Optical Astronomy from Antarctica

Total Page:16

File Type:pdf, Size:1020Kb

Optical Astronomy from Antarctica PLEAS£ TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Project Report Sheet Surname or Fam ily name: Dempsey Fi rst name : Jessica Other name/s: Tui Abbreviation for degree as given in the University ca len dar : PhD School: Physics Faculty: Science Title : The view from the ice at the bottom of the world: Optical Astronomy from Antarctica Abstract 350 words maximum: (PLEAS£ TYPE) The high Antarctic plateau may offer the best site on earth for optical astronomy. This thesis work includes the construction of an infrared cloud-observing instrument, COBBER, which utilises a thermopile detector optimised at lOf.Lm. COBBER was installed at Dome C in January 2003. In 71 observing days, only four days of cloud were measured. A detailed study of the effect of auroral emission on optical observations is conducted. Analysis of auroral measurements at South Pole show that in an average winter season, the B band sky brightness is below 21.9 mag/arcsec2 for 50% of the observing time. In V band, the median sky brightness contribution is 20.8 mag/arcsec2 in an average winter. Calculations are used to show that at Dome C, the contribution to sky background in Band Vis up to 3.1 magnitudes less than at South Pole. The first optical stellar spectra observed from the high Antarctic plateau were taken at South Pole station with the Antarctic Fibre Optic Spectrometer (AFOS). The AFOS was installed on a dual­ telescope alt-az mount in January of 2003. A thorough instrument analysis revealed tower sinkage and telescope flexure problems that were overcome with more frequent pointing runs. Two years of AFOS observations are described, including selection of sources, design of observing scripts and the creation of a data reduction method for the data. AFOS data was analysed to determine if the H20 atmospheric absorption bands in the spectra could be used to detect daily variations in the precipitable water vapour (PWV) content of the atmosphere. The PWV values obtained by comparing the AFOS data with synthetic spectra created with MODTRAN were compared to similar measurements taken at South Pole with a 350flm radiometer and balloon-borne radiosondes. The PWV values from these instruments showed good agreement with the AFOS results. Observations of the moon were used to study the earthshine spectrum to detect variations in the earth albedo over a 24-hour period. The earth albedo was successfully detected though poor weather conditions prevented study of any long-term trends in the data. Declaration relating to disposition of project report/thesis I am fully aware of the policy of the University relat ing to the retention and use of higher degree project reports and theses, namely that the University retains the copies subm itted for exam ination and is free to all ow the m to be consulted or borrowed . S u ~ect to the provisions of the Copyright Act 1968. the University may issue a project report or thesis in whole or in part, in photostat or microfilm or other copying medium . I also authorise the publication by University Microfilms of a 350 word abstract in Dissertatian Abstracts International (applicable to doctorates only) . .... ............ ... ..... .. ... ... ' "'" .!2/!.1/9!1. ...... ............... Date The University recogn ises that there may be exceptional circumsta,,._.,, , "'-tu " ,, ~ ,.,,"''""u'', uo -.ul-'~ ,,~ uo onditions on use . Requests for restriction for a period of up to 2 years must be made in w riting to the Registrar. Requests for a longer period of restr iction may be considered in exceptional circumstances if accompanied by a letter of support fro m the Supervisor or Head of School. Such requests must be submitted with the thesis/project report . FOR OFFICE US£ ONLY Date of completion of requirements for Award: Lf( ( /(JS Reaistrar and Deoutv Pr incioal THIS SHEET IS TO BE GLUED TO THE INSIDE FRONT COVER OF THE THESIS The view from the ice at the bottom of the world: Optical Astronomy from Antarctica by Jessica Tui Dempsey A thesis submitted in satisfaction of the requirements for the degree of Doctor of Philosophy in the Faculty of Science. THE UNIVERSITY OF NEW SOUTH WALES_ I~ SYDNEY· AUSTRALIA UNSW 1 1 FEB 2005 LIBRARY For Rodney (1968-2000) Not Without Peril. Statement of Originality I hereby declare that this submission is my own work and to the best of my knowledge it contains no materials previously published or written by another person, nor material which to a substantial extent has been accepted for the award of any other degree or diploma at UNSW or any other educational institution, except where due acknowledgement is made in the thesis. Any contribution made to the research by others, with whom I have worked at UNSW or elsewhere, is explicitly acknowledged in the thesis. I also declare that the intellectual content of this thesis is the product of my own work, except to the extent that assistance from others in the project's design and conception or in style, presentation and linguistic expression is acknowledged. (Signed). £ Abstract The high Antarctic plateau has shown exceptional potential for infrared and sub­ millimeter astronomy. Though ground level seeing at South Pole is comparatively poor, new measurements at Dome C have shown the best seeing of any site in the world. As the science case for the optical potential of Dome C strengthens, it is now necessary to quantify the properties of the Antarctic atmosphere for optical astron­ omy, and to demonstrate that astronomical telescopes can be built, maintained and successfully operated in Antarctic conditions. This thesis work includes the construction of an infrared cloud-observing instru­ ment, COBBER (Cloud OBserver), which directs radiation from the sky through a hemispherical ZnSe lens onto a thermopile detector optimised at 10.um. COBBER was installed at Dome C in January of 2003. In 71 observing days, only four days of cloud were recorded. A detailed study of the effect of auroral emission on optical observations has been conducted. Analysis of auroral measurements at South Pole show that in an aver­ age winter season, the B band sky brightness is below 21.9 magnitudes per square arcsecond for 50% of the observing time. In V band, the median sky brightness contribution is 20.8 magnitudes per square arcse,eond in an average winter. Calcu­ lations are used to show that at Dome C, the contribution to sky background in B and Vis up to 3.1 magnitudes less than at South Pole. The use of notch filters to reduce the contribution of the strongest emission lines and bands is also calculated. The science that optical astronomy could potentially achieve with an ELT at Dome C is discussed with reference to the effect auroral emission would have on particular astronomical observations. The first optical stellar spectra observed from the high Antarctic plateau were taken at South Pole station with the Antarctic Fibre Optic Spectrometer (AFOS). The AFOS was installed at South Pole station on a dual-telescope alt-az mount in Abstract ii January of 2003. A thorough instrument study revealed tower sinkage and telescope flexure problems that were overcome with more frequent pointing runs. An analysis of wavelength-dependent attenuation observed in some of the stellar spectra is also presented. Two years of AFOS observations are described, including the selection of sources, the design of observing scripts and the creation of a data reduction method for the stellar spectra collected with the AFOS. AFOS data were analysed to determine if the H20 atmospheric absorption bands in the spectra could be used to detect daily variations in the precipitable water vapour (PWV) content of the atmosphere. The AFOS data was compared with spectra created using the MODTRAN atmospheric modelling program. The resulting PWV values from these daily fits were compared with measurements obtained by a 350J.tm radiometer, and daily balloon-borne ra­ diosondes, at South Pole. The PWV values measured with both instruments showed excellent agreement with the AFOS results, with an accuracy of 10%. In late 2003, the AFOS collected several 24 hour-long observations of the dark side of the moon. These observations were used to study the earthshine spectrum in an effort to detect variations in the earth albedo over a 24 hour period. These obser­ vations are of interest in the search for life on extra-solar planets. The earth albedo was successfully detected in the earthshine measurements. Poor weather conditions at South Pole affected a large percentage of the observations and prevented study of any long-term trends in the earth albedo. Contents Abstract ...... 1 Acknowledgments . viii 1 Introduction 1 1-1 The Antarctic Continent 2 1-2 Site Characterisation . 8 1-2.1 Automated Weather Stations 9 1-2.2 AASTO ....... 10 1-2.3 Optical Site Testing . 14 1-3 DomeC ...... 18 1-3.1 Cloud cover 18 1-3.2 AASTINO. 20 1-4 AFOS ..... 24 1-4.1 History. 26 1-5 Thesis Goals . 27 2 Auroral contribution to optical sky brightness 29 2-1 Introduction . 29 2-1.1 Auroral line intensities and spatial extent . 31 2-1.2 Previous Studies 34 2-2 AFOS Measurements . 36 2-2.1 2000 Lunar Eclipse, South Pole 36 2-3 Auroral Data from South Pole . 37 2-4 Auroral Intensity at Dome C and Dome A 40 Contents iv 2-5 Sky brightness in standard photometric bands 43 2-5.1 B band. 44 2-5.2 Vband 46 2-5.3 R band. 48 2-6 Discussion . 49 2-7 Conclusions 53 3 Cloud cover at Dome C 60 3-1 COBBER ....... 60 3-1.1 COBBER design 61 3-1.2 Testing.
Recommended publications
  • CENTAURI II Benutzerhandbuch
    CENTAURI II Benutzerhandbuch SW-Version ab 3.1.0.73 MAYAH, CENTAURI, FLASHCAST sind eingetragene Warenzeichen. Alle anderen verwendeten Warenzeichen werden hiermit anerkannt. CENTAURI II Benutzerhandbuch ab SW 3.1.0.73 Bestell-Nr. CIIUM001 Stand 11/2005 (c) Copyright by MAYAH Communications GmbH Die Vervielfältigung des vorliegenden Handbuches, sowie der darin besprochenen Dokumentationen aus dem Internet, auch nur auszugsweise, ist nur mit ausdrücklicher schriftlicher Genehmigung der MAYAH Communications GmbH erlaubt. 1 Einführung ........................................................................................................... 1 1.1 Vorwort......................................................................................................... 1 1.2 Einbau / Installation ...................................................................................... 2 1.3 Lieferumfang ................................................................................................ 2 1.4 Umgebungs- / Betriebsbedingung................................................................ 2 1.5 Anschlüsse................................................................................................... 3 2 Verbindungsaufbau ............................................................................................. 4 2.1 ISDN Verbindungen mit dem Centauri II ...................................................... 4 2.1.1 FlashCast Technologie und Audiocodec Kategorien............................. 4 2.1.2 Wie bekomme ich eine synchronisierte Verbindung
    [Show full text]
  • Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects
    Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects NASA Grant No. NNX17AE81G First Year Report Prepared by: Marc G. Millis, Jeff Greason, Rhonda Stevenson Tau Zero Foundation Business Office: 1053 East Third Avenue Broomfield, CO 80020 Prepared for: NASA Headquarters, Space Technology Mission Directorate (STMD) and NASA Innovative Advanced Concepts (NIAC) Washington, DC 20546 June 2018 Millis 2018 Grant NNX17AE81G_for_CR.docx pg 1 of 69 ABSTRACT Progress toward developing an evaluation process for interstellar propulsion and power options is described. The goal is to contrast the challenges, mission choices, and emerging prospects for propulsion and power, to identify which prospects might be more advantageous and under what circumstances, and to identify which technology details might have greater impacts. Unlike prior studies, the infrastructure expenses and prospects for breakthrough advances are included. This first year's focus is on determining the key questions to enable the analysis. Accordingly, a work breakdown structure to organize the information and associated list of variables is offered. A flow diagram of the basic analysis is presented, as well as more detailed methods to convert the performance measures of disparate propulsion methods into common measures of energy, mass, time, and power. Other methods for equitable comparisons include evaluating the prospects under the same assumptions of payload, mission trajectory, and available energy. Missions are divided into three eras of readiness (precursors, era of infrastructure, and era of breakthroughs) as a first step before proceeding to include comparisons of technology advancement rates. Final evaluation "figures of merit" are offered. Preliminary lists of mission architectures and propulsion prospects are provided.
    [Show full text]
  • The Search for Another Earth – Part II
    GENERAL ARTICLE The Search for Another Earth – Part II Sujan Sengupta In the first part, we discussed the various methods for the detection of planets outside the solar system known as the exoplanets. In this part, we will describe various kinds of exoplanets. The habitable planets discovered so far and the present status of our search for a habitable planet similar to the Earth will also be discussed. Sujan Sengupta is an 1. Introduction astrophysicist at Indian Institute of Astrophysics, Bengaluru. He works on the The first confirmed exoplanet around a solar type of star, 51 Pe- detection, characterisation 1 gasi b was discovered in 1995 using the radial velocity method. and habitability of extra-solar Subsequently, a large number of exoplanets were discovered by planets and extra-solar this method, and a few were discovered using transit and gravi- moons. tational lensing methods. Ground-based telescopes were used for these discoveries and the search region was confined to about 300 light-years from the Earth. On December 27, 2006, the European Space Agency launched 1The movement of the star a space telescope called CoRoT (Convection, Rotation and plan- towards the observer due to etary Transits) and on March 6, 2009, NASA launched another the gravitational effect of the space telescope called Kepler2 to hunt for exoplanets. Conse- planet. See Sujan Sengupta, The Search for Another Earth, quently, the search extended to about 3000 light-years. Both Resonance, Vol.21, No.7, these telescopes used the transit method in order to detect exo- pp.641–652, 2016. planets. Although Kepler’s field of view was only 105 square de- grees along the Cygnus arm of the Milky Way Galaxy, it detected a whooping 2326 exoplanets out of a total 3493 discovered till 2Kepler Telescope has a pri- date.
    [Show full text]
  • Mem170-Bm.Pdf by Guest on 30 September 2021 452 Index
    Index [Italic page numbers indicate major references] acacamite, 437 anticlines, 21, 385 Bathyholcus sp., 135, 136, 137, 150 Acanthagnostus, 108 anticlinorium, 33, 377, 385, 396 Bathyuriscus, 113 accretion, 371 Antispira, 201 manchuriensis, 110 Acmarhachis sp., 133 apatite, 74, 298 Battus sp., 105, 107 Acrotretidae, 252 Aphelaspidinae, 140, 142 Bavaria, 72 actinolite, 13, 298, 299, 335, 336, 339, aphelaspidinids, 130 Beacon Supergroup, 33 346 Aphelaspis sp., 128, 130, 131, 132, Beardmore Glacier, 429 Actinopteris bengalensis, 288 140, 141, 142, 144, 145, 155, 168 beaverite, 440 Africa, southern, 52, 63, 72, 77, 402 Apoptopegma, 206, 207 bedrock, 4, 58, 296, 412, 416, 422, aggregates, 12, 342 craddocki sp., 185, 186, 206, 207, 429, 434, 440 Agnostidae, 104, 105, 109, 116, 122, 208, 210, 244 Bellingsella, 255 131, 132, 133 Appalachian Basin, 71 Bergeronites sp., 112 Angostinae, 130 Appalachian Province, 276 Bicyathus, 281 Agnostoidea, 105 Appalachian metamorphic belt, 343 Billingsella sp., 255, 256, 264 Agnostus, 131 aragonite, 438 Billingsia saratogensis, 201 cyclopyge, 133 Arberiella, 288 Bingham Peak, 86, 129, 185, 190, 194, e genus, 105 Archaeocyathidae, 5, 14, 86, 89, 104, 195, 204, 205, 244 nudus marginata, 105 128, 249, 257, 281 biogeography, 275 parvifrons, 106 Archaeocyathinae, 258 biomicrite, 13, 18 pisiformis, 131, 141 Archaeocyathus, 279, 280, 281, 283 biosparite, 18, 86 pisiformis obesus, 131 Archaeogastropoda, 199 biostratigraphy, 130, 275 punctuosus, 107 Archaeopharetra sp., 281 biotite, 14, 74, 300, 347 repandus, 108 Archaeophialia,
    [Show full text]
  • 2010-2011 Science Planning Summaries
    Find information about current Link to project web sites and USAP projects using the find information about the principal investigator, event research and people involved. number station, and other indexes. Science Program Indexes: 2010-2011 Find information about current USAP projects using the Project Web Sites principal investigator, event number station, and other Principal Investigator Index indexes. USAP Program Indexes Aeronomy and Astrophysics Dr. Vladimir Papitashvili, program manager Organisms and Ecosystems Find more information about USAP projects by viewing Dr. Roberta Marinelli, program manager individual project web sites. Earth Sciences Dr. Alexandra Isern, program manager Glaciology 2010-2011 Field Season Dr. Julie Palais, program manager Other Information: Ocean and Atmospheric Sciences Dr. Peter Milne, program manager Home Page Artists and Writers Peter West, program manager Station Schedules International Polar Year (IPY) Education and Outreach Air Operations Renee D. Crain, program manager Valentine Kass, program manager Staffed Field Camps Sandra Welch, program manager Event Numbering System Integrated System Science Dr. Lisa Clough, program manager Institution Index USAP Station and Ship Indexes Amundsen-Scott South Pole Station McMurdo Station Palmer Station RVIB Nathaniel B. Palmer ARSV Laurence M. Gould Special Projects ODEN Icebreaker Event Number Index Technical Event Index Deploying Team Members Index Project Web Sites: 2010-2011 Find information about current USAP projects using the Principal Investigator Event No. Project Title principal investigator, event number station, and other indexes. Ainley, David B-031-M Adelie Penguin response to climate change at the individual, colony and metapopulation levels Amsler, Charles B-022-P Collaborative Research: The Find more information about chemical ecology of shallow- USAP projects by viewing individual project web sites.
    [Show full text]
  • On the Application of Stark Broadening Data Determined with a Semiclassical Perturbation Approach
    Atoms 2014, 2, 357-377; doi:10.3390/atoms2030357 OPEN ACCESS atoms ISSN 2218-2004 www.mdpi.com/journal/atoms Article On the Application of Stark Broadening Data Determined with a Semiclassical Perturbation Approach Milan S. Dimitrijević 1,2,* and Sylvie Sahal-Bréchot 2 1 Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia 2 Laboratoire d'Etude du Rayonnement et de la Matière en Astrophysique, Observatoire de Paris, UMR CNRS 8112, UPMC, 5 Place Jules Janssen, 92195 Meudon Cedex, France; E-Mail: [email protected] (S.S.-B.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +381-64-297-8021; Fax: +381-11-2419-553. Received: 5 May 2014; in revised form: 20 June 2014 / Accepted: 16 July 2014 / Published: 7 August 2014 Abstract: The significance of Stark broadening data for problems in astrophysics, physics, as well as for technological plasmas is discussed and applications of Stark broadening parameters calculated using a semiclassical perturbation method are analyzed. Keywords: Stark broadening; isolated lines; impact approximation 1. Introduction Stark broadening parameters of neutral atom and ion lines are of interest for a number of problems in astrophysical, laboratory, laser produced, fusion or technological plasma investigations. Especially the development of space astronomy has enabled the collection of a huge amount of spectroscopic data of all kinds of celestial objects within various spectral ranges. Consequently, the atomic data for trace elements, which had not been
    [Show full text]
  • November 1960 I Believe That the Major Exports of Antarctica Are Scientific Data
    JIET L S. Antarctic Projects OfficerI November 1960 I believe that the major exports of Antarctica are scientific data. Certainly that is true now and I think it will be true for a long time and I think these data may turn out to be of vastly, more value to all mankind than all of the mineral riches of the continent and the life of the seas that surround it. The Polar Regions in Their Relation to Human Affairs, by Laurence M. Gould (Bow- man Memorial Lectures, Series Four), The American Geographiql Society, New York, 1958 page 29.. I ITOJ TJM II IU1viBEt 3 IToveber 1960 CONTENTS 1 The First Month 1 Air Operations 2 Ship Oper&tions 3 Project MAGNET NAF McMurdo Sounds October Weather 4 4 DEEP FREEZE 62 Volunteers Solicited A DAY AT TEE SOUTH POLE STATION, by Paul A Siple 5 in Antarctica 8 International Cooperation 8 Foreign Observer Exchange Program 9 Scientific Exchange Program NavyPrograrn 9 Argentine Navy-U.S. Station Cooperation 9 10 Other Programs 10 Worlds Largest Aircraft in Antarctic Operation 11 ANTARCTICA, by Emil Schulthess The Antarctic Treaty 11 11 USNS PRIVATE FRANIC 3. FETRARCA (TAK-250) 1961 Scientific Leaders 12 NAAF Little Rockford Reopened 13 13 First Flight to Hallett Station 14 Simmer Operations Begin at South Pole First DEEP FREEZE 61 Airdrop 14 15 DEEP FREEZE 61 Cargo Antarctic Real Estate 15 Antarctic Chronology,. 1960-61 16 The 'AuuOiA vises to t):iank Di * ?a]. A, Siple for his artj.ole Wh.4b begins n page 5 Matera1 for other sections of bhis issue was drawn from radio messages and fran information provided bY the DepBr1nozrt of State the Nat0na1 Academy , of Soienoes the NatgnA1 Science Fouxidation the Office 6f NAval Re- search, and the U, 3, Navy Hydziograpbio Offioe, Tiis, issue of tie 3n oovers: i16, aótivitiès o events 11 Novóiber The of the Uxitéd States.
    [Show full text]
  • May 2021 ISSN 2397
    PRINCIPIUM The Initiative and Institute for Interstellar Studies R Issue 33 | May 2021 O F E V I T A I T I N ISSN 2397-9127 I S T U D I E S www.i4is.org Scientia ad sidera Knowledge to the stars ■ Practicalities and Difficulties of a Mission to 'Oumuamua ■ The Self Replicating Factory ■ Project Pinpoint: Pushing the Limits of Miniaturization ■ Book Reviews - ■ Extraterrestrial Loeb ■ The Generation Starship In Science Fiction Caroti ■News Features - ■ The 10 parsec sample in the Gaia era ■ The 2021 ISU Masters Elective and Masters Projects ■ The i4is Talk Series - 2020 and 2021 ■ i4is wins major contract in Interstellar Studies ■ Nineteen pages of Interstellar News Principium | Issue 33 | May 2021 1 programme, a revised 2I/Borisov mission paper and ideas for extreme metamaterial solar sails, near-term Editorial self-replicating probes and photonic phase sensing and control for laser propulsion. We report the i4is Welcome to issue 33 of Principium, the quarterly chief exec briefing the German Federal Ministry of magazine of i4is, the Initiative and Institute for the Environment and round up with summaries of a Interstellar Studies. Our lead feature this time is bumper set of recent interstellar papers in the Journal Practicalities and Difficulties of a Mission to of the British Interplanetary Society (JBIS). 1I/'Oumuamua, by Adam Hibberd. Oumuamua remains a mystery and Harvard astronomer sticks The regular Members Page asks members to help to his ET theory in Extraterrestrial, reviewed with with outreach and schools contact, tells of our 2020 some scepticism by Patrick Mahon in this issue.
    [Show full text]
  • Astrobiology Math
    National Aeronautics andSpace Administration Aeronautics National Astrobiology Math This collection of activities is based on a weekly series of space science problems intended for students looking for additional challenges in the math and physical science curriculum in grades 6 through 12. The problems were created to be authentic glimpses of modern science and engineering issues, often involving actual research data. The problems were designed to be one-pagers with a Teacher’s Guide and Answer Key as a second page. This compact form was deemed very popular by participating teachers. Astrobiology Math Mathematical Problems Featuring Astrobiology Applications Dr. Sten Odenwald NASA / ADNET Corp. [email protected] Astrobiology Math i http://spacemath.gsfc.nasa.gov Acknowledgments: We would like to thank Ms. Daniella Scalice for her boundless enthusiasm in the review and editing of this resource. Ms. Scalice is the Education and Public Outreach Coordinator for the NASA Astrobiology Institute (NAI) at the Ames Research Center in Moffett Field, California. We would also like to thank the team of educators and scientists at NAI who graciously read through the first draft of this book and made numerous suggestions for improving it and making it more generally useful to the astrobiology education community: Dr. Harold Geller (George Mason University), Dr. James Kratzer (Georgia Institute of Technology; Doyle Laboratory) and Ms. Suzi Taylor (Montana State University), For more weekly classroom activities about astronomy and space visit the Space Math@ NASA website, http://spacemath.gsfc.nasa.gov Image Credits: Front Cover: Collage created by Julie Fletcher (NAI), molecule image created by Jenny Mottar, NASA HQ.
    [Show full text]
  • Instruction Manual
    iOptron® GEM28 German Equatorial Mount Instruction Manual Product GEM28 and GEM28EC Read the included Quick Setup Guide (QSG) BEFORE taking the mount out of the case! This product is a precision instrument and uses a magnetic gear meshing mechanism. Please read the included QSG before assembling the mount. Please read the entire Instruction Manual before operating the mount. You must hold the mount firmly when disengaging or adjusting the gear switches. Otherwise personal injury and/or equipment damage may occur. Any worm system damage due to improper gear meshing/slippage will not be covered by iOptron’s limited warranty. If you have any questions please contact us at [email protected] WARNING! NEVER USE A TELESCOPE TO LOOK AT THE SUN WITHOUT A PROPER FILTER! Looking at or near the Sun will cause instant and irreversible damage to your eye. Children should always have adult supervision while observing. 2 Table of Content Table of Content ................................................................................................................................................. 3 1. GEM28 Overview .......................................................................................................................................... 5 2. GEM28 Terms ................................................................................................................................................ 6 2.1. Parts List .................................................................................................................................................
    [Show full text]
  • Mars Culture Lore 1 the Martian Character
    Mars Culture Lore Mars in the late 2250s and early 2260s has a population estimated at anywhere from 10 million to 15 million, making it the most populous planet in the Solar System after Earth and one of the most populous of all human worlds. It has been settled for almost a century and there are several fourth-generation Martians who can trace their ancestries back to John Carter's crew or even Carter himself. 1 The Martian Character The people on Mars are highly varied and there are few if any dominant `Marzie' traits. There is no well-defined Martian accent, for example, or broad stereotypical behaviour. The domes of Mars include Christians Jews, Muslims, Foundationists, atheists and others in roughly the same proportions as Earth, though there are a number of growing doctrinal differences. There are no unusual skewings in Martian sexual orientation or preferred practices, although families tend to have more children (despite the cramped conditions) and there is a slight but statistically meaningful reduction in the rate of divorce. In general, Martians tend to be more tolerant of private behaviour and less tolerant of public expressions of it. The cramped domes, tight tube trains, smallish public facilities and few open spaces mean that it is difficult to escape rude behaviour on the parts of others, from excessive body odor to second-hand smoke to loud music. What happens behind closed doors is considered to be nobody's business but in public Martians expect their neighbours to reduce the impact of their actions on each other. The general closeness of Martian life means that personal space is at a premium and that close contact is simply a part of day-to-day life.
    [Show full text]
  • Centauri User Manual 1
    CentauriCentauri High End Laser Power/Energy Meter User Manual Centauri Ophir Optronics Solutions Ltd. Table of Contents 1 Introduction ................................................................................................................... 5 1.1 This Document ............................................................................................................... 5 1.2 Related Documentation ................................................................................................ 5 1.3 Support .......................................................................................................................... 5 2 Quick Reference ............................................................................................................. 6 2.1 Getting Started .............................................................................................................. 6 2.2 Thermal Sensors ............................................................................................................ 7 2.2.1 Using Centauri with Thermal Sensors ................................................................ 7 2.2.2 Using Centauri to Measure Laser Power ........................................................... 7 2.2.3 Using Centauri to Measure Single Shot Energy ................................................. 7 2.3 Photodiode Sensors ....................................................................................................... 8 2.3.1 Using Centauri with Photodiode Sensors .........................................................
    [Show full text]