+ Sept. 29, 2006
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Delta II Icesat-2 Mission Booklet
A United Launch Alliance (ULA) Delta II 7420-10 photon-counting laser altimeter that advances MISSION rocket will deliver the Ice, Cloud and land Eleva- technology from the first ICESat mission tion Satellite-2 (ICESat-2) spacecraft to a 250 nmi launched on a Delta II in 2003 and operated until (463 km), near-circular polar orbit. Liftoff will 2009. Our planet’s frozen and icy areas, called occur from Space Launch Complex-2 at Vanden- the cryosphere, are a key focus of NASA’s Earth berg Air Force Base, California. science research. ICESat-2 will help scientists MISSION investigate why, and how much, our cryosphere ICESat-2, with its single instrument, the is changing in a warming climate, while also Advanced Topographic Laser Altimeter System measuring heights across Earth’s temperate OVERVIEW (ATLAS), will provide scientists with height and tropical regions and take stock of the vege- measurements to create a global portrait of tation in forests worldwide. The ICESat-2 mission Earth’s third dimension, gathering data that can is implemented by NASA’s Goddard Space Flight precisely track changes of terrain including Center (GSFC). Northrop Grumman built the glaciers, sea ice, forests and more. ATLAS is a spacecraft. NASA’s Launch Services Program at Kennedy Space Center is responsible for launch management. In addition to ICESat-2, this mission includes four CubeSats which will launch from dispens- ers mounted to the Delta II second stage. The CubeSats were designed and built by UCLA, University of Central Florida, and Cal Poly. The miniaturized satellites will conduct research DELTA II For nearly 30 years, the reliable in space weather, changing electric potential Delta II rocket has been an industry and resulting discharge events on spacecraft workhorse, launching critical and damping behavior of tungsten powder in a capabilities for NASA, the Air Force Image Credit NASA’s Goddard Space Flight Center zero-gravity environment. -
Spring 2011 Cover Thru Page 11.Indd
ANGEL TALES MAGAZINE Spring/Summer 2011 Annual Report The Beck Family and the Launch of the GusMobile Spay/Neuter Van National Impact Rejuvenation Tips PAWS Chicago’s No Kill model spreading across for Older Pets the country www.pawschicago.org Spring 2011 cover thru page 11.indd 1 5/24/11 9:42:30 AM PAWS Chicago Dottie Cross Leaves a Legacy for Guardian ngel the Animals AProgram In 2004, Dottie Cross retired to pursue her dream of living on the road with her beloved rescue dogs – Biscuit, Jenny and Gus. Combining her interests as an adventurer and an animal lover, Dottie now spends her time rock climbing and educating people in Mexico on how to care for their pets in an effort to reduce the number of stray dogs living on the streets. However, while caring for other’s animals, a sudden accident put the future of her own dogs in perspective. “Knowing that my dogs will be loved and cared for after my death is a wonderful feeling.” Last year, Dottie fell while rock climbing and shattered her leg. As a single woman, she was concerned that, had she died, her dogs would be put down without having a plan in place for their care. Through the PAWS Chicago Guardian Angel program, Dottie has While in the process of updating her ensured the futures of Biscuit (5, Mix Breed), Jenny (3, Beagle Mix) trust, Dottie read about PAWS Chicago’s and Gus (3, Pit Bull Mix), should she be unable to care for them. Guardian Angel program and chose to make a planned gift that would enable her to provide shelter, food, veterinary care, medicines and loving new homes for countless animals long after she was gone. -
Gateway Program Acquisition Strategy Overview
70th International Astronautical Congress (IAC), Washington D.C., United States, 21-25 October 2019. Copyright ©2019 by the International Astronautical Federation (IAF). All rights reserved. IAC-19,E3,6,5,x53831 GATEWAY PROGRAM ACQUISITION STRATEGY OVERVIEW Emma Lehnhardta, Christopher Zavrelb, Nicole Herrmannc a National Aeronautics and Space Administration, Johnson Space Center, United States, [email protected] b Stellar Solutions Inc, United States, [email protected] c National Aeronautics and Space Administration, Headquarters, United States, [email protected] Abstract This paper will provide an overview of the acquisition strategy for the Gateway Program. The Gateway will be an outpost orbiting the Moon that provides vital support for a sustainable, long-term human return to the lunar surface, as well as a staging point for further deep space exploration. The Gateway will foster U.S. industry and international partnerships and enable multi-discipline utilization. The National Aeronautics and Space Administration (NASA) will lead this next step and will serve as the integrator of the spaceflight capabilities and contributions of U.S. commercial partners and international partners to develop the Gateway. The Gateway will be developed in a manner that will also allow future capabilities and collaborations with U.S. Government, private sector companies, and international partners. Gateway is embracing innovation and flexibility; both in system architecture and in procurement approach. The Gateway’s agile acquisition strategy will shape the entire system life cycle, from design and analysis through production, verification, launch, logistics and operations. This strategy will encourage new ways of doing business to accommodate new techniques, technologies and approaches; improving affordability and maximizing Gateway utility. -
One Hundred Ninth Congress of the United States of America
H. Con. Res. 448 Agreed to July 21, 2006 One Hundred Ninth Congress of the United States of America AT THE SECOND SESSION Begun and held at the City of Washington on Tuesday, the third day of January, two thousand and six Concurrent Resolution Whereas, on July 4, 2006, the National Aeronautics and Space Administration performed a successful launch of the Space Shuttle Discovery; Whereas this mission, known as STS–121, marks the second Return-to-Flight mission; Whereas the crew of the Discovery consisted of Colonel Steve Lindsey, Commander Mark Kelly, Piers Sellers, Ph.D, Lieutenant Colonel Mike Fossum, Commander Lisa Nowak, Stephanie Wil- son, and Thomas Reiter; Whereas the STS–121 mission tested Space Shuttle safety improve- ments, building on findings from Discovery’s flight last year, including a redesign of the Space Shuttle’s External Tank foam insulation, in-flight inspection of the shuttle’s heat shield, and improved imagery during launch; Whereas the STS–121 mission re-supplied the International Space Station by delivering more than 28,000 pounds of equipment and supplies, as well as added a third crew member to the International Space Station; Whereas, due to the overall success of the launch and on-orbit operations, the mission was able to be extended from 12 to 13 days, allowing for an additional space walk to the two origi- nally scheduled; Whereas the success of the STS–121 mission is a tribute to the skills and dedication of the Space Shuttle crew, the National Aeronautics and Space Administration, and its industrial part- ners; Whereas all Americans benefit from the technological advances gained through the Space Shuttle program; and Whereas the National Aeronautics and Space Administration plays a vital role in sustaining America’s preeminence in space: Now, therefore, be it Resolved by the House of Representatives (the Senate concur- ring), That it is the sense of Congress that the National Aeronautics and Space Administration be commended for— (1) the successful completion of the Space Shuttle Discov- ery’s STS–121 mission; and H. -
The Evolving Launch Vehicle Market Supply and the Effect on Future NASA Missions
Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com The Evolving Launch Vehicle Market Supply and the Effect on Future NASA Missions Presented at the 2007 ISPA/SCEA Joint International Conference & Workshop June 12-15, New Orleans, LA Bob Bitten, Debra Emmons, Claude Freaner 1 Presented at the 2007 ISPA/SCEA Joint Annual International Conference and Workshop - www.iceaaonline.com Abstract • The upcoming retirement of the Delta II family of launch vehicles leaves a performance gap between small expendable launch vehicles, such as the Pegasus and Taurus, and large vehicles, such as the Delta IV and Atlas V families • This performance gap may lead to a variety of progressions including – large satellites that utilize the full capability of the larger launch vehicles, – medium size satellites that would require dual manifesting on the larger vehicles or – smaller satellites missions that would require a large number of smaller launch vehicles • This paper offers some comparative costs of co-manifesting single- instrument missions on a Delta IV/Atlas V, versus placing several instruments on a larger bus and using a Delta IV/Atlas V, as well as considering smaller, single instrument missions launched on a Minotaur or Taurus • This paper presents the results of a parametric study investigating the cost- effectiveness of different alternatives and their effect on future NASA missions that fall into the Small Explorer (SMEX), Medium Explorer (MIDEX), Earth System Science Pathfinder (ESSP), Discovery, -
Photographs Written Historical and Descriptive
CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY HAER FL-8-B BUILDING AE HAER FL-8-B (John F. Kennedy Space Center, Hanger AE) Cape Canaveral Brevard County Florida PHOTOGRAPHS WRITTEN HISTORICAL AND DESCRIPTIVE DATA HISTORIC AMERICAN ENGINEERING RECORD SOUTHEAST REGIONAL OFFICE National Park Service U.S. Department of the Interior 100 Alabama St. NW Atlanta, GA 30303 HISTORIC AMERICAN ENGINEERING RECORD CAPE CANAVERAL AIR FORCE STATION, MISSILE ASSEMBLY BUILDING AE (Hangar AE) HAER NO. FL-8-B Location: Hangar Road, Cape Canaveral Air Force Station (CCAFS), Industrial Area, Brevard County, Florida. USGS Cape Canaveral, Florida, Quadrangle. Universal Transverse Mercator Coordinates: E 540610 N 3151547, Zone 17, NAD 1983. Date of Construction: 1959 Present Owner: National Aeronautics and Space Administration (NASA) Present Use: Home to NASA’s Launch Services Program (LSP) and the Launch Vehicle Data Center (LVDC). The LVDC allows engineers to monitor telemetry data during unmanned rocket launches. Significance: Missile Assembly Building AE, commonly called Hangar AE, is nationally significant as the telemetry station for NASA KSC’s unmanned Expendable Launch Vehicle (ELV) program. Since 1961, the building has been the principal facility for monitoring telemetry communications data during ELV launches and until 1995 it processed scientifically significant ELV satellite payloads. Still in operation, Hangar AE is essential to the continuing mission and success of NASA’s unmanned rocket launch program at KSC. It is eligible for listing on the National Register of Historic Places (NRHP) under Criterion A in the area of Space Exploration as Kennedy Space Center’s (KSC) original Mission Control Center for its program of unmanned launch missions and under Criterion C as a contributing resource in the CCAFS Industrial Area Historic District. -
Gao-21-306, Nasa
United States Government Accountability Office Report to Congressional Committees May 2021 NASA Assessments of Major Projects GAO-21-306 May 2021 NASA Assessments of Major Projects Highlights of GAO-21-306, a report to congressional committees Why GAO Did This Study What GAO Found This report provides a snapshot of how The National Aeronautics and Space Administration’s (NASA) portfolio of major well NASA is planning and executing projects in the development stage of the acquisition process continues to its major projects, which are those with experience cost increases and schedule delays. This marks the fifth year in a row costs of over $250 million. NASA plans that cumulative cost and schedule performance deteriorated (see figure). The to invest at least $69 billion in its major cumulative cost growth is currently $9.6 billion, driven by nine projects; however, projects to continue exploring Earth $7.1 billion of this cost growth stems from two projects—the James Webb Space and the solar system. Telescope and the Space Launch System. These two projects account for about Congressional conferees included a half of the cumulative schedule delays. The portfolio also continues to grow, with provision for GAO to prepare status more projects expected to reach development in the next year. reports on selected large-scale NASA programs, projects, and activities. This Cumulative Cost and Schedule Performance for NASA’s Major Projects in Development is GAO’s 13th annual assessment. This report assesses (1) the cost and schedule performance of NASA’s major projects, including the effects of COVID-19; and (2) the development and maturity of technologies and progress in achieving design stability. -
Spaceport News John F
Aug. 9, 2013 Vol. 53, No. 16 Spaceport News John F. Kennedy Space Center - America’s gateway to the universe MAVEN arrives, Mars next stop Astronauts By Steven Siceloff Spaceport News gather for AVEN’s approach to Mars studies will be Skylab’s Mquite different from that taken by recent probes dispatched to the Red Planet. 40th gala Instead of rolling about on the By Bob Granath surface looking for clues to Spaceport News the planet’s hidden heritage, MAVEN will orbit high above n July 27, the Astronaut the surface so it can sample the Scholarship Foundation upper atmosphere for signs of Ohosted a dinner at the what changed over the eons and Kennedy Space Center’s Apollo/ why. Saturn V Facility celebrating the The mission will be the first 40th anniversary of Skylab. The of its kind and calls for instru- gala featured many of the astro- ments that can pinpoint trace nauts who flew the missions to amounts of chemicals high America’s first space station. above Mars. The results are Six Skylab astronauts partici- expected to let scientists test pated in a panel discussion dur- theories that the sun’s energy ing the event, and spoke about slowly eroded nitrogen, carbon living and conducting ground- dioxide and water from the Mar- breaking scientific experiments tian atmosphere to leave it the aboard the orbiting outpost. dry, desolate world seen today. Launched unpiloted on May “Scientists believe the planet 14, 1973, Skylab was a complex CLICK ON PHOTO NASA/Tim Jacobs orbiting scientific laboratory. has evolved significantly over NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft rests on a processing the past 4.5 billion years,” said stand inside Kennedy’s Payload Hazardous Servicing Facility Aug. -
Nasa Launch Services Program
NASA LAUNCH SERVICES PROGRAM HELIOPHYSICS EXPLORERS MIDEX 2019 ANNOUNCEMENT OF OPPORTUNITY PRE-PROPOSAL CONFERENCE JULY 23, 2019 Diana Manent Calero Flight Projects Office 1 Launch Services Program Relationships (NASA/HEOMD/KSC) NASA HQ Bridenstine ISS CRS SPACE HUMAN SCIENCE TECHNOLOGY EXPLORATION Zurbuchen Reuter Bowersox Commercial Crew DIRECTOR, LAUNCH SERVICES OFFICE FLIGHT NORMAN PLANNING KENNEDY PROCUREMENT BOARD SPACE CENTER RESOURCES CABANA INFRASTRUCTURE LAUNCH IT LEGAL ETC. SPACECRAFT PROGRAMS SERVICES SAFETY & AND PROJECTS AT NASA PROGRAM ENGINEERING MISSION CENTERS ASSURANCE MITSKEVICH INDEPENDENT TECHNICAL AUTHORITIES Interfaces to other NASA Centers Support Contractor Interface SSC MSFC, GRC ELVIS (AI Solutions) PROPULSION TECHNICAL SUPPORT SUPPORT SUPPORT CONTRACTOR 2 LSP Organizational Structure Matrixed Organizations LAUNCH SERVICES PROGRAM Amanda Mitskevich Chuck Dovale Risk Mgmt/Tech Policy SYSTEM INTEGRATION Business Development Darren Bedell LSP CHIEF ENGINEER Launch Manifest James Wood PROCUREMENT LAUNCH DIRECTOR Coordination John Vondenhuevel Omar Baez Engineering Mission Management Bob Mott Pre-Phase A–E CHIEF FINANCIAL OFFICE FLIGHT PROJECTS HQ McKinney Albert Sierra Chief Safety Officer Rick Boutin Contracts CHIEF COUNSEL Budgeting Joe Batey PROGRAM BUSINESS S & MA Bobbi Gnan Raoul Caimi Strategic Planning Technical Authority Center Support PROGRAM PLANNING Policy Lisa Haber FLEET & SYSTEMS MGMT FLIGHT ANALYSIS INFRASTRUCTURE MGMT Jenny Lyons/Denise Pham Mike Carney Ralph Mikulas Fleet Flight Dynamics Ground -
CAPSTONE: a Cubesat Pathfinder for the Lunar Gateway Ecosystem
SSC21-II-06 CAPSTONE: A CubeSat Pathfinder for the Lunar Gateway Ecosystem Thomas Gardner, Brad Cheetham, Alec Forsman, Cameron Meek, Ethan Kayser, Jeff Parker, Michael Thompson Advanced Space, LLC 1400 W 122nd Ave Ste 200, Westminster, CO 80234; (720) 545-9191 [email protected] Tristan Latchu, Rebecca Rogers Tyvak Nano-Satellite Systems 15333 Barranca Parkway, Irvine, CA 92618; (949) 351-4150 [email protected] Brennan Bryant, Tomas Svitek Stellar Exploration, Inc 835 Airport Dr, San Luis Obispo, CA 93401; (805) 316-0352 [email protected] ABSTRACT The cislunar environment is about to get much busier and with this increase in traffic comes an increase in the demand for limited resources such as Earth based tracking of and communications with assets operating in and around the Moon. With the number of NASA, commercial, and international missions to the Moon growing rapidly in the next few years, the need to make these future endeavors as efficient as possible is a challenge that is being solved now. Advanced Space is aiming to mitigate these resource limitations by enabling the numerous spacecraft in the cislunar environment to navigate autonomously and reduce the need for oversubscribed ground assets for navigation and maneuver planning. Scheduled to launch on a Rocket Lab Electron in October 2021, the Cislunar Autonomous Positioning System Technology Operations and Navigation Experiment (CAPSTONE) mission will leverage a 12U CubeSat to demonstrate both the core software for the Cislunar Autonomous Positioning System (CAPS) as well as a validation of the mission design and operations of the Near Rectilinear Halo Orbit (NRHO) that NASA has baselined for the Artemis Lunar Gateway architecture. -
Private Sector Lunar Exploration Hearing
PRIVATE SECTOR LUNAR EXPLORATION HEARING BEFORE THE SUBCOMMITTEE ON SPACE COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED FIFTEENTH CONGRESS FIRST SESSION SEPTEMBER 7, 2017 Serial No. 115–27 Printed for the use of the Committee on Science, Space, and Technology ( Available via the World Wide Web: http://science.house.gov U.S. GOVERNMENT PUBLISHING OFFICE 27–174PDF WASHINGTON : 2017 For sale by the Superintendent of Documents, U.S. Government Publishing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HON. LAMAR S. SMITH, Texas, Chair FRANK D. LUCAS, Oklahoma EDDIE BERNICE JOHNSON, Texas DANA ROHRABACHER, California ZOE LOFGREN, California MO BROOKS, Alabama DANIEL LIPINSKI, Illinois RANDY HULTGREN, Illinois SUZANNE BONAMICI, Oregon BILL POSEY, Florida ALAN GRAYSON, Florida THOMAS MASSIE, Kentucky AMI BERA, California JIM BRIDENSTINE, Oklahoma ELIZABETH H. ESTY, Connecticut RANDY K. WEBER, Texas MARC A. VEASEY, Texas STEPHEN KNIGHT, California DONALD S. BEYER, JR., Virginia BRIAN BABIN, Texas JACKY ROSEN, Nevada BARBARA COMSTOCK, Virginia JERRY MCNERNEY, California BARRY LOUDERMILK, Georgia ED PERLMUTTER, Colorado RALPH LEE ABRAHAM, Louisiana PAUL TONKO, New York DRAIN LAHOOD, Illinois BILL FOSTER, Illinois DANIEL WEBSTER, Florida MARK TAKANO, California JIM BANKS, Indiana COLLEEN HANABUSA, Hawaii ANDY BIGGS, Arizona CHARLIE CRIST, Florida ROGER W. MARSHALL, Kansas NEAL P. DUNN, Florida CLAY HIGGINS, Louisiana RALPH NORMAN, South Carolina SUBCOMMITTEE ON SPACE HON. BRIAN BABIN, Texas, Chair DANA ROHRABACHER, California AMI BERA, California, Ranking Member FRANK D. LUCAS, Oklahoma ZOE LOFGREN, California MO BROOKS, Alabama DONALD S. -
LSP Brochure
National Aeronautics and Space Administration There’s a reason challenging endeavours are called ‘rocket science’... Table of Contents Introduction NASA’s Launch Services Program (LSP) assists customers who Table of Contents ................................................................................1 need specialized, high-technology support world-wide, and Introduction & Objective .......................................................................2 enables some of NASA’s greatest scientific missions and technical achievements. Let’s explore LSP’s ‘earth’s bridge to space.’ Rocket Science 411~Take 1 ............................................................ 3-4 Strategy ........................................................................................... 5-6 Services .......................................................................................... 7-8 Rocket Science 411~Take 2 ...............................................................9 Objective Launch Fleet ......................................................................................10 This portfolio is intended to educate and connect you to some of Launch Vehicle Capabilities, Primary Missions ............................. 11-14 NASA’s most significant unmanned missions, and to highlight the Small Satellite Missions ............................................................... 15-18 contributions made by LSP. Through enriching your understanding of LSP’s benefit to NASA, you may also realize its benefit to you LSP Launch Sites ........................................................................