Climatic Refugia and Geographical Isolation Contribute to the Speciation and Genetic Divergence in Himalayan-Hengduan Tree Peoni
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cally Plant List a ACIPHYLLA Horrida
Cally Plant List A ACIPHYLLA horrida ACONITUM albo-violaceum albiflorum ABELIOPHYLLUM distichum ACONITUM cultivar ABUTILON vitifolium ‘Album’ ACONITUM pubiceps ‘Blue Form’ ACAENA magellanica ACONITUM pubiceps ‘White Form’ ACAENA species ACONITUM ‘Spark’s Variety’ ACAENA microphylla ‘Kupferteppich’ ACONITUM cammarum ‘Bicolor’ ACANTHUS mollis Latifolius ACONITUM cammarum ‘Franz Marc’ ACANTHUS spinosus Spinosissimus ACONITUM lycoctonum vulparia ACANTHUS ‘Summer Beauty’ ACONITUM variegatum ACANTHUS dioscoridis perringii ACONITUM alboviolaceum ACANTHUS dioscoridis ACONITUM lycoctonum neapolitanum ACANTHUS spinosus ACONITUM paniculatum ACANTHUS hungaricus ACONITUM species ex. China (Ron 291) ACANTHUS mollis ‘Long Spike’ ACONITUM japonicum ACANTHUS mollis free-flowering ACONITUM species Ex. Japan ACANTHUS mollis ‘Turkish Form’ ACONITUM episcopale ACANTHUS mollis ‘Hollard’s Gold’ ACONITUM ex. Russia ACANTHUS syriacus ACONITUM carmichaelii ‘Spätlese’ ACER japonicum ‘Aconitifolium’ ACONITUM yezoense ACER palmatum ‘Filigree’ ACONITUM carmichaelii ‘Barker’s Variety’ ACHILLEA grandifolia ACONITUM ‘Newry Blue’ ACHILLEA ptarmica ‘Perry’s White’ ACONITUM napellus ‘Bergfürst’ ACHILLEA clypeolata ACONITUM unciniatum ACIPHYLLA monroi ACONITUM napellus ‘Blue Valley’ ACIPHYLLA squarrosa ACONITUM lycoctonum ‘Russian Yellow’ ACIPHYLLA subflabellata ACONITUM japonicum subcuneatum ACONITUM meta-japonicum ADENOPHORA aurita ACONITUM napellus ‘Carneum’ ADIANTUM aleuticum ‘Japonicum’ ACONITUM arcuatum B&SWJ 774 ADIANTUM aleuticum ‘Miss Sharples’ ACORUS calamus ‘Argenteostriatus’ -
AGS Seed List No 69 2020
Seed list No 69 2020-21 Garden Collected Seed 1001 Abelia floribunda 1057 Agrostemma githago 1002 Abies koreana 1058 Albuca canadensis (L. -
Development of Ovule and Embryo Sac in Blotched Tree Peony (Paeonia Rockii)
Bull. Fac. Life Env. Sci. Shimane Univ., 4 : 13-20, December 20 1999 Development of Ovule and Embryo Sac in Blotched Tree Peony (Paeonia rockii) Fang-yun Cheng and Noriaki AOKI ' Abstract This paper dealt with the ovule ontogenesis and development, the megasporogenesis and the embryo sac development in Paeonia rockii cvs. The ovule, originated from the tri-zonate primordium, was anatropous, bitegmic and crassinucellate. And the nucellus consisted of different cytohistologrcal zones and differentiated by a particular way in which the derivative cells from both parietal and sporogeneous cells were contributed to the nucellar tissue. During the megasporogenesis and before the 4-nuclear embryo sac, the megasporocytes successively entered meiosis or commenced to degenerate. Generally a linear tetrad formed after meiosis and the chalazal megaspore was functional and developed into embryo sac by Polygonum type. Multicelled archesporium and multiple megas- porocytes in an ovule resulted in 1-3 embryo sacs, which developed to mature within several days after anthesis. Belated mature of embryo sacs supplies a device to guarantee the cross-pollination. The characteristics about ovule and embryo sac of peonies were more primitive and imply the primitive of Paeoniaceae in phylogeny Key Words: development, differentiation, embryo sac, ovule, tree peony lactiflora (Camp and Hubbard, 1962) , have been done Introduction in herb~ceous peonies, but there rs lack of studies on woody species or tree peonies. China is the primary Paeonia (Paeoniaceae) consists of three sections, differentiation center of Paeonia and the tree peonies two herbaceous and one woody ones, and rs very endemic to this country are especially signifrcant to attractive to horticulturists for two well-known academic subjects related to this genus (Pan, 1995) flowers, herbaceous and tree peomes, as well as This paper dealt with the development of ovule botanists for the argument m phylogeny and taxon- and embryo sac, particularly the ovule ontogenesis omy of this genus (family) (Pan, 1995). -
Inbreeding and Inbreeding Depression of Paeonia Decomposita (Paeoniaceae), a Threatened Endemic Plant to China Shi‑Quan Wang*
Wang Bot Stud (2019) 60:28 https://doi.org/10.1186/s40529-019-0276-8 ORIGINAL ARTICLE Open Access Inbreeding and inbreeding depression of Paeonia decomposita (Paeoniaceae), a threatened endemic plant to China Shi‑Quan Wang* Abstract Background: Small populations are predominantly vulnerable to inbreeding and inbreeding depression (ID). Owing to increased levels of inbreeding on individuals in small populations, ID could decrease the population growth rate, as well as its efective size, and exacerbate the extinction risk. Inbreeding depression remains a crucial area of research in conservation biology, ecology, and evolutionary biology. This study aims to elucidate the reproductive biology, inbreeding, and ID of Paeonia decomposita and to conserve, manage, and improve them better in the future. Results: Paeonia decomposita belongs to a xenogamous category and is partially self‑compatible; moreover, it requires pollinators for seed production. Lately, the occurrence of pollination and pollinator limitations has afected the seed set. Low seed set primarily correlated with an abnormality of meiosis in the pollen mother cell, moderate to low genetic diversity, drought and extreme weather, pollinator limitation, or carpel space limit. One of the primary reasons for endangered mechanism in P. decomposita is the low seed set under natural conditions. The cumulative value of ID was positive, and outcrossed progeny outperformed selfed progeny. Conclusions: Paeonia decomposita requires pollinators to ensure seed production either through autogamy, geito‑ nogamy, or allogamy. It is both allogamous and partially self‑compatible, as well as a successful outcrosser. Inbreeding occurs frequently and results in ID, which imposes a potential threat to the survival of populations. -
(12) United States Patent (10) Patent No.: US 7.534455 B2 Cheng Et Al
USOO7534455B2 (12) United States Patent (10) Patent No.: US 7.534455 B2 Cheng et al. (45) Date of Patent: *May 19, 2009 (54) HERBAL COMPOSITION PHY906 AND ITS (56) References Cited USE IN CHEMOTHERAPY U.S. PATENT DOCUMENTS (75) Inventors: Yung-Chi Cheng, Woodbridge, CT 4,618,495 A * 10/1986 Okuda et al. ................ 424,728 (US): Shwu-Huey Liu, Madison, CT 5,595,756 A * 1/1997 Bally et al. ................. 424/450 (US) 5,665,393 A * 9/1997 Chen et al. ........ ... 424/489 6,048,847 A * 4/2000 Ramadoss et al. ........... 514,169 (73) Assignee: Yale University, New Haven, CT (US) 6,630,176 B2 * 10/2003 Li et al. ...................... 424,728 (*) Notice: Subject to any disclaimer, the term of this 2003/0180395 A1 9, 2003 Bueter ........................ 424,725 patent is extended or adjusted under 35 U.S.C. 154(b) by 376 days. OTHER PUBLICATIONS This patent is Subject to a terminal dis Suzuki et al. Supressor Macrophages: A Role on the Growth of claimer. Transplanted Tumors and Regulation by an Extract of Licorice, Glycyrrhizin; Oncologia (Tokyo), 1987, 20(5), pp. 124-133; one (21) Appl. No.: 11/100,433 page Abstract from STN database only provided.* Raskin et al. Can an Apple a Day Keep the Doctor Away? Current (22) Filed: Apr. 7, 2005 Pharmaceutical Design, 2004, 10, pp. 3419-3429.* H.B. MacPhillamy: Plant Science Bulletin, Apr. 1963, vol. 9, Issue 2. (65) Prior Publication Data pp. 1-15.* US 2005/O196473 A1 Sep. 8, 2005 * cited by examiner Related U.S. Application Data Primary Examiner Patricia Leith (63) Continuation-in-part of application No. -
Nutrients, Fatty Acid Composition and Antioxidant Activity of the Flowers and Seed Oils in Wild Populations of Paeonia Ludlowii
Emirates Journal of Food and Agriculture. 2019. 31(3): 206-213 doi: 10.9755/ejfa.2019.v31.i3.1922 http://www.ejfa.me/ RESEARCH ARTICLE Nutrients, fatty acid composition and antioxidant activity of the flowers and seed oils in wild populations of Paeonia ludlowii Jie Li, Zai-Hua Wang* Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China ABSTRACT Wild Paeonia ludlowii is considered as a traditional ornamental plant, but its flowers and seed oils are edible with important economic values, and the variation of nutrients, fatty acid composition in wild populations is scarcely known. Flowers and seeds of P. ludlowii were collected from two wild populations for evaluating the nutrients in flowers, composition of fatty acids in seed oils and the antioxidant activity. The flowers contained high composition of proteins, carbohydrates, amino acids, total flavonoids, phenolic compounds and essential minerals. Seed oil yield reached up to 21.95% using supercritical CO2 fluid extraction, and it contained 14 fatty acids (up to 93.35 g/100 g seed oil), especially the unsaturated fatty acids (oleic acid, linoleic acid and α-linolenic acid) was up to 88.69% with low ω6/ω3 ratios of 0.58. The antioxidant capacity can be arranged in the order of trolox > flower extracts > seed oil according to the DPPH and ABTS free radical assay. Contents of nutrient in flowers and fatty acids in seed oils were significantly different between two wild populations due to the impact of different growing environments. These results indicate that flowers and seed oils ofP. -
Breeding System and Pollination Biology of Paeonia Delavayi (Peaoniaceae), an Endangered Plant in the Southwest of China
Pak. J. Bot ., 46(5): 1631-1642, 2014. BREEDING SYSTEM AND POLLINATION BIOLOGY OF PAEONIA DELAVAYI (PEAONIACEAE), AN ENDANGERED PLANT IN THE SOUTHWEST OF CHINA KUI LI 1,2,3 , BAOQIANG ZHENG 1,2,3 , YAN WANG 1,2,3 * AND LIN ZHOU 1,2,3 1Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China 2Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Beijing 100091, China 3State Key Laboratory of Tree Genetics and Breeding, Beijing 100091, China *Corresponding author’s e-mail: [email protected] Abstract Breeding system and pollination biology of Paeonia delavayi (Peaoniaceae) from Shangri-La, Yunnan Province, southwest of China were studied. Flowering phenologies and flower visitors were observed or collected from 2008 to 2011. The pollen viability, stigma receptivity and pollination efficiency of different visitors were detected and tested. The florescence lasted for 6- 9d in a single flower from mid-May to late June. A high percentage of flower damage promoted early anther dehiscence. Flowers started disseminating pollen at 1-2 d after flowering, and lasted for 5-6 d. Pollen viability could be preserved for more than 10 d at normal temperature. High seed rate from the stigma was observed at 1 d before flowering to 3d after flowering, and the dissemination hysteresis was defined as protogyny. The P/O ratios were 6,124 to 9,713:1, suggesting that the larger quantity of pollen to increased the seed setting rate. Three species of bees, eight species of beetles, seven species of syrphid flies, four species of ants, and three species of butterflies were observed on the flowers. -
2020 Plant List Index: Trees & Shrubs Pg
2020 Plant List Index: Trees & Shrubs pg. 2-7 Perennials pg. 7-13 Grasses pg. 14 Ferns pg. 14-15 Vines pg. 15 Hours: May 1 – June 30: Tues.- Sat. 10 am - 6 pm Sun.11 am - 5 pm 3351 State Route 37 West www.sciotogardens.com On Mondays by appointment Delaware, OH 43015 Phone/fax: 740-363-8264 Email: [email protected] Sustainable, earth-friendly growth and maintenance practices: Real Soil = Real Difference. All plants are container-grown in a blend of local soil and compost. Plants are grown outside year-round. They are always in step with the seasons. Minimal pruning ensures a well-rooted, healthy plant. Use degradableRoot Pouch andcontainers. recycled containers to reduce waste. Use of controlled-release fertilizers minimizes leaching into the environment. Our primary focus is on native plants. However, non-invasive exotics are an equally important part of the choices we offer you. There is great creative opportunity using natives in combination with exotics. Adding more native plants into our landscapes provides food and habitat for wildlife and connections to larger natural areas. AdditionalAdditional species species may may be be available. available. Email Email oror call for currentcurrent availability, availability, sizes, sizes, and and prices. prices. «BOT_NAME» «BOT_NAME»Wetland Indicator Status—This is listed in parentheses after the common name when a status is known. All species «COM_NAM» «COM_NAM» «DESCRIP»have not been evaluated. The indicator code is helpful in evaluating«DESCRIP» the appropriate habitat for a -
The Tree Peonies
TI-IE NA.TIONA.L ~GA.rz J INE THE AMERICAN HORTICULTURAL SOCIETY, INC. 1600 Bladensburg Road, Northeast Washington 2, D. C. OFFICERS Presidellt: Dr. John L. Creech, Glenn Dale, :Ma ryland First Vice-Prcsidellt: Dr. Ezra ]. K raus, Corvalli s, Oregon Secolld Vice-Presiden t: I1{rs. Robert \"Toods Bli ss, vVashington, D. C. Secretary: Dr. Francis de Vos, Washington, D. C. Treasllrer: Miss Olive E. Vveatherell, Olean, New York Editor: Mr. B. Y. Morrison, Pass Christian, Mississipp i J1[ allagillg Editor: M r. James R. Harlow, Takoma Park, Maryland Editorial S tall : Miss May M. Blaine, Washington, D. C. Mr. Bernard T. Bridgers, Washington, D. C. Art Editor: Mr. Charl es C. Dickson, Kensington, Maryland DIRECTORS TerlJl s E xpirillg 1955 TerlJls E.,pir'ing 1956 Mrs. 'Mortim er J. Fox. Mount K isco, New Mr. Stuart Armstrong, Silver Spring, IVIa ry- Yo rk land lv[r. Frederic P. Lee, Bethesda, Maryland Dr. Fred O. Coe, Bethesda, Maryland Dr. Brian O. Mulligan, Seattl e, vVashington Mrs. Walter Douglas, Chauncey, New York Dr. F reeman A. vVeiss, Washington, D. C. Mrs. ]. Norman Henry, Gladwy ne, Penn- Dr. Donald vVyman, Jamaica P lain , Massa- sy lvania chusetts M rs. Arthur Hoyt Scott, Media, Pennsy l vallla HONORARY VICE-PRESIDENTS M r. James B. Craig Mr. George W. Peyton American Forestry Association American Peony Society 919 Seventee nth Street, Northwest Box No.1 \>\Tash in gton 6, D. C. Rapid an, V irgi ni a 'M r. Harry \ >\T . Dengler Mrs. Hermann G. P lace Holl y Society of America The Garden Club of America Maryland Extension Service 45 East 62nd Street Co ll ege Park, Maryland New York 21, New York Mr. -
2020 Spring Distribution
2020 Spring Distribution The staff, Board, and volunteers of the Rhododendron Species Botanical Garden (RSBG) are pleased to present our latest selection of Rhododendron species and companion plants. We provide the finest and largest selection of documented and verified as true to name clones of Rhododendron species in North America. We also offer a large selection of species grown from seed, the majority of these from wild populations. Seedlings provide an exciting opportunity to acquire taxa new to cultivation. They also provide the collector with the opportunity to grow those desirable species not readily produced through asexual propagation. Our ever-expanding collection of non-rhododendrons or “companion plants” provides the opportunity to acquire an outstanding range of rare and hard to find treasures selected from around the world. Your purchases directly fund the mission of the RSF. In addition to your own selections, don’t forget your neighbors, relatives, and friends - our plants make great and unusual gifts. RSF plants also make great door prizes and auction items at American Rhododendron Society and other garden club meetings. We hope you enjoy the catalog and are happy with the plants you receive. Thank you for your support! Steve Hootman Executive Director & Curator HOW TO ORDER PLANTS: Mail Orders: Please mail your order to RSF, P. O. Box 3798, Federal Way, Washington 98063-3798 USA Fax Orders: You may also fax your order to 253-838-4686 E-mail Orders: You may submit your order via [email protected] but please do not e-mail your credit card information. Call 253-838-4646 to submit your credit card information. -
Transcriptomic Analysis Reveals Transcription Factors Related to Leaf Anthocyanin Biosynthesis in Paeonia Qiui
molecules Article Transcriptomic Analysis Reveals Transcription Factors Related to Leaf Anthocyanin Biosynthesis in Paeonia qiui Jianrang Luo 1,2 ID , Jingjing Duan 1,2, Dan Huo 1,2, Qianqian Shi 1,2, Lixin Niu 1,2,* and Yanlong Zhang 1,2,* 1 College of Landscape Architecture and Art, Northwest A&F University, Yangling 712100, Shaanxi, China; [email protected] (J.L.); [email protected] (J.D.); [email protected] (D.H.); [email protected] (Q.S.) 2 National Engineering Research Center for Oil Peony, Yangling 712100, Shaanxi, China * Correspondence: [email protected] (L.N.); [email protected] (Y.Z.); Tel.: +86-029-8708-2878 (L.N.); +86-13892816263 (Y.Z.) Received: 4 November 2017; Accepted: 4 December 2017; Published: 8 December 2017 Abstract: Paeonia qiui is a wild species of tree peony. P. qiui has good ornamental value owing to its leaf color change in spring. So far, the molecular mechanism of leaf color change in P. qiui is unclear. This study analyzes the anthocyanin level and transcriptome of two different color stages in P. qiui leaf. The purplish-red leaf stage is rich in anthocyanin, while the green leaf has very low levels of anthocyanin. Transcriptome analysis reveals that 6678 differentially-expressed genes (DEGs) are up-regulated, and 14,667 are down-regulated in the purplish-red leaf. Among these DEGs, 40 MYB (v-myb avian myeloblastosis viral oncogene homolog) genes, 40 bHLH (MYC-like basic helix–loop–helix) genes, and 15 WD40 (WD-repeat protein) genes were found. Based on phylogenetic and alignment analysis with the deduced amino acid sequences with known transcription factors, Unigene0024459 (MYB1) is likely the R2R3-MYB that promotes anthocyanin biosynthesis; Unigene0050761 (MYB2) is likely the R2R3-MYB that represses anthocyanin biosynthesis; Unigene0005081 (bHLH1) and Unigene0006146 (WD40-1) are likely the bHLH and WD40 that participate in regulating anthocyanin biosynthesis. -
The Woodies-Part I
The Woodies-Part I Woody Paeonia Species -Nate Bremer- ____________________________________________________ This article and others were a part of a series about woody peonies which recently appeared in the American Peony Society’s Bulletin. This article does not include images that were printed with the edited feature articles. For complete articles with images, please become a member of the American Peony Society for published version access. My aim was to present a series of articles focusing on the major groups of woodies in cultivation that may help others grow this uniquely beautiful group of plants. After growing this unusual group of plants intensely for more than 15 years, I’ve learned much that may be of interest to others wishing to incorporate these wonderful plants into their collections. For the most part, information will be practical, rather than highly scientific. We grow all of our plants outside, without protection, in our USDA Zone 4 gardens and propagation fields. Thus the observations and information that follows may or may not be entirely applicable to all growing situations, but should serve as a good baseline for those that grow or would like to grow ‘woodies’. The species, or plants that occur in the wild are rare in their natural habitats and seldom seen in American gardens for a number of reasons. All originate from east Asian mountainous regions (mostly China) and have somewhat more demanding requirements to grow successfully. Some are not able to withstand our cold winters and others struggle with the excess water in our region at various times throughout the year.