATS a1111111111 Institute of Information Technology, Islamabad, Pakistan a1111111111 ³ These authors share first authorship on this work. -
Symbiosis in Archaea: Functional and Phylogenetic Diversity of Marine and Terrestrial Nanoarchaeota and Their Hosts
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Winter 3-13-2019 Symbiosis in Archaea: Functional and Phylogenetic Diversity of Marine and Terrestrial Nanoarchaeota and their Hosts Emily Joyce St. John Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Bacteriology Commons, and the Biology Commons Let us know how access to this document benefits ou.y Recommended Citation St. John, Emily Joyce, "Symbiosis in Archaea: Functional and Phylogenetic Diversity of Marine and Terrestrial Nanoarchaeota and their Hosts" (2019). Dissertations and Theses. Paper 4939. https://doi.org/10.15760/etd.6815 This Thesis is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Symbiosis in Archaea: Functional and Phylogenetic Diversity of Marine and Terrestrial Nanoarchaeota and their Hosts by Emily Joyce St. John A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Biology Thesis Committee: Anna-Louise Reysenbach, Chair Anne W. Thompson Rahul Raghavan Portland State University 2019 © 2019 Emily Joyce St. John i Abstract The Nanoarchaeota are an enigmatic lineage of Archaea found in deep-sea hydrothermal vents and geothermal springs across the globe. These small (~100-400 nm) hyperthermophiles live ectosymbiotically with diverse hosts from the Crenarchaeota. Despite their broad distribution in high-temperature environments, very few Nanoarchaeota have been successfully isolated in co-culture with their hosts and nanoarchaeote genomes are poorly represented in public databases. -
Genomic Diversity, Lifestyles and Evolutionary Origins of DPANN Archaea
Dombrowski, N., Lee, J-H., Williams, T., Offre, P., & Spang, A. (2019). Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiology Letters, 366(2), [fnz008]. https://doi.org/10.1093/femsle/fnz008 Publisher's PDF, also known as Version of record License (if available): CC BY Link to published version (if available): 10.1093/femsle/fnz008 Link to publication record in Explore Bristol Research PDF-document This is the final published version of the article (version of record). It first appeared online via Oxford University Press at https://doi.org/10.1093/femsle/fnz008 . Please refer to any applicable terms of use of the publisher. University of Bristol - Explore Bristol Research General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: http://www.bristol.ac.uk/red/research-policy/pure/user-guides/ebr-terms/ FEMS Microbiology Letters, 366, 2019, fnz008 doi: 10.1093/femsle/fnz008 Advance Access Publication Date: 9 January 2019 Minireview Downloaded from https://academic.oup.com/femsle/article-abstract/366/2/fnz008/5281434 by University Library user on 08 February 2019 M I N I REV I EW – Incubator Genomic diversity, lifestyles and evolutionary origins of DPANN archaea Nina Dombrowski1,2, Jun-Hoe Lee3, Tom A. Williams4, Pierre Offre1 andAnjaSpang1,3,∗ 1NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, and Utrecht University, P.O. Box 59, NL-1790 AB Den Burg, The Netherlands, 2Department of Marine Science, University of Texas at Austin, Marine Science Institute, 750 Channel View Drive, Port Aransas, TX 78373, USA, 3Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, P.O.