Tdb: A Source-level Debugger for Dynamically Translated Programs Naveen Kumar†, Bruce R. Childers†, and Mary Lou Soffa‡ †Department of Computer Science ‡Department of Computer Science University of Pittsburgh University of Virginia Pittsburgh, Pennsylvania 15260 Charlottesville, Virginia 22904 {naveen, childers}@cs.pitt.edu
[email protected] Abstract single stepping through program execution, watching for par- ticular conditions and requests to add and remove breakpoints. Debugging techniques have evolved over the years in response In order to respond, the debugger has to map the values and to changes in programming languages, implementation tech- statements that the user expects using the source program niques, and user needs. A new type of implementation vehicle viewpoint, to the actual values and locations of the statements for software has emerged that, once again, requires new as found in the executable program. debugging techniques. Software dynamic translation (SDT) As programming languages have evolved, new debugging has received much attention due to compelling applications of techniques have been developed. For example, checkpointing the technology, including software security checking, binary and time stamping techniques have been developed for lan- translation, and dynamic optimization. Using SDT, program guages with concurrent constructs [6,19,30]. The pervasive code changes dynamically, and thus, debugging techniques use of code optimizations to improve performance has necessi- developed for statically generated code cannot be used to tated techniques that can respond to queries even though the debug these applications. In this paper, we describe a new optimization may have changed the number of statement debug architecture for applications executing with SDT sys- instances and the order of execution [15,25,29].