Medicinal Herbs with Anti-Depressant Effects
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Variability of Major Phenyletanes and Phenylpropanoids in 16-Year-Old Rhodiola Rosea L
molecules Article Variability of Major Phenyletanes and Phenylpropanoids in 16-Year-Old Rhodiola rosea L. Clones in Norway Abdelhameed Elameen 1,* , Vera M. Kosman 2, Mette Thomsen 3, Olga N. Pozharitskaya 4 and Alexander N. Shikov 5 1 NIBIO, Norwegian Institute for Bioeconomy Research, Høghskoleveien 7, N-1431 Ås, Norway 2 St. Petersburg Institute of Pharmacy, Leningrad Region, Vsevolozhsky District, P 245 188663 Kuzmolovo, Russia; [email protected] 3 NIBIO, Norwegian Institute for Bioeconomy Research, Øst Apelsvoll, 2849 Kapp, Norway; [email protected] 4 Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Vladimirskaya, 17, 183010 Murmansk, Russia; [email protected] 5 St. Petersburg State Chemical Pharmaceutical University, Prof. Popov, 14, 197376 Saint-Petersburg, Russia; [email protected] * Correspondence: [email protected]; Tel.: +479-020-0875 Academic Editors: Francesco Cacciola and Lillian Barros Received: 17 June 2020; Accepted: 28 July 2020; Published: 30 July 2020 Abstract: Rhodiola rosea L. (roseroot) is an adaptogen plant belonging to the Crassulaceae family. The broad spectrum of biological activity of R. rosea is attributed to its major phenyletanes and phenylpropanoids: rosavin, salidroside, rosin, cinnamyl alcohol, and tyrosol. In this study, we compared the content of phenyletanes and phenylpropanoids in rhizomes of R. rosea from the Norwegian germplasm collection collected in 2004 and in 2017. In general, the content of these bioactive compounds in 2017 was significantly higher than that observed in 2004. The freeze-drying method increased the concentration of all phenyletanes and phenylpropanoids in rhizomes compared 1 with conventional drying at 70 ◦C. As far as we know, the content of salidroside (51.0 mg g− ) observed in this study is the highest ever detected in Rhodiola spp. -
Qrno. 1 2 3 4 5 6 7 1 CP 2903 77 100 0 Cfcl3
QRNo. General description of Type of Tariff line code(s) affected, based on Detailed Product Description WTO Justification (e.g. National legal basis and entry into Administration, modification of previously the restriction restriction HS(2012) Article XX(g) of the GATT, etc.) force (i.e. Law, regulation or notified measures, and other comments (Symbol in and Grounds for Restriction, administrative decision) Annex 2 of e.g., Other International the Decision) Commitments (e.g. Montreal Protocol, CITES, etc) 12 3 4 5 6 7 1 Prohibition to CP 2903 77 100 0 CFCl3 (CFC-11) Trichlorofluoromethane Article XX(h) GATT Board of Eurasian Economic Import/export of these ozone destroying import/export ozone CP-X Commission substances from/to the customs territory of the destroying substances 2903 77 200 0 CF2Cl2 (CFC-12) Dichlorodifluoromethane Article 46 of the EAEU Treaty DECISION on August 16, 2012 N Eurasian Economic Union is permitted only in (excluding goods in dated 29 may 2014 and paragraphs 134 the following cases: transit) (all EAEU 2903 77 300 0 C2F3Cl3 (CFC-113) 1,1,2- 4 and 37 of the Protocol on non- On legal acts in the field of non- _to be used solely as a raw material for the countries) Trichlorotrifluoroethane tariff regulation measures against tariff regulation (as last amended at 2 production of other chemicals; third countries Annex No. 7 to the June 2016) EAEU of 29 May 2014 Annex 1 to the Decision N 134 dated 16 August 2012 Unit list of goods subject to prohibitions or restrictions on import or export by countries- members of the -
Isoflurane Produces Antidepressant Effects and Induces Trkb Signaling in Rodents
bioRxiv preprint doi: https://doi.org/10.1101/084525; this version posted July 11, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Isoflurane produces antidepressant effects and induces TrkB signaling in rodents Hanna Antilaa, Maria Ryazantsevaa,b, Dina Popovaa, Pia Sipiläa, Ramon Guiradoa, Samuel Kohtalaa,b, Ipek Yalcinc, Jesse Lindholma, Liisa Vesaa, Vinicius Satod, Joshua Cordeirae, Henri Autioa, Mikhail Kislina, Maribel Riose, Sâmia Jocad, Plinio Casarottoa, Leonard Khirouga, Sari Lauria,b, Tomi Tairaa,f, Eero Castréna* and Tomi Rantamäkia,b* aNeuroscience Center, P.O. Box 56, FI-00014 University of Helsinki, Helsinki, Finland. bDivision of Physiology and Neuroscience, Department of Biosciences, Faculty of Biological and Environmental Sciences, P.O. Box 66, FI-00014 University of Helsinki, Helsinki, Finland. cInstitut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, FR-67084 Strasbourg Cedex, France. dSchool of Pharmaceutical Sciences of Ribeirão Preto 14040-903, Brazil. eTufts University, Boston, MA, USA. fDepartment of Veterinary Biosciences, Faculty of Veterinary Medicine P.O. Box 66, FI-00014 University of Helsinki, Helsinki, Finland. *To whom correspondence should be addressed at: Eero Castrén ([email protected]) or Tomi Rantamäki ([email protected]) A brief burst-suppressing isoflurane anesthesia has been shown to rapidly alleviate symptoms of depression in a subset of patients, but the neurobiological basis of these observations remains obscure. We show that a single isoflurane anesthesia produces antidepressant-like behavioural effects in the learned helplessness paradigm and regulates molecular events implicated in the mechanism of action of rapid-acting antidepressant ketamine: activation of brain-derived neurotrophic factor (BDNF) receptor TrkB, facilitation of mammalian target of rapamycin (mTOR) signaling pathway and inhibition of glycogen synthase kinase 3β (GSK3β). -
Chapter 16 Demand and Availability of Rhodiola Rosea L
CHAPTER 16 DEMAND AND AVAILABILITY OF RHODIOLA ROSEA L. RAW MATERIAL BERTALAN GALAMBOSI Agrifood Research Finland, Ecological Production Karilantie 2A, FIN-50600 Mikkeli, Finland E-mail: [email protected] Abstract. Rhodiola rosea L. roseroot, (Golden root or Arctic root) is a herbaceous perennial plant of the family Crassulaceae. The yellow-flowered roseroot species is a circumpolar species of cool temperate and sub-arctic areas of the northern hemisphere, including North America, Greenland, Iceland and the Altai, Tien-Shan, Himalaya mountains in Asia. The European distribution includes Scandinavia and most of the mountains of Central Europe. Roseroot has traditionally been used in Russia and Mongolia for the treatment of long-term illness and weakness caused by infection. Rhodiola radix and rhizome is a multipurpose medicinal herb with adaptogenic properties: it increases the body’s nonspecific resistance and normalizes body functions. A special emphasis in pharmacological research has been put on roseroot in the former Soviet Union. Several clinical studies have documented roseroot’s beneficial effects on memory and learning, immune- response stress and cancer therapy. Rhodiola preparations have widely been used to increase the stress tolerance of the cosmonauts. Salidroside and its precursor tyrosol, and cinnamic glycosides (rosin, rosavin and rosarin) have been identified from the roots and rhizome. Other important constituents are flavonoids, tannins and gallic acid and its esters (Brown et al. 2002). Based on the documented pharmacological effects and its safe use, the commercial interest for roseroot-based products has quickly increased worldwide. Presently one of the biggest problems is to meet the raw-material requirement for the growing industrial demand. -
Index Seminum Et Sporarum Quae Hortus Botanicus Universitatis Biarmiensis Pro Mutua Commutatione Offert
INDEX SEMINUM ET SPORARUM QUAE HORTUS BOTANICUS UNIVERSITATIS BIARMIENSIS PRO MUTUA COMMUTATIONE OFFERT Salix recurvigemmata A.K. Skvortsov f. variegata Schumikh., O.E. Epanch. & I.V. Belyaeva Biarmiae 2020 Federal State Autonomous Educational Institution of Higher Education «Perm State National Research University», A.G. Genkel Botanical Garden ______________________________________________________________________________________ СПИСОК СЕМЯН И СПОР, ПРЕДЛАГАЕМЫХ ДЛЯ ОБМЕНА БОТАНИЧЕСКИМ САДОМ ИМЕНИ А.Г. ГЕНКЕЛЯ ПЕРМСКОГО ГОСУДАРСТВЕННОГО НАЦИОНАЛЬНОГО ИССЛЕДОВАТЕЛЬСКОГО УНИВЕРСИТЕТА Syringa vulgaris L. ‘Красавица Москвы’ Пермь 2020 Index Seminum 2020 2 Federal State Autonomous Educational Institution of Higher Education «Perm State National Research University», A.G. Genkel Botanical Garden ______________________________________________________________________________________ Дорогие коллеги! Ботанический сад Пермского государственного национального исследовательского университета был создан в 1922 г. по инициативе и под руководством проф. А.Г. Генкеля. Здесь работали известные ученые – ботаники Д.А. Сабинин, В.И. Баранов, Е.А. Павский, внесшие своими исследованиями большой вклад в развитие биологических наук на Урале. В настоящее время Ботанический сад имени А.Г. Генкеля входит в состав регионального Совета ботанических садов Урала и Поволжья, Совет ботанических садов России, имеет статус научного учреждения и особо охраняемой природной территории. Основными научными направлениями работы являются: интродукция и акклиматизация растений, -
Rhodiola Rosea L
u Ottawa l.'Univcrsilc! cnnnrlicwu- Cnnodn's univcrsiiy FACULTE DES ETUDES SUPERIEURES ls=l FACULTY OF GRADUATE AND ET POSTOCTORALES U Ottawa POSDOCTORAL STUDIES L*University canadiennc Canada's university Vicky J. Filion AUTEUR DETATHISET/ AUTHOR OF THESIS" M_.Sc. (Biology) GRADE/DEGREE Department of Biology TAMTE"TCOLirDpARTEMENT~^ACUITY, S*CHOdi~DEWRTMENT" A Novel Phytochemical and Ecological Study of the Nunavik Medicinal Plant Rhodiola rosea L. TITRE DE LA THESE / TITLE OF THESIS _____„„____Dr._ J. Arnason A. Cuerrier EXAMINATEURS (EXAMINATRICES) DE LA THESE / THESIS EXAMINERS Dr. C. Charest Dr. J. Kerr Dr. N. Cappuccino _Garjr\V^SJatCT_ Le Doyen de la Faculte des etudes superieures et postdoctorales I Dean of the Faculty of Graduate and Postdoctoral Studies A Novel Phytochemical and Ecological Study of the Nunavik Medicinal Plant Rhodiola rosea L. Vicky J. Filion Thesis submitted to the Faculty of Graduate and Postdoctoral Studies University of Ottawa in partial fulfillment of the requirements for the M.Sc. degree in the Ottawa-Carleton Institute of Biology These soumise a la Faculte des etudes superieures et postdoctorales Universite d'Ottawa en vue de l'obtention de la maitrise es sciences Institut de biologie d'Ottawa-Carleton © Vicky J. Filion, Ottawa, Canada, 2008 Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-50879-4 -
Effects of in Vitro Amitriptyline, Fluoxetine, Tranylcypromine and Venlafaxine on Saphenous Vein Grafts
ORIGINAL ARTICLE Braz J Cardiovasc Surg 2019;34(3):290-6 Effects of in vitro Amitriptyline, Fluoxetine, Tranylcypromine and Venlafaxine on Saphenous Vein Grafts Melek Akinci1, MD; Cetin Hakan Karadag2, MD; Serhat Huseyin3, MD; Cagatay Oltulu4, MD; Suat Canbaz3, MD; Ozgur Gunduz2, MD; Ruhan Deniz Topuz2, MD DOI: 10.21470/1678-9741-2018-0338 Abstract Objective: In this study, we aimed to examine the effects of (Log M) was 74.6%, the response at -6.32 (Log M) was 75.5%. amitriptyline, fluoxetine, tranylcypromine and venlafaxine on While the relaxation response at -6.46 (Log M) of fluoxetine was saphenous vein grafts in coronary artery bypass graft surgeries. 68.02%, the response at -6.02 (Log M) was 72.12%. While the Methods: 59 patients (40 males and 19 females; mean age relaxation response of tranylcypromine at -7.53 (Log M) was 65.1 years, distribution: 45-84 years) who had coronary artery 61.13%, the response at -7.23 (Log M) was 65.53%. While the bypass graft surgery between February 2014 and May 2016 were relaxation response of venlafaxine at -6.21 (Log M) was 29.98%, included in the study. After the saphenous vein grafts with intact the response at -5.90 (Log M) was 32.96%. and denuded endothelium were precontracted with 3×10-6M Conclusion: The maximum relaxation at minimum and phenylephrine, amitriptyline, fluoxetine and tranylcypromine maximum therapeutic concentrations was obtained with were cumulatively added to isolated organ baths in the range of amitriptyline, fluoxetine and tranylcypromine, and the minimum 10-11-3x10-5M, while venlafaxine was added in the range of 10-9- relaxation was obtained with venlafaxine. -
Psychotropic Drugs: Sedatives/Hypnotics, Antidepressants, and Antipsychotics
PSYCHOTROPIC DRUGS: SEDATIVES/HYPNOTICS, ANTIDEPRESSANTS, AND ANTIPSYCHOTICS INSTIs NNRTIs PIs RTI xBICTEGRAVIR xELVITEGRAVIR/ x DORAVIRINE x EFAVIRENZ xATAZANAVIR • TENOFOVIR • TENOFOVIR (Biktarvy) COBICISTAT (Pifeltro, (Sustiva, Atripla) (Reyataz/Norvir, ALAFENAMIDE, DISOPROXIL, TDF (Stribild, Genvoya) Delstrigo) Evotaz) TAF (Descovy, (Viread,Truvada, DOLUTEGRAVIR ETRAVIRINE x x Biktarvy, Genvoya, Atripla, Complera, (Tivicay, Triumeq, RILPIVIRINE (Intelence) DARUNAVIR x x Odefsey, Symtuza) Delstrigo, Stribild) Juluca) (Edurant, (Prezista/Norvir, x NEVIRAPINE Complera, Prezcobix, x RALTEGRAVIR (Viramune) •ABACAVIR (Kivexa, Odefsey, Juluca) Symtuza) (Isentress) Ziagen, Triumeq) xLOPINAVIR (Kaletra) SEDATIVES/HYPNOTICS xLorazepam, oxazepam, temazepam xAlprazolam, Potential for n Potential for p Potential for n bromazepam, benzodiazepine benzodiazepine benzodiazepine buspirone, clonazepam, estazolam, flurazepam, diazepam, nitrazepam, zolpidem, zopiclone xMidazolam, Potential for n Potential for p Potential for n triazolam benzodiazepine benzodiazepine benzodiazepine PSYCHOTROPICS INSTIs NNRTIs PIs RTI xBICTEGRAVIR xELVITEGRAVIR/ x DORAVIRINE x EFAVIRENZ xATAZANAVIR • TENOFOVIR • TENOFOVIR (Biktarvy) COBICISTAT (Pifeltro, (Sustiva, Atripla) (Reyataz/Norvir, ALAFENAMIDE, DISOPROXIL, TDF (Stribild, Genvoya) Delstrigo) Evotaz) TAF (Descovy, (Viread,Truvada, DOLUTEGRAVIR ETRAVIRINE x x Biktarvy, Genvoya, Atripla, Complera, (Tivicay, Triumeq, RILPIVIRINE (Intelence) DARUNAVIR x x Odefsey, Symtuza) Delstrigo, Stribild) Juluca) (Edurant, (Prezista/Norvir, -
Rhodiola Rosea: a Phytomedicinal Overview By
Rhodiola rosea: A Phytomedicinal Overview by Richard P. Brown, M.D., Patricia L. Gerbarg, M.D., and Zakir Ramazanov, Ph.D., D.S. Rhodiola rosea L., also known as "golden root" or "roseroot" belongs to the plant family Crassulaceae.1 R. rosea grows primarily in dry sandy ground at high altitudes in the arctic areas of Europe and Asia.2 The plant reaches a height of 12 to 30 inches (70cm) and produces yellow blossoms. It is a perennial with a thick rhizome, fragrant when cut. The Greek physician, Dioscorides, first recorded medicinal applications of rodia riza in 77 C.E. in De Materia Medica.3 Linnaeus renamed it Rhodiola rosea, referring to the rose-like attar (fragrance) of the fresh cut rootstock.4 For centuries, R. rosea has been used in the traditional medicine of Russia, Scandinavia, and other countries. Between 1725 and 1960, various medicinal applications of R. rosea appeared in the scientific literature of Sweden, Norway, France, Germany, the Soviet Union, and Iceland.2,4-12 Since 1960, more than 180 pharmacological, phytochemical, and clinical studies have been published. Although R. rosea has been extensively studied as an adaptogen with various health-promoting effects, its properties remain largely unknown in the West. In part this may be due to the fact that the bulk of research has been published in Slavic and Scandinavian languages. This review provides an introduction to some of the traditional uses of R. rosea, its phytochemistry, scientific studies exploring its diverse physiological effects, and its current and future medical applications. Rhodiola rosea in Traditional Medicine Traditional folk medicine used R. -
Rhodiola Rosea in Nunatsiavut
ETHNOBOTANICAL ENTREPRENEURSHIP FOR INDIGENOUS BIOCULTURAL RESILIENCE: RHODIOLA ROSEA IN NUNATSIAVUT © Vanessa Mardones A thesis submitted to the School of Graduate Studies In partial fulfillment of the Requirements for the degree of Doctorate of Philosophy Department of Biology/Faculty of Science Memorial University of Newfoundland Submitted August 2019 St. John’s Newfoundland Table of Contents Abstract ............................................................................................................................................ 1 Chapter 1. General Introduction .................................................................................................. 2 1.1 Introduction ............................................................................................................................................. 2 1.2 Thesis Outline ......................................................................................................................................... 6 1.3 Co-Authorship Statement ..................................................................................................................... 9 1.4 References ............................................................................................................................................... 9 Chapter 2. Assessing the Impact of Environmental Variables on Growth and Phytochemistry of Rhodiola rosea in Coastal Labrador to Inform Small-Scale Enterprise. 15 Abstract ....................................................................................................................................................... -
Supplementary Material Exploring the Efficiency of UHPLC-Orbitrap MS For
Supplementary Material Exploring the efficiency of UHPLC-Orbitrap MS for the determination of 20 pharmaceuticals and acesulfame K in hospital and urban wastewaters with the aid of FPSE Maria Kalaboka, Christoforos Chrimatopoulos, Cristina Jiménez-Holgado, Vasiliki Boti, Vasilios Sakkas, * and Triantafyllos Albanis University of Ioannina, Chemistry Department, 45110 Ioannina, Greece; [email protected], [email protected] , [email protected], [email protected], talbanis@uoi,gr, [email protected] * Correspondence: [email protected]; Tel.: +30-2651008303 Table S1: Physicochemical properties and chemical structures of target analytes Molecular Therapeutic Compound Chemical Structure pKa [Ref.] logP Formula class - Artificial Acesulfame C4H5NO4S 2.0 [1] 0.552 Sweetener tricyclic Amitriptiline C20H23N 9.4 [2] 4.81 antidepressant s Psychiatric Carbamazepine C15H12N2O 7.0/13.9 [3] 2.766 Antiepileptic Drugs Psychiatric Clomipramine C19H23ClN2 8.98 [4] 4.883 Antidepressant Drugs Psychiatric Cyclobenzaprine C20H21N 8.47 [5] 4.613 Antidepressant Drugs Non-steroidal anti- Diclofenac C14H11Cl2NO2 4.2 [3] 4.259 inflammatory drug (NSAID) Macrolide Erythromycin C37H66NO12 8.9 [3] 2.596 Antibiotic Antidepressant Fluoxetine C17H18F3NO 10.1 [6] 4.173 Drugs Analgesic-anti- Indomethacin C19H16ClNO4 4.27 [3] 3.53 inflammatory drug Nonsteroidal anti- Mefenamic Acid C15H15NO2 4.2 [7] 5.398 inflammatory drugs (NSAID) Psychiatric Paroxetine C19H20O3NF 9.6 [6] 3.148 Antidepressant Drugs Non-steroidal anti- Salicylic acid C7H6O3 2.3/3.5 [6] 1.977 inflammatory drug (NSAID) Sulfonamide Sulfacetamide C8H10N2O3S 5.4 [8] -0.3 Antibiotic Sulfonamide Sulfamethazine C12H14N4O2S 7.6/2.65 [9] 0.65 Antibiotic Sulfonamide Sulfamethoxazole C10H11N3O3S 5.7/1.6 [9] 0.791 Antibiotic Sulfamethoxy- Sulfonamide C11H12N4O3S 6.7 [9] 0.466 pyridazine Antibiotic 6.24/2. -
Disproportionality Analysis of Antiretrovirals
Conference on Retroviruses and Opportunistic Infections (CROI), Boston, Massachusetts, March 3–6 2014 Poster #761 Disproportionality Analysis of Antiretrovirals with Suicidality using FDA Adverse Event Reporting System (FAERS) Data Daniel Seekins Andrew Napoli1, John Coumbis2, Jennifer Wood2, Amit Soitkar2, Daniel Seekins1 Bristol-Myers Squibb, Plainsboro, NJ, USA 1Bristol-Myers Squibb, Plainsboro, NJ, USA, 2Bristol-Myers Squibb, Hopewell, NJ, USA Email: [email protected] INTRODUCTION Statistical Analysis Suicide Attempt CONSIDERATIONS n A disproportionality analysis was performed for the selected drug and selected AE using the MGPS method Efavirenz (n = 107) Antiretrovirals n Psychiatric events, including depression, suicidal ideation, suicide attempts, and completed Antidepressants Strengths suicide have been reported in patients receiving efavirenz since 19981 Etravirine (n = 4) n The disproportionality measure, Empirical Bayesian Geometric Mean (EBGM), and the EB05 n FAERS is a large, independent, public dataset containing real-world data that can enable corresponding 90% CI (EB05, EB95) were estimated Nevirapine (n = 41) EBGM n Recently, a pooled analysis of four AIDS Clinical Trials Group (ACTG) studies (A5095, A5142, EB95 identification of potential signals for rare AEs A5175, A5202), identified an increased rate of suicidality with efavirenz-containing regimens n The threshold score above which a drug-event disproportionality signal is likely to be present Atazanavir (n = 13) compared to efavirenz-free regimens: is an EB05