Centauri User Manual 1

Total Page:16

File Type:pdf, Size:1020Kb

Centauri User Manual 1 CentauriCentauri High End Laser Power/Energy Meter User Manual Centauri Ophir Optronics Solutions Ltd. Table of Contents 1 Introduction ................................................................................................................... 5 1.1 This Document ............................................................................................................... 5 1.2 Related Documentation ................................................................................................ 5 1.3 Support .......................................................................................................................... 5 2 Quick Reference ............................................................................................................. 6 2.1 Getting Started .............................................................................................................. 6 2.2 Thermal Sensors ............................................................................................................ 7 2.2.1 Using Centauri with Thermal Sensors ................................................................ 7 2.2.2 Using Centauri to Measure Laser Power ........................................................... 7 2.2.3 Using Centauri to Measure Single Shot Energy ................................................. 7 2.3 Photodiode Sensors ....................................................................................................... 8 2.3.1 Using Centauri with Photodiode Sensors .......................................................... 8 2.3.2 Setting the Measurement Parameters .............................................................. 8 2.3.3 Measuring Average Power or Exposure ............................................................ 8 2.3.5 Measuring with Low Frequency Power ............................................................. 9 2.4 Pyroelectric or Photodiode Energy Sensors .................................................................. 9 2.4.1 Using Centauri with Energy Sensors .................................................................. 9 2.4.2 Zeroing the Meter with the Sensor ................................................................... 9 2.4.3 Setting the Measurement Parameters .............................................................. 9 2.4.4 Measuring Energy, Average Power, or Exposure ............................................ 10 2.5 Graphical Displays ....................................................................................................... 11 2.6 Functions ..................................................................................................................... 13 2.7 Logging Measurement Data ........................................................................................ 13 3 Using the Centauri Meter ............................................................................................. 14 3.1 Centauri Meter ............................................................................................................ 14 3.2 Centauri Hardware Components and Interfaces ......................................................... 15 3.2.1 Sensor Input ..................................................................................................... 15 3.2.2 On-Off Switch................................................................................................... 16 3.2.3 Centauri Touchscreen User Interface .............................................................. 18 3.2.4 Charger Input ................................................................................................... 18 3.2.5 Analog Output ................................................................................................. 19 3.2.6 RS232 ............................................................................................................... 21 3.2.7 TTL Output ....................................................................................................... 21 3.2.8 External Trigger ................................................................................................ 23 3.2.9 USB ................................................................................................................... 27 3.2.10 OTG USB ........................................................................................................... 27 3.2.11 USB Flash Drive ................................................................................................ 28 3.2.12 WiFi Antenna Socket ........................................................................................ 28 3.2.13 Ethernet Socket ............................................................................................... 28 3.2.14 Loudspeaker .................................................................................................... 28 3.2.15 Field Upgrade of the Centauri Firmware ......................................................... 29 3.2.16 Calibration Reminders ..................................................................................... 29 3.3 Zero Adjustment .......................................................................................................... 30 3.4 Offset ........................................................................................................................... 31 Centauri User Manual 1 3.4.1 For Thermal and Photodiode Sensors Measuring Power ................................ 31 3.4.2 For Photodiode Sensors Measuring Exposure ................................................. 31 3.4.3 For Thermal Sensors Measuring Single-Shot Energy and for Energy Sensors .......................................................................................................... 32 3.4.4 Measuring Loss Using the dB Offset Function ................................................. 32 3.5 Using the Settings Menu ............................................................................................. 32 3.5.1 Instrument Settings ......................................................................................... 34 3.5.2 User Interface Settings .................................................................................... 36 3.5.3 Instrument I/O Settings ................................................................................... 40 3.5.4 Log Settings ...................................................................................................... 41 3.5.5 Log History ....................................................................................................... 41 3.6 Configuring Measurements ......................................................................................... 42 3.6.1 Configuration Menus within the Measurement Screens ................................ 43 3.7 Using StarLab ............................................................................................................... 45 4 Points to Consider ........................................................................................................ 46 5 Thermal Sensors ........................................................................................................... 47 5.1 Operation of Centauri with Thermal Absorber Sensors .............................................. 48 5.2 Measuring Laser Power with Thermal Sensors ........................................................... 48 5.3 Measuring Laser Energy with Thermal Sensors........................................................... 50 5.3.1 Measuring Pulses of Very Low Energy ............................................................. 52 5.3.2 Measuring Energy of Rapidly Repeating Pulses ............................................... 52 5.4 Measuring Laser Pulsed Power with Thermal Sensors ................................................ 52 5.4.1 Pulsed Power Limitations ................................................................................ 53 6 BeamTrack Sensors ...................................................................................................... 54 6.1 Setting Measurement Parameters .............................................................................. 54 6.2 Tracking Laser Beam Position and Size ........................................................................ 56 6.3 Tracking Stability - Laser Beam Position Over Time .................................................... 57 7 Photodiode Sensors...................................................................................................... 58 7.1 Operation of Centauri with Photodiode Sensors ........................................................ 60 7.2 Measuring Laser Power with Photodiode Sensors ...................................................... 60 7.3 Averaging and Measuring Very Low Power Measurements ....................................... 61 7.4 Measuring Total Exposure ........................................................................................... 62 7.4.1 Exposure Limitations ....................................................................................... 63 7.5 Measuring Average Power of Low Frequency Pulsed Lasers -Low Freq Power Mode 63 7.6 Measuring Laser Modulation – “Fast Power Mode”: .................................................. 65 8 Pyroelectric and Photodiode Energy Sensors ................................................................. 66 8.1 Pyroelectric Sensors – Method of Operation .............................................................. 66 8.2 Photodiode Energy
Recommended publications
  • CENTAURI II Benutzerhandbuch
    CENTAURI II Benutzerhandbuch SW-Version ab 3.1.0.73 MAYAH, CENTAURI, FLASHCAST sind eingetragene Warenzeichen. Alle anderen verwendeten Warenzeichen werden hiermit anerkannt. CENTAURI II Benutzerhandbuch ab SW 3.1.0.73 Bestell-Nr. CIIUM001 Stand 11/2005 (c) Copyright by MAYAH Communications GmbH Die Vervielfältigung des vorliegenden Handbuches, sowie der darin besprochenen Dokumentationen aus dem Internet, auch nur auszugsweise, ist nur mit ausdrücklicher schriftlicher Genehmigung der MAYAH Communications GmbH erlaubt. 1 Einführung ........................................................................................................... 1 1.1 Vorwort......................................................................................................... 1 1.2 Einbau / Installation ...................................................................................... 2 1.3 Lieferumfang ................................................................................................ 2 1.4 Umgebungs- / Betriebsbedingung................................................................ 2 1.5 Anschlüsse................................................................................................... 3 2 Verbindungsaufbau ............................................................................................. 4 2.1 ISDN Verbindungen mit dem Centauri II ...................................................... 4 2.1.1 FlashCast Technologie und Audiocodec Kategorien............................. 4 2.1.2 Wie bekomme ich eine synchronisierte Verbindung
    [Show full text]
  • Prospects of Detecting the Polarimetric Signature of the Earth-Mass Planet Α Centauri B B with SPHERE/ZIMPOL
    A&A 556, A64 (2013) Astronomy DOI: 10.1051/0004-6361/201321881 & c ESO 2013 Astrophysics Prospects of detecting the polarimetric signature of the Earth-mass planet α Centauri B b with SPHERE/ZIMPOL J. Milli1,2, D. Mouillet1,D.Mawet2,H.M.Schmid3, A. Bazzon3, J. H. Girard2,K.Dohlen4, and R. Roelfsema3 1 Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), University Joseph Fourier, CNRS, BP 53, 38041 Grenoble, France e-mail: [email protected] 2 European Southern Observatory, Casilla 19001, Santiago 19, Chile 3 Institute for Astronomy, ETH Zurich, 8093 Zurich, Switzerland 4 Laboratoire d’Astrophysique de Marseille (LAM),13388 Marseille, France Received 12 May 2013 / Accepted 4 June 2013 ABSTRACT Context. Over the past five years, radial-velocity and transit techniques have revealed a new population of Earth-like planets with masses of a few Earth masses. Their very close orbit around their host star requires an exquisite inner working angle to be detected in direct imaging and sets a challenge for direct imagers that work in the visible range, such as SPHERE/ZIMPOL. Aims. Among all known exoplanets with less than 25 Earth masses we first predict the best candidate for direct imaging. Our primary objective is then to provide the best instrument setup and observing strategy for detecting such a peculiar object with ZIMPOL. As a second step, we aim at predicting its detectivity. Methods. Using exoplanet properties constrained by radial velocity measurements, polarimetric models and the diffraction propaga- tion code CAOS, we estimate the detection sensitivity of ZIMPOL for such a planet in different observing modes of the instrument.
    [Show full text]
  • Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects
    Breakthrough Propulsion Study Assessing Interstellar Flight Challenges and Prospects NASA Grant No. NNX17AE81G First Year Report Prepared by: Marc G. Millis, Jeff Greason, Rhonda Stevenson Tau Zero Foundation Business Office: 1053 East Third Avenue Broomfield, CO 80020 Prepared for: NASA Headquarters, Space Technology Mission Directorate (STMD) and NASA Innovative Advanced Concepts (NIAC) Washington, DC 20546 June 2018 Millis 2018 Grant NNX17AE81G_for_CR.docx pg 1 of 69 ABSTRACT Progress toward developing an evaluation process for interstellar propulsion and power options is described. The goal is to contrast the challenges, mission choices, and emerging prospects for propulsion and power, to identify which prospects might be more advantageous and under what circumstances, and to identify which technology details might have greater impacts. Unlike prior studies, the infrastructure expenses and prospects for breakthrough advances are included. This first year's focus is on determining the key questions to enable the analysis. Accordingly, a work breakdown structure to organize the information and associated list of variables is offered. A flow diagram of the basic analysis is presented, as well as more detailed methods to convert the performance measures of disparate propulsion methods into common measures of energy, mass, time, and power. Other methods for equitable comparisons include evaluating the prospects under the same assumptions of payload, mission trajectory, and available energy. Missions are divided into three eras of readiness (precursors, era of infrastructure, and era of breakthroughs) as a first step before proceeding to include comparisons of technology advancement rates. Final evaluation "figures of merit" are offered. Preliminary lists of mission architectures and propulsion prospects are provided.
    [Show full text]
  • The Search for Another Earth – Part II
    GENERAL ARTICLE The Search for Another Earth – Part II Sujan Sengupta In the first part, we discussed the various methods for the detection of planets outside the solar system known as the exoplanets. In this part, we will describe various kinds of exoplanets. The habitable planets discovered so far and the present status of our search for a habitable planet similar to the Earth will also be discussed. Sujan Sengupta is an 1. Introduction astrophysicist at Indian Institute of Astrophysics, Bengaluru. He works on the The first confirmed exoplanet around a solar type of star, 51 Pe- detection, characterisation 1 gasi b was discovered in 1995 using the radial velocity method. and habitability of extra-solar Subsequently, a large number of exoplanets were discovered by planets and extra-solar this method, and a few were discovered using transit and gravi- moons. tational lensing methods. Ground-based telescopes were used for these discoveries and the search region was confined to about 300 light-years from the Earth. On December 27, 2006, the European Space Agency launched 1The movement of the star a space telescope called CoRoT (Convection, Rotation and plan- towards the observer due to etary Transits) and on March 6, 2009, NASA launched another the gravitational effect of the space telescope called Kepler2 to hunt for exoplanets. Conse- planet. See Sujan Sengupta, The Search for Another Earth, quently, the search extended to about 3000 light-years. Both Resonance, Vol.21, No.7, these telescopes used the transit method in order to detect exo- pp.641–652, 2016. planets. Although Kepler’s field of view was only 105 square de- grees along the Cygnus arm of the Milky Way Galaxy, it detected a whooping 2326 exoplanets out of a total 3493 discovered till 2Kepler Telescope has a pri- date.
    [Show full text]
  • Desert Skies Since 1954 Spring 2015 Volume LXI, Issue 1
    Tucson Amateur Astronomy Association Observing our Desert Skies since 1954 Spring 2015 Volume LXI, Issue 1 Inside this issue: The Tadpoles in IC410 President’s 2 Letter Outreach 3, 5 New RideShare 7 Program Observing & 8 - 11 Imaging Featured 12, 14 Articles Classifieds 7 Sponsors 7 Contacts 15 Take Note! Science Fair and Book Festival Reports TAAA member Howard Bower photographed IC 410 which is found in Auriga TAAA RideShare Program using a Telescope Engineering Company TEC 140 ED apochromat refractor with Announced a field flattener resulting in f/7.4. This is a narrow band image with 34 exposures in Hydrogen Alpha (30 minutes each), 34 exposures in Oxygen III (binned 2x2 at Jupiter Opposition 2015 15 minutes each), and 34 exposures in Sulphur II (binned 2x2 at 15 minutes each). Report IC410 is a faint emission nebula surrounding the star cluster NGC 1893. At the Constellation of the top left of the nebula are two objects known as “The Tadpoles”. These are likely Season—Centaurus areas of stellar formation. Each tadpole is about 10 light years long. This object is at a distance of about 12,000 light years. © 2013 Howard Bower. Used by New Items in the Classifieds permission. Desert Skies Page 2 Volume LXI, Issue 1 From Our President As I reviewed the March Bulletin it was really heartwarming to see all of the activities in which we are involved. It takes a lot of Our mission is to provide opportunities for members dedication and hard work to put this all together and make it and the public to share the joy and excitement of work..
    [Show full text]
  • A Review on Substellar Objects Below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs Or What?
    geosciences Review A Review on Substellar Objects below the Deuterium Burning Mass Limit: Planets, Brown Dwarfs or What? José A. Caballero Centro de Astrobiología (CSIC-INTA), ESAC, Camino Bajo del Castillo s/n, E-28692 Villanueva de la Cañada, Madrid, Spain; [email protected] Received: 23 August 2018; Accepted: 10 September 2018; Published: 28 September 2018 Abstract: “Free-floating, non-deuterium-burning, substellar objects” are isolated bodies of a few Jupiter masses found in very young open clusters and associations, nearby young moving groups, and in the immediate vicinity of the Sun. They are neither brown dwarfs nor planets. In this paper, their nomenclature, history of discovery, sites of detection, formation mechanisms, and future directions of research are reviewed. Most free-floating, non-deuterium-burning, substellar objects share the same formation mechanism as low-mass stars and brown dwarfs, but there are still a few caveats, such as the value of the opacity mass limit, the minimum mass at which an isolated body can form via turbulent fragmentation from a cloud. The least massive free-floating substellar objects found to date have masses of about 0.004 Msol, but current and future surveys should aim at breaking this record. For that, we may need LSST, Euclid and WFIRST. Keywords: planetary systems; stars: brown dwarfs; stars: low mass; galaxy: solar neighborhood; galaxy: open clusters and associations 1. Introduction I can’t answer why (I’m not a gangstar) But I can tell you how (I’m not a flam star) We were born upside-down (I’m a star’s star) Born the wrong way ’round (I’m not a white star) I’m a blackstar, I’m not a gangstar I’m a blackstar, I’m a blackstar I’m not a pornstar, I’m not a wandering star I’m a blackstar, I’m a blackstar Blackstar, F (2016), David Bowie The tenth star of George van Biesbroeck’s catalogue of high, common, proper motion companions, vB 10, was from the end of the Second World War to the early 1980s, and had an entry on the least massive star known [1–3].
    [Show full text]
  • Observing Exoplanets
    Observing Exoplanets Olivier Guyon University of Arizona Astrobiology Center, National Institutes for Natural Sciences (NINS) Subaru Telescope, National Astronomical Observatory of Japan, National Institutes for Natural Sciences (NINS) Nov 29, 2017 My Background Astronomer / Optical scientist at University of Arizona and Subaru Telescope (National Astronomical Observatory of Japan, Telescope located in Hawaii) I develop instrumentation to find and study exoplanet, for ground-based telescopes and space missions My interest is focused on habitable planets and search for life outside our solar system At Subaru Telescope, I lead the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) instrument. 2 ALL known Planets until 1989 Approximately 10% of stars have a potentially habitable planet 200 billion stars in our galaxy → approximately 20 billion habitable planets Imagine 200 explorers, each spending 20s on each habitable planet, 24hr a day, 7 days a week. It would take >60yr to explore all habitable planets in our galaxy alone. x 100,000,000,000 galaxies in the observable universe Habitable planets Potentially habitable planet : – Planet mass sufficiently large to retain atmosphere, but sufficiently low to avoid becoming gaseous giant – Planet distance to star allows surface temperature suitable for liquid water (habitable zone) Habitable zone = zone within which Earth-like planet could harbor life Location of habitable zone is function of star luminosity L. For constant stellar flux, distance to star scales as L1/2 Examples: Sun → habitable zone is at ~1 AU Rigel (B type star) Proxima Centauri (M type star) Habitable planets Potentially habitable planet : – Planet mass sufficiently large to retain atmosphere, but sufficiently low to avoid becoming gaseous giant – Planet distance to star allows surface temperature suitable for liquid water (habitable zone) Habitable zone = zone within which Earth-like planet could harbor life Location of habitable zone is function of star luminosity L.
    [Show full text]
  • Australian Sky & Telescope
    TRANSIT MYSTERY Strange sights BINOCULAR TOUR Dive deep into SHOOT THE MOON Take amazing as Mercury crosses the Sun p28 Virgo’s endless pool of galaxies p56 lunar images with your smartphone p38 TEST REPORT Meade’s 25-cm LX600-ACF P62 THE ESSENTIAL MAGAZINE OF ASTRONOMY Lasers and advanced optics are transforming astronomy p20 HOW TO BUY THE RIGHT ASTRO CAMERA p32 p14 ISSUE 93 MAPPING THE BIG BANG’S COSMIC ECHOES $9.50 NZ$9.50 INC GST LPI-GLPI-G LUNAR,LUNAR, PLANETARYPLANETARY IMAGERIMAGER ANDAND GUIDERGUIDER ASTROPHOTOGRAPHY MADE EASY. Let the LPI-G unleash the inner astrophotographer in you. With our solar, lunar and planetary guide camera, experience the universe on a whole new level. 0Image Sensor:'+(* C O LOR 0 Pixel Size / &#*('+ 0Frames per second/Resolution• / • / 0 Image Format: #,+$)!&))'!,# .# 0 Shutter%,*('#(%%#'!"-,,* 0Interface: 0Driver: ASCOM compatible 0GuiderPort: 0Color or Monochrome Models (&#'!-,-&' FEATURED DEALERS: MeadeTelescopes Adelaide Optical Centre | www.adelaideoptical.com.au MeadeInstrument The Binocular and Telescope Shop | www.bintel.com.au MeadeInstruments www.meade.com Sirius Optics | www.sirius-optics.com.au The device to free you from your handbox. With the Stella adapter, you can wirelessly control your GoTo Meade telescope at a distance without being limited by cord length. Paired with our new planetarium app, *StellaAccess, astronomers now have a graphical interface for navigating the night sky. STELLA WI-FI ADAPTER / $#)'$!!+#!+ #$#)'#)$##)$#'&*' / (!-')-$*')!($%)$$+' "!!$#$)(,#%',).( StellaAccess app. Available for use on both phones and tablets. /'$+((()$!'%!#)'*")($'!$)##!'##"$'$*) stars, planets, celestial bodies and more /$,'-),',### -' ($),' /,,,$"$')*!!!()$$"%)!)!($%( STELLA is controlled with Meade’s planetarium app, StellaAccess. Available for purchase for both iOS S and Android systems.
    [Show full text]
  • Messenger-No117.Pdf
    ESO WELCOMES FINLANDINLAND AS ELEVENTH MEMBER STAATE CATHERINE CESARSKY, ESO DIRECTOR GENERAL n early July, Finland joined ESO as Education and Science, and exchanged which started in June 2002, and were con- the eleventh member state, following preliminary information. I was then invit- ducted satisfactorily through 2003, mak- II the completion of the formal acces- ed to Helsinki and, with Massimo ing possible a visit to Garching on 9 sion procedure. Before this event, howev- Tarenghi, we presented ESO and its scien- February 2004 by the Finnish Minister of er, Finland and ESO had been in contact tific and technological programmes and Education and Science, Ms. Tuula for a long time. Under an agreement with had a meeting with Finnish authorities, Haatainen, to sign the membership agree- Sweden, Finnish astronomers had for setting up the process towards formal ment together with myself. quite a while enjoyed access to the SEST membership. In March 2000, an interna- Before that, in early November 2003, at La Silla. Finland had also been a very tional evaluation panel, established by the ESO participated in the Helsinki Space active participant in ESO’s educational Academy of Finland, recommended Exhibition at the Kaapelitehdas Cultural activities since they began in 1993. It Finland to join ESO “anticipating further Centre with approx. 24,000 visitors. became clear, that science and technology, increase in the world-standing of ESO warmly welcomes the new mem- as well as education, were priority areas Astronomy in Finland”. In February 2002, ber country and its scientific community for the Finnish government. we were invited to hold an information that is renowned for its expertise in many Meanwhile, the optical astronomers in seminar on ESO in Helsinki as a prelude frontline areas.
    [Show full text]
  • Grove Academy National 4 Physics Dynamics and Space Problems
    Grove Academy National 4 Physics Dynamics and Space Problems Key Area – Speed and Acceleration Exercise 1 – Average Speed 1. A car travels a distance of 2 000 metres in a time of 160 seconds. Calculate the average speed of the car in metres per second. 2. Jane jogs to work every day at an average speed of 4 ms-1. Most days it takes her 600 seconds to reach work. Calculate how far she jogs. 3. A model train travels round 10 m of track at an average speed of 1·5 ms-1. How long does this take? 4. Christopher takes 26 seconds to swim one length of a swimming pool. If the pool is 50 metres long, calculate his average speed. 5. How far will a cyclist travel in 60 seconds if he is travelling at an average speed of 13 metres per second? 6. Calculate a hurdler’s time if she completes the 400 m hurdle race at an average speed of 7 ms-1. 7. How far will a jet aircraft travel in 5 minutes (300 seconds) if it flies at 400 metres per second? 8. The Channel Tunnel is approximately 50 km (50 000 m) long. How long will it take a train travelling at 90 ms-1 to travel from one end of the tunnel to the other? 9. A hill walker walks at an average speed of 1·5 ms-1. How long will it take her to cover a distance of 27 km (27000 m)? 10. Richard Noble captured the world land speed record in 1983 in his vehicle Thrust 2.
    [Show full text]
  • Current Affairs Q&A
    Current Affairs Q&A PDF Current Affairs Questions &Answer PDF 2018 Table of Contents Current Affairs Q&A PDF July 2018 ................................................................................................................. 2 Static GK question from July Current Affairs 2018 ..................................................................................... 185 AffairsCloud Recommends Oliveboard Mock Test SBI PO 2018: Take 30 Tests. 1 Free SBI Clerk 2018: Take 30 Tests. 1 Free IBPS RRB 2018: Take 40 Tests, 1 Free RBI Grade B 2018: Take 30 Tests, 1 Free Railways RRB Group D 2018: 1 Free Test SSC CGL 2018: 50 Tests (30 Tier I + 20 Tier II) Good Luck with Your Exams!!! Suggestions are welcomed; Contact us any time at [email protected] If You Satisfied with our Content mean kindly donate some amount to BoscoBan.org (Facebook.com/boscobengaluru ) or Kindly Suggest this site to your family members & friends !!! -------------- > http://boscoban.org/page/donate/ Download Adobe Acrobat PDF Reader for Mobile APP 1 | Page Follow Us - FB.com/AffairsCloudOfficialPage Copyright 2018 @ AffairsCloud.Com Current Affairs Q&A PDF Current Affairs Q&A PDF July 2018 1. On June 30, 2018, At the 42nd session of the World Heritage Committee of UNESCO at Manama in Bahrain , India’s nomination of the "Victorian and Art Deco Ensembles of _____" was inscribed on UNESCO's World Heritage list? 1.Bengaluru 2.Mumbai 3.Calicut 4.Goa 5.None of these Answer - 2.Mumbai Explanation: India has managed to get inscribed seven of its properties/sites on the World Heritage List of UNESCO. India now has overall 37 World Heritage Inscriptions with 29 Cultural, 07 Natural and 01 Mixed sites. In addition, 42 sites from the country figures in the Tentative List of World Heritage and the Ministry of Culture would be recommending one property every year for nomination to UNESCO.
    [Show full text]
  • Starshade Rendezvous Probe
    Starshade Rendezvous Probe Starshade Rendezvous Probe Study Report Imaging and Spectra of Exoplanets Orbiting our Nearest Sunlike Star Neighbors with a Starshade in the 2020s February 2019 TEAM MEMBERS Principal Investigators Sara Seager, Massachusetts Institute of Technology N. Jeremy Kasdin, Princeton University Co-Investigators Jeff Booth, NASA Jet Propulsion Laboratory Matt Greenhouse, NASA Goddard Space Flight Center Doug Lisman, NASA Jet Propulsion Laboratory Bruce Macintosh, Stanford University Stuart Shaklan, NASA Jet Propulsion Laboratory Melissa Vess, NASA Goddard Space Flight Center Steve Warwick, Northrop Grumman Corporation David Webb, NASA Jet Propulsion Laboratory Study Team Andrew Romero-Wolf, NASA Jet Propulsion Laboratory John Ziemer, NASA Jet Propulsion Laboratory Andrew Gray, NASA Jet Propulsion Laboratory Michael Hughes, NASA Jet Propulsion Laboratory Greg Agnes, NASA Jet Propulsion Laboratory Jon Arenberg, Northrop Grumman Corporation Samuel (Case) Bradford, NASA Jet Propulsion Laboratory Michael Fong, NASA Jet Propulsion Laboratory Jennifer Gregory, NASA Jet Propulsion Laboratory Steve Matousek, NASA Jet Propulsion Laboratory Jonathan Murphy, NASA Jet Propulsion Laboratory Jason Rhodes, NASA Jet Propulsion Laboratory Dan Scharf, NASA Jet Propulsion Laboratory Phil Willems, NASA Jet Propulsion Laboratory Science Team Simone D'Amico, Stanford University John Debes, Space Telescope Science Institute Shawn Domagal-Goldman, NASA Goddard Space Flight Center Sergi Hildebrandt, NASA Jet Propulsion Laboratory Renyu Hu, NASA
    [Show full text]