Fundamental Groupoids As Generalised Pushouts of Codiscrete Groupoids

Total Page:16

File Type:pdf, Size:1020Kb

Fundamental Groupoids As Generalised Pushouts of Codiscrete Groupoids FUNDAMENTAL GROUPOIDS AS GENERALISED PUSHOUTS OF CODISCRETE GROUPOIDS ETTORE CARLETTI AND MARCO GRANDIS Abstract. Every differentiable manifold X has a `good cover', where all open sets and their finite intersections are 1-connected (and even contractible). Using a generalised van Kampen theorem for open covers we deduce that the fundamental groupoid of X (or any space admitting such an open cover) is a `generalised pushout' of codiscrete groupoids and inclusions. This fact motivates the present brief study of generalised pushouts. In particular, we show that every groupoid is, up to equivalence, a generalised pushout of codiscrete subgroupoids; moreover, in any category, generalised pushouts amount to connected colimits, and - in the finite case - to ordinary pushouts and coequalisers. 1. Introduction This article starts from two facts. (a) A well-known groupoid-version of the van Kampen theorem, by R. Brown [Bw1, Bw2], determines the fundamental groupoid of a space X as a pushout of fundamental groupoids of (convenient) subspaces X1;X2; the latter (and their intersection!) are not supposed to be path-connected - a crucial advantage with respect to the classical formulation for the fundamental group. This groupoid version can be easily extended to an open cover (Xi)i2I of the space X: then the fundamental groupoid π1X is the `gluing' of the fundamental groupoids π1Xi `over' the groupoids π1(Xi \ Xj) - a colimit of a particular form, that is called here a `generalised pushout' (see Sections 2 to 4). We readily note that generalised pushouts are connected, non simply connected colimits and therefore cannot be reduced to ordinary pushouts (see R. Par´e[P1]). (Let us recall that in this terminology a connected category is assumed to be non-empty; we do not follow this convention for spaces.) (b) Then, in Section 5, we recall from the text of R. Bott and L.W. Tu [BT] that every differentiable n-manifold X has a good cover. This means an open cover (Xi)i2I such that n all finite intersections Xi1 \ ::: \ Xik are either diffeomorphic to R or empty. Putting both facts together, we deduce that the fundamental groupoid π1X of a dif- ferentiable manifold X is the generalised pushout of a diagram of codiscrete groupoids and inclusions; if X is compact, we can use a finite cover and a finite set of `representative points', getting a finite generalised pushout of finite codiscrete groupoids. More generally, this holds for any space X having a `suitably good' open cover (Xi), see Theorem 5.1. Work supported by a PRIN Research Project and a Research Contract of Universit`adi Genova. 2000 Mathematics Subject Classification: 55A5, 18A30, 53C22. Key words and phrases: fundamental groupoid, generalised pushout, connected colimit, differentiable manifold. 1 2 With this motivation we go on studying generalised pushouts, in a line well represented in category theory: exploring particular classes of (co)limits, like: - filtered colimits, - splitting of idempotents, - flexible (co)limits, - connected (co)limits, - connected, simply connected (co)limits. First we show, in Proposition 6.1, that - up to categorical equivalence - every groupoid is a generalised pushout of codiscrete groupoids and inclusions (in a form that is weaker than that of the previous theorem, besides being of no help for any computation of fundamental groupoids). Then, in the last three sections, we consider generalised pushouts in a general category. Applying results of a second paper of R. Par´eon connected limits [P2], we show that generalised pushouts give all connected colimits, while finite generalised pushouts amount to finite connected colimits or, equivalently, to pushouts and coequalisers. As an extension, suggested by F.W. Lawvere, it would be interesting to investigate `codiscretely generated' toposes, like symmetric simplicial sets [Gr], i.e. presheaves on finite non-empty sets. Another possible extension can be based on a paper by R. Brown and G. Janelidze [BwJ] on categorical descent theory, that studies wide extensions of the Van Kampen theorem to `lextensive categories', comprising various settings of a topological or algebraic nature. The present results of Sections 2 to 5 can likely be extended to this framework, replacing - loosely speaking - the open cover of a topological space with a family of subobjects (Xi)i2I of an object X such that the canonical map Σi Xi ! X (defined on the sum of the given subobjects) is an effective descent morphism. One should be aware that, for the standard topological case, this version applies to spaces where the fundamental groupoid classifies all coverings, as indicated in [BwJ], p. 256. (See also [BoJ].) Finally, let us remark that the concrete computation of fundamental groupoids is al- ready well covered in the literature, see [Bw2, BwS] and references therein. In particular the present Theorem 3.2 is the Main Theorem of [BwS], in a version that makes no use of disconnected colimits (namely categorical sums) but says nothing more for computa- tion. Our goal is rather to isolate a kind of connected colimit motivated by the previous arguments and study its categorical aspects. We gratefully acknowledge helpful information and suggestions from R. Brown, G. Janelidze, F.W. Lawvere and R. Par´e. 2. A van Kampen theorem for groupoids and open covers We begin by recalling R. Brown's formulation of the van Kampen theorem for fundamental groupoids; a stronger version will be recalled and used in the next section. 3 2.1. Theorem. (R. Brown) Let X be a topological space, with two subspaces X1;X2 such that X = int(X1) [ int(X2). Then the following diagram of functors induced by inclusions is a pushout of groupoids π1(X1 \ X2) / π1(X1) (1) π1(X2) / π1(X) Proof. See [Bw2], Section 6.7.2, first part: `the case A = X'. The crucial advantage with respect to the classical formulation for the fundamental group is that, here, we need not assume that the spaces X1;X2 and X1 \ X2 be path- connected; for instance, this formulation allows one to compute the fundamental groupoid of the circle (and deduce its fundamental group). Now, the previous statement can be generalised to a space X equipped with a family of subspaces (Xi)i2I such that X is covered by their interior parts. Then the fundamental groupoid π1X is the `gluing' of the fundamental groupoids π1Xi `over' the groupoids π1(Xi \ Xj). (A similar result, based on finite instead of binary intersections, is suggested in Exercise 6 of [Bw2], Section 6.7.) More precisely, we have the following result. We start from a non-empty set I and form the set I^ of its subsets fi; jg having one or two elements, ordered by the relation fi; jg ≤ fig. Plainly, I^ is a connected category (a term which - as usual - also means non-empty), with maps indexed on the pairs (i; j) (i; j): fi; jg ! i; (i; j) 2 I2; (2) (together with other identities, of no relevance for limits or colimits). 2.2. Theorem. In the hypotheses above, π1X is the colimit of a composed functor π1F : I^ ! Gpd with values in the category of small groupoids, where the functor F : I^ ! Top is defined as follows F (fi; jg) = Xij = Xi \ Xj;F (fi; jg ! fig) = uij : Xij ⊆ Xi; (3) Proof. The proof is essentially the same as in [Bw2] (for I = f1; 2g), and we only sketch it. −1 A (Moore) path a: [0; p] ! X gives an open cover Vi = a (int(Xi)) of the compact metric space [0; p] (independently of how big the set of indices I is). Fixing a Lebesgue number for this cover, we can decompose a into a finite concatenation of paths a = a1 ∗:::∗an so that the image of each of them is contained in some Xi. Similarly, a homotopy with fixed endpoints h: [0; p]×[0; q] ! X can be decomposed on `small rectangles', so that the image of h on each of them is contained in some Xi. Then we prove the universal property for the cocone of the functor π1F consisting of the canonical morphisms π1Xi ! π1X (i 2 I). Given a cocone of the functor π1F with vertex in a groupoid G, namely a family (fi)i2I such that fi : π1Xi ! G; fiuij = fjuji (i; j 2 I); (4) 4 one can (and must) define f : π1X ! G on the class of the previous path a = a1 ∗ ::: ∗ an letting f[ar] = fi[ar]; if Im(ar) ⊆ Xi; f[a] = f[a1] ∗ ::: ∗ f[an]: The result does not depend on the various choices we have made because of: - the cocone condition (4), - the usual argument on refining concatenations of the same path, - some computations on the decomposition of a path-homotopy on `small rectangles' (that one can find in the cited book). 3. Representative sets of points Actually, R. Brown states from the beginning (in [Bw1, Bw2]) a stronger version of The- orem 2.1, more useful for computation. For a subset A of the space X, we shall write π1XjA the restriction of π1X to A, i.e. the full subgroupoid of π1X with vertices in A (the notation of [Bw2] is π1XA); more 0 0 0 generally, for a subspace X of X, we write π1X jA for the restriction of π1X to the subset X0 \ A. The subset A is said to be representative in X0 if A meets all its path-connected 0 0 components; it is then easy to show that the groupoid π1X jA is a retract of π1X . 3.1. Theorem. (R. Brown) Let X be again a topological space with two subspaces X1;X2 whose interior parts cover X. Let A be a subset of X that is representative in X1;X2 and X0 = X1 \ X2.
Recommended publications
  • A Few Points in Topos Theory
    A few points in topos theory Sam Zoghaib∗ Abstract This paper deals with two problems in topos theory; the construction of finite pseudo-limits and pseudo-colimits in appropriate sub-2-categories of the 2-category of toposes, and the definition and construction of the fundamental groupoid of a topos, in the context of the Galois theory of coverings; we will take results on the fundamental group of étale coverings in [1] as a starting example for the latter. We work in the more general context of bounded toposes over Set (instead of starting with an effec- tive descent morphism of schemes). Questions regarding the existence of limits and colimits of diagram of toposes arise while studying this prob- lem, but their general relevance makes it worth to study them separately. We expose mainly known constructions, but give some new insight on the assumptions and work out an explicit description of a functor in a coequalizer diagram which was as far as the author is aware unknown, which we believe can be generalised. This is essentially an overview of study and research conducted at dpmms, University of Cambridge, Great Britain, between March and Au- gust 2006, under the supervision of Martin Hyland. Contents 1 Introduction 2 2 General knowledge 3 3 On (co)limits of toposes 6 3.1 The construction of finite limits in BTop/S ............ 7 3.2 The construction of finite colimits in BTop/S ........... 9 4 The fundamental groupoid of a topos 12 4.1 The fundamental group of an atomic topos with a point . 13 4.2 The fundamental groupoid of an unpointed locally connected topos 15 5 Conclusion and future work 17 References 17 ∗e-mail: [email protected] 1 1 Introduction Toposes were first conceived ([2]) as kinds of “generalised spaces” which could serve as frameworks for cohomology theories; that is, mapping topological or geometrical invariants with an algebraic structure to topological spaces.
    [Show full text]
  • Picard Groupoids and $\Gamma $-Categories
    PICARD GROUPOIDS AND Γ-CATEGORIES AMIT SHARMA Abstract. In this paper we construct a symmetric monoidal closed model category of coherently commutative Picard groupoids. We construct another model category structure on the category of (small) permutative categories whose fibrant objects are (permutative) Picard groupoids. The main result is that the Segal’s nerve functor induces a Quillen equivalence between the two aforementioned model categories. Our main result implies the classical result that Picard groupoids model stable homotopy one-types. Contents 1. Introduction 2 2. The Setup 4 2.1. Review of Permutative categories 4 2.2. Review of Γ- categories 6 2.3. The model category structure of groupoids on Cat 7 3. Two model category structures on Perm 12 3.1. ThemodelcategorystructureofPermutativegroupoids 12 3.2. ThemodelcategoryofPicardgroupoids 15 4. The model category of coherently commutatve monoidal groupoids 20 4.1. The model category of coherently commutative monoidal groupoids 24 5. Coherently commutative Picard groupoids 27 6. The Quillen equivalences 30 7. Stable homotopy one-types 36 Appendix A. Some constructions on categories 40 AppendixB. Monoidalmodelcategories 42 Appendix C. Localization in model categories 43 Appendix D. Tranfer model structure on locally presentable categories 46 References 47 arXiv:2002.05811v2 [math.CT] 12 Mar 2020 Date: Dec. 14, 2019. 1 2 A. SHARMA 1. Introduction Picard groupoids are interesting objects both in topology and algebra. A major reason for interest in topology is because they classify stable homotopy 1-types which is a classical result appearing in various parts of the literature [JO12][Pat12][GK11]. The category of Picard groupoids is the archetype exam- ple of a 2-Abelian category, see [Dup08].
    [Show full text]
  • INTRODUCTION to ALGEBRAIC TOPOLOGY 1 Category And
    INTRODUCTION TO ALGEBRAIC TOPOLOGY (UPDATED June 2, 2020) SI LI AND YU QIU CONTENTS 1 Category and Functor 2 Fundamental Groupoid 3 Covering and fibration 4 Classification of covering 5 Limit and colimit 6 Seifert-van Kampen Theorem 7 A Convenient category of spaces 8 Group object and Loop space 9 Fiber homotopy and homotopy fiber 10 Exact Puppe sequence 11 Cofibration 12 CW complex 13 Whitehead Theorem and CW Approximation 14 Eilenberg-MacLane Space 15 Singular Homology 16 Exact homology sequence 17 Barycentric Subdivision and Excision 18 Cellular homology 19 Cohomology and Universal Coefficient Theorem 20 Hurewicz Theorem 21 Spectral sequence 22 Eilenberg-Zilber Theorem and Kunneth¨ formula 23 Cup and Cap product 24 Poincare´ duality 25 Lefschetz Fixed Point Theorem 1 1 CATEGORY AND FUNCTOR 1 CATEGORY AND FUNCTOR Category In category theory, we will encounter many presentations in terms of diagrams. Roughly speaking, a diagram is a collection of ‘objects’ denoted by A, B, C, X, Y, ··· , and ‘arrows‘ between them denoted by f , g, ··· , as in the examples f f1 A / B X / Y g g1 f2 h g2 C Z / W We will always have an operation ◦ to compose arrows. The diagram is called commutative if all the composite paths between two objects ultimately compose to give the same arrow. For the above examples, they are commutative if h = g ◦ f f2 ◦ f1 = g2 ◦ g1. Definition 1.1. A category C consists of 1◦. A class of objects: Obj(C) (a category is called small if its objects form a set). We will write both A 2 Obj(C) and A 2 C for an object A in C.
    [Show full text]
  • Groupoids and Local Cartesian Closure
    Groupoids and local cartesian closure Erik Palmgren∗ Department of Mathematics, Uppsala University July 2, 2003 Abstract The 2-category of groupoids, functors and natural isomorphisms is shown to be locally cartesian closed in a weak sense of a pseudo- adjunction. Key words: groupoids, 2-categories, local cartesian closure. Mathematics Subject Classification 2000: 18B40, 18D05, 18A40. 1 Introduction A groupoid is a category in which each morphism is invertible. The notion may be considered as a common generalisation of the notions of group and equivalence relation. A group is a one-object groupoid. Every equivalence relation on a set, viewed as a directed graph, is a groupoid. A recent indepen- dence proof in logic used groupoids. Hofmann and Streicher [8] showed that groupoids arise from a construction in Martin-Löf type theory. This is the so-called identity type construction, which applied to a type gives a groupoid turning the type into a projective object, in the category of types with equiv- alence relations. As a consequence there are plenty of choice objects in this category: every object has a projective cover [12] — a property which seems essential for doing constructive mathematics according to Bishop [1] inter- nally to the category. For some time the groupoids associated with types were believed to be discrete. However, in [8] a model of type theory was given using fibrations over groupoids, showing that this need not be the case. The purpose of this article is to draw some further conclusions for group- oids from the idea of Hofmann and Streicher. Since type theory has a Π- construction, one could expect that some kind of (weak) local cartesian clo- sure should hold for groupoids.
    [Show full text]
  • Correspondences and Groupoids 1 Introduction
    Proceedings of the IX Fall Workshop on Geometry and Physics, Vilanova i la Geltr´u, 2000 Publicaciones de la RSME, vol. X, pp. 1–6. Correspondences and groupoids 1Marta Macho-Stadler and 2Moto O’uchi 1Departamento de Matem´aticas, Universidad del Pa´ıs Vasco-Euskal Herriko Unibertsitatea 2Department of Applied Mathematics, Osaka Women’s University emails: [email protected], [email protected] Abstract Our definition of correspondence between groupoids (which generali- zes the notion of homomorphism) is obtained by weakening the conditions in the definition of equivalence of groupoids in [5]. We prove that such a correspondence induces another one between the associated C*-algebras, and in some cases besides a Kasparov element. We wish to apply the results obtained in the particular case of K-oriented maps of leaf spaces in the sense of [3]. Key words: Groupoid, C*-algebra, correspondence, KK-group. MSC 2000: 46L80, 46L89 1Introduction A. Connes introduced in [1] the notion of correspondence in the theory of Von Neumann algebras. It is a concept of morphism, which gives the well known notion of correspondence of C*-algebras. In [5], P.S. Mulhy, J.N. Re- nault and D. Williams defined the notion of equivalence of groupoids and showed that if two groupoids are equivalent, then the associated C*-algebras are Morita-equivalent. But, this notion is too strong: here we give a definition of correspondence of groupoids,byweakening the conditions of equivalence in [5]. We prove that such a correspondence induces another one (in the sense of A. Connes) between the associated reduced C*-algebras.
    [Show full text]
  • GROUPOID SCHEMES 022L Contents 1. Introduction 1 2
    GROUPOID SCHEMES 022L Contents 1. Introduction 1 2. Notation 1 3. Equivalence relations 2 4. Group schemes 4 5. Examples of group schemes 5 6. Properties of group schemes 7 7. Properties of group schemes over a field 8 8. Properties of algebraic group schemes 14 9. Abelian varieties 18 10. Actions of group schemes 21 11. Principal homogeneous spaces 22 12. Equivariant quasi-coherent sheaves 23 13. Groupoids 25 14. Quasi-coherent sheaves on groupoids 27 15. Colimits of quasi-coherent modules 29 16. Groupoids and group schemes 34 17. The stabilizer group scheme 34 18. Restricting groupoids 35 19. Invariant subschemes 36 20. Quotient sheaves 38 21. Descent in terms of groupoids 41 22. Separation conditions 42 23. Finite flat groupoids, affine case 43 24. Finite flat groupoids 50 25. Descending quasi-projective schemes 51 26. Other chapters 52 References 54 1. Introduction 022M This chapter is devoted to generalities concerning groupoid schemes. See for exam- ple the beautiful paper [KM97] by Keel and Mori. 2. Notation 022N Let S be a scheme. If U, T are schemes over S we denote U(T ) for the set of T -valued points of U over S. In a formula: U(T ) = MorS(T,U). We try to reserve This is a chapter of the Stacks Project, version fac02ecd, compiled on Sep 14, 2021. 1 GROUPOID SCHEMES 2 the letter T to denote a “test scheme” over S, as in the discussion that follows. Suppose we are given schemes X, Y over S and a morphism of schemes f : X → Y over S.
    [Show full text]
  • On Groupoids and Stuff
    On Groupoids and Stuff Simon Byrne November 17, 2005 Contents 1 Groupoids 3 1.1 An introduction . 3 1.2 Category of groupoids . 5 1.3 Weak quotient . 6 1.4 Colouring . 8 2 Stuff types 12 2.1 Stuff types . 12 2.1.1 Structure types . 13 2.1.2 Examples . 16 2.2 Generating functions . 16 2.2.1 A categorical view . 18 2.3 The 2-category of stuff types . 21 3 Operations on stuff types 27 3.1 Addition . 27 3.2 Multiplication . 29 3.3 Composition . 31 3.4 Pointing . 33 3.5 Derivative . 34 3.6 Cartesian product . 37 3.7 Inner product . 39 3.8 Stuff operator . 42 1 Introduction The theory of combinatorial species developed by Andr´eJoyal [3] is a method for analysis of finite structures using generating functions. A combinatorial species can be thought of as a map assigning to each finite set the set of structures of the species which exist on that set. A structure type works in the opposite direction, assigning to a structure its underlying set. However the collection of structures is not a set, but a groupoid. This mapping “forgets” the structure, and so its fibre (or inverse) will rebuild it, becoming a species. A stuff type is a generalisation of a structure type, and in the same context can be thought of as mapping a structure to some subset of its underlying set. This mapping forgets not only structure, but extra “stuff”. The advantage of such an approach is two-fold. Firstly it provides a categorical underpinning to the concept of a generating function, giving an explanation as to the form of the power series.
    [Show full text]
  • Directed Homotopy Hypothesis'. (,1)-Categories
    Steps towards a `directed homotopy hypothesis'. (1; 1)-categories, directed spaces and perhaps rewriting Steps towards a `directed homotopy hypothesis'. (1; 1)-categories, directed spaces and perhaps rewriting Timothy Porter Emeritus Professor, University of Wales, Bangor June 12, 2015 Steps towards a `directed homotopy hypothesis'. (1; 1)-categories, directed spaces and perhaps rewriting 1 Introduction. Some history and background Grothendieck on 1-groupoids `Homotopy hypothesis' Dwyer-Kan loop groupoid 2 From directed spaces to S-categories and quasicategories A `dHH' for directed homotopy? Some reminders, terminology, notation, etc. Singular simplicial traces Suggestions on how to use T~ (X ) Models for (1; 1)-categories Quasi-categories 3 Back to d-spaces 4 Questions and `things to do' Steps towards a `directed homotopy hypothesis'. (1; 1)-categories, directed spaces and perhaps rewriting Introduction. Some history and background Some history (1; 0)-categories, spaces and rewriting. Letters from Grothendieck to Larry Breen (1975). Letter from AG to Quillen, [4], in 1983, forming the very first part of `Pursuing Stacks', [5], pages 13 to 17 of the original scanned file. Letter from TP to AG (16/06/1983). Steps towards a `directed homotopy hypothesis'. (1; 1)-categories, directed spaces and perhaps rewriting Introduction. Grothendieck on 1-groupoids Grothendieck on 1-groupoids (from PS) At first sight, it seemed to me that the Bangor group had indeed come to work out (quite independently) one basic intuition of the program I had envisaged in those letters to Larry Breen { namely the study of n-truncated homotopy types (of semi-simplicial sets, or of topological spaces) was essentially equivalent to the study of so-called n-groupoids (where n is a natural integer).
    [Show full text]
  • Internal Groupoids and Exponentiability
    VOLUME LX-4 (2019) INTERNAL GROUPOIDS AND EXPONENTIABILITY S.B. Niefield and D.A. Pronk Resum´ e.´ Nous etudions´ les objets et les morphismes exponentiables dans la 2-categorie´ Gpd(C) des groupoides internes a` une categorie´ C avec sommes finies lorsque C est : (1) finiment complete,` (2) cartesienne´ fermee´ et (3) localement cartesienne´ fermee.´ Parmi les exemples auxquels on s’interesse´ on trouve, en particulier, (1) les espaces topologiques, (2) les espaces com- pactement engendres,´ (3) les ensembles, respectivement. Nous considerons´ aussi les morphismes pseudo-exponentiables dans les categories´ “pseudo- slice” Gpd(C)==B. Comme ces dernieres` sont les categories´ de Kleisli d’une monade T sur la categorie´ “slice” stricte sur B, nous pouvons appliquer un theor´ eme` gen´ eral´ de Niefield [17] qui dit que si T Y est exponentiable dans une 2-categorie´ K, alors Y est pseudo-exponentiable dans la categorie´ de Kleisli KT . Par consequent,´ nous verrons que Gpd(C)==B est pseudo- cartesienne´ fermee,´ lorsque C est la categorie´ des espaces compactement en- gendres´ et chaque Bi est faiblement de Hausdorff, et Gpd(C) est localement pseudo-cartesienne´ fermee´ quand C est la categorie´ des ensembles ou une categorie´ localement cartesienne´ fermee´ quelconque. Abstract. We study exponentiable objects and morphisms in the 2-category Gpd(C) of internal groupoids in a category C with finite coproducts when C is: (1) finitely complete, (2) cartesian closed, and (3) locally cartesian closed. The examples of interest include (1) topological spaces, (2) com- pactly generated spaces, and (3) sets, respectively. We also consider pseudo- exponentiable morphisms in the pseudo-slice categories Gpd(C)==B.
    [Show full text]
  • Virtual Groups 45 Years Later
    VIRTUAL GROUPS 45 YEARS LATER by Calvin C. Moore Dedicated to the memory of George W. Mackey Abstract In 1961 George Mackey introduced the concept of a virtual group as an equivalence class under similarity of ergodic measured groupoids, and he developed this circle of ideas in subsequent papers in 1963 and 1966. The goal here is first to explain these ideas, place them in a larger context, and then to show how they have influenced and helped to shape developments in four different but related areas of research over the following 45 years. These areas include first the general area and the connections between ergodic group actions, von Neumann algebras, measurable group theory and rigidity theorems. Then we turn to the second area concerning topological groupoids, C∗-algebras, K-theory and cyclic homology, or as it is now termed non-commutative geometry. We briefly discuss some aspects of Lie groupoids, and finally we shall turn attention to the fourth area of Borel equivalence relations seen as a part of descriptive set theory. In each case we trace the influence that Mackey’s ideas have had in shaping each of these four areas of research. 1. Introduction. In his 1961 American Mathematical Society Colloquium Lectures, George Mackey introduced his concept of a virtual group. He briefly described this on pages 651–654 in his Bulletin article [Ma63a] that was based on his Colloquium lectures, and then discussed it again in a research announcement in the Proceedings of the National Academy of Science [Ma63b] and then more fully in [Ma66]. His concept of virtual groups was also a theme in some of his subsequent integrative and expository articles and books.
    [Show full text]
  • Groupoids, the Phragmen-Brouwer Property, and the Jordan Curve
    Groupoids, the Phragmen-Brouwer Property, and the Jordan Curve Theorem Ronald Brown University of Wales, Bangor∗ February 2, 2008 Abstract We publicise a proof of the Jordan Curve Theorem which relates it to the Phragmen-Brouwer Property, and whose proof uses the van Kampen theorem for the fundamental groupoid on a set of base points. 1 Introduction This article extracts from [Bro88] a proof of the Jordan Curve Theorem based on the use of groupoids, the van Kampen Theorem for the fundamental groupoid on a set of base points, and the use of the Phragmen-Brouwer Property. In the process, we give short proofs of two results on the Phragmen- Brouwer Property (Propositions 4.1, 4.3). There is a renewed interest in such classical results1, as shown in the article [Sie] which revisits proofs of the Schoenflies Theorem. There are many books containing a further discussion of this area. For more on the Phragmen- Brouwer property, see [Why42] and [Wil49]. Wilder lists five other properties which he shows for a connected and locally connected metric space are each equivalent to the PBP. The proof we give of the Jordan Curve Theorem is adapted from [Mun75]. Because he does not have our van Kampen theorem for non-connected spaces, he is forced into rather special covering space arguments to prove his replacements for Corollary 3.5 (which is originally due to Eilenberg [Eil37]), and for Proposition arXiv:math/0607229v1 [math.AT] 9 Jul 2006 4.1. The intention is to make these methods more widely available, since the 1988 edition of the book [Bro88] has been out of print for at least ten years, and the new edition is only just now available.
    [Show full text]
  • LIE GROUPOIDS and LIE ALGEBROIDS LECTURE NOTES, FALL 2017 Contents 1. Lie Groupoids 4 1.1. Definitions 4 1.2. Examples 6 1.3. Ex
    LIE GROUPOIDS AND LIE ALGEBROIDS LECTURE NOTES, FALL 2017 ECKHARD MEINRENKEN Abstract. These notes are under construction. They contain errors and omissions, and the references are very incomplete. Apologies! Contents 1. Lie groupoids 4 1.1. Definitions 4 1.2. Examples 6 1.3. Exercises 9 2. Foliation groupoids 10 2.1. Definition, examples 10 2.2. Monodromy and holonomy 12 2.3. The monodromy and holonomy groupoids 12 2.4. Appendix: Haefliger’s approach 14 3. Properties of Lie groupoids 14 3.1. Orbits and isotropy groups 14 3.2. Bisections 15 3.3. Local bisections 17 3.4. Transitive Lie groupoids 18 4. More constructions with groupoids 19 4.1. Vector bundles in terms of scalar multiplication 20 4.2. Relations 20 4.3. Groupoid structures as relations 22 4.4. Tangent groupoid, cotangent groupoid 22 4.5. Prolongations of groupoids 24 4.6. Pull-backs and restrictions of groupoids 24 4.7. A result on subgroupoids 25 4.8. Clean intersection of submanifolds and maps 26 4.9. Intersections of Lie subgroupoids, fiber products 28 4.10. The universal covering groupoid 29 5. Groupoid actions, groupoid representations 30 5.1. Actions of Lie groupoids 30 5.2. Principal actions 31 5.3. Representations of Lie groupoids 33 6. Lie algebroids 33 1 2 ECKHARD MEINRENKEN 6.1. Definitions 33 6.2. Examples 34 6.3. Lie subalgebroids 36 6.4. Intersections of Lie subalgebroids 37 6.5. Direct products of Lie algebroids 38 7. Morphisms of Lie algebroids 38 7.1. Definition of morphisms 38 7.2.
    [Show full text]