Body Lice and Pubic Lice1 C
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000). -
Chewing and Sucking Lice As Parasites of Iviammals and Birds
c.^,y ^r-^ 1 Ag84te DA Chewing and Sucking United States Lice as Parasites of Department of Agriculture IVIammals and Birds Agricultural Research Service Technical Bulletin Number 1849 July 1997 0 jc: United States Department of Agriculture Chewing and Sucking Agricultural Research Service Lice as Parasites of Technical Bulletin Number IVIammals and Birds 1849 July 1997 Manning A. Price and O.H. Graham U3DA, National Agrioultur«! Libmry NAL BIdg 10301 Baltimore Blvd Beltsvjlle, MD 20705-2351 Price (deceased) was professor of entomoiogy, Department of Ento- moiogy, Texas A&iVI University, College Station. Graham (retired) was research leader, USDA-ARS Screwworm Research Laboratory, Tuxtia Gutiérrez, Chiapas, Mexico. ABSTRACT Price, Manning A., and O.H. Graham. 1996. Chewing This publication reports research involving pesticides. It and Sucking Lice as Parasites of Mammals and Birds. does not recommend their use or imply that the uses U.S. Department of Agriculture, Technical Bulletin No. discussed here have been registered. All uses of pesti- 1849, 309 pp. cides must be registered by appropriate state or Federal agencies or both before they can be recommended. In all stages of their development, about 2,500 species of chewing lice are parasites of mammals or birds. While supplies last, single copies of this publication More than 500 species of blood-sucking lice attack may be obtained at no cost from Dr. O.H. Graham, only mammals. This publication emphasizes the most USDA-ARS, P.O. Box 969, Mission, TX 78572. Copies frequently seen genera and species of these lice, of this publication may be purchased from the National including geographic distribution, life history, habitats, Technical Information Service, 5285 Port Royal Road, ecology, host-parasite relationships, and economic Springfield, VA 22161. -
1779-80 Encampment
yr / 1 ■>**' / « * 2 T ¿ v/.- X» '.- .I 3 2 1 !1 3 7 9 ? 7 MORRISTOWN NATIONAL HISTORICAL PARK 1779-80 ENCAMPMENT A STUDY OF MEDICAL SERVICES APRIL 1971 MORRISTOWN NATIONAL HISTORICAL PARK 1779-80 ENCAMPMENT A STUDY OF MEDICAL SERVICES by RICARDO TORRES-REYES OFFICE OF HISTORY AND HISTORIC ARCHITECTURE EASTERN SERVICE CENTER WASHINGTON, D. C. APRIL 1971 UNITED STATES DEPARTMENT OF THE INTERIOR NATIONAL PARK SERVICE Foreword This report on the medical services at Morristown during the winter encampment of 1779-80 was undertaken to restudy and evaluate the subject in the light of the standard practices of the Continental Army Medical Department. One phase of the evaluation is to determine if the existence and location of the present replica of the so-called Tilton Hospital in the Jockey Hollow area can be justified historically. For interpretive purposes, the report reviews the organic structure of the medical or hospital department, identifies and describes health problems and diseases, and outlines the medical resources of the military surgeons to combat incident diseases and preserve the health of the soldiers. Research on the subject was conducted at the Library of Congress, the National Archives, Pennsylvania Historical Society, American Philosophical Society, the Library Company of Philadelphia and the Morristown NHP library. Several persons contributed to the completion of this study. As usual, Superintendent Stephen H. Lewis and Historians Bruce W. Steward and Diana F. Skiles provided splendid cooperation during my stay in the park; Leah S. Burt, Assistant Park Archivist, located Dr. Cochran's "LetterBook" in the Morristown Public Library. In the National Archives, the diligent efforts of Miss Marie Bouhnight, Office of Old Military Records, resulted in locating much-needed hospital returns of Valley Forge, Middlebrook and Morristown. -
Taxa Names List 6-30-21
Insects and Related Organisms Sorted by Taxa Updated 6/30/21 Order Family Scientific Name Common Name A ACARI Acaridae Acarus siro Linnaeus grain mite ACARI Acaridae Aleuroglyphus ovatus (Troupeau) brownlegged grain mite ACARI Acaridae Rhizoglyphus echinopus (Fumouze & Robin) bulb mite ACARI Acaridae Suidasia nesbitti Hughes scaly grain mite ACARI Acaridae Tyrolichus casei Oudemans cheese mite ACARI Acaridae Tyrophagus putrescentiae (Schrank) mold mite ACARI Analgidae Megninia cubitalis (Mégnin) Feather mite ACARI Argasidae Argas persicus (Oken) Fowl tick ACARI Argasidae Ornithodoros turicata (Dugès) relapsing Fever tick ACARI Argasidae Otobius megnini (Dugès) ear tick ACARI Carpoglyphidae Carpoglyphus lactis (Linnaeus) driedfruit mite ACARI Demodicidae Demodex bovis Stiles cattle Follicle mite ACARI Demodicidae Demodex brevis Bulanova lesser Follicle mite ACARI Demodicidae Demodex canis Leydig dog Follicle mite ACARI Demodicidae Demodex caprae Railliet goat Follicle mite ACARI Demodicidae Demodex cati Mégnin cat Follicle mite ACARI Demodicidae Demodex equi Railliet horse Follicle mite ACARI Demodicidae Demodex folliculorum (Simon) Follicle mite ACARI Demodicidae Demodex ovis Railliet sheep Follicle mite ACARI Demodicidae Demodex phylloides Csokor hog Follicle mite ACARI Dermanyssidae Dermanyssus gallinae (De Geer) chicken mite ACARI Eriophyidae Abacarus hystrix (Nalepa) grain rust mite ACARI Eriophyidae Acalitus essigi (Hassan) redberry mite ACARI Eriophyidae Acalitus gossypii (Banks) cotton blister mite ACARI Eriophyidae Acalitus vaccinii -
Human Lice ARTHUR L
WSU Puyallup REC PLS-110 Update d April 2003 Human Lice ARTHUR L. ANTONELLI, Extension Entomologist, Washington State University-Puyallup LYNDEN P. BAUM, Vector Control Consultant, Health Services Division, Dept. of Social & Health Services Human lice infestations have become more common over the last several years. This may be a result of changing life styles, such as the increase in communal living, transient residency, and the tolerance of promiscuity. As the infestations become widespread, it is important to become knowledgeable about lice, conditions that favor infestation, and prevention and control. Generally, lice spread rapidly under conditions (frequently unsanitary) of crowding or close personal contact. These conditions occur in many schools where children are in contact through play (head lice particularly), in certain living conditions of military personnel in overseas operations, in slum areas, in increased sexual contacts, and to a lesser degree in public toilet facilities. Other activities can also lead to louse infestations. These include the sharing or lending of personal items, such as combs, towels, hats, and other articles of clothing. To temporarily acquire a louse is not necessarily an indication of life style or personal hygiene- anyone can acquire lice. This could happen through standing in a crowded bus or waiting in a line next to an infested individual. Such an infestation could be temporary and may even go unnoticed if the person acquiring lice under these circumstances practices good hygienic habits. Further discussion of prevention methods and ultimate control of lice appears later under separate headings. The implications of louse infestation (called Pediculosis) are several-fold. -
Phthiraptera: Ischnocera: Philopteridae) on Sandpipers (Aves: Charadriiformes: Scolopacidae)
Systematic Entomology (2017), 42, 509–522 DOI: 10.1111/syen.12227 Unexpected distribution patterns of Carduiceps feather lice (Phthiraptera: Ischnocera: Philopteridae) on sandpipers (Aves: Charadriiformes: Scolopacidae) DANIEL R. GUSTAFSSON1 andURBAN OLSSON2 1Department of Biology, University of Utah, Salt Lake City, UT, U.S.A. and 2Systematics and Biodiversity, Department of Zoology, University of Gothenburg, Gothenburg, Sweden Abstract. The louse genus Carduiceps Clay & Meinertzhagen, 1939 is widely distributed on sandpipers and stints (Calidrinae). The current taxonomy includes three species on the Calidrinae (Carduiceps meinertzhageni, Carduiceps scalaris, Carduiceps zonarius) and four species on noncalidrine hosts. We estimated a phylogeny of four of the seven species of Carduiceps (the three mentioned above and Carduiceps fulvofasciatus) from 13 of the 29 hosts based on three mitochondrial loci, and evaluated the relative importance of flyway differentiation (same host species has different lice along different flyways) and flyway homogenization (different host species have the same lice along the same flyway). We found no evidence for either process. Instead, the present, morphology-based, taxonomy of the genus corresponds exactly to the gene-based phylogeny, with all four included species monophyletic. Carduiceps zonarius is found both to inhabit a wider range of hosts than wing lice of the genus Lunaceps occurring on the same group of birds, and to occur on Calidris sandpipers of all sizes, both of which are unexpected for a body louse. The previously proposed family Esthiopteridae is found to be monophyletic with good support. The concatenated dataset suggests that the pigeon louse genus Columbicola may be closely related to the auk and diver louse genus Craspedonirmus. -
Publications from 2018 Abad JS, Truyols SL
Publications from 2018 Abad JS, Truyols SL, Sanjuan VP, Carpio EG. Un caso de prurito incoercible. Medicina Clínica 2018; 5(4): 214. doi: 10.1016/j.medcli.2017.10.031. *pdf available. Abbas A, Abbas RZ, Masood S, Iqbal Z, Khan MK, Saleemi MK, Raza MA, Mahmood MS, Khan JA, Sindhu ZD. Acaricidal and insecticidal effects of essential oils against ectoparasites of veterinary importance. Boletín Latinamericano y del Caribe de Plantas Medicinales y Aromáticas 2018; 17(5): 441-452. *pdf available Abdessamed, A, Nouidjem, Y, Saheb, M, Dik, B, Hadjab, R, Bougoudjil, S. First data on identification of avian lice Ciconiphilus decimfasciatus (Boiduvale and Lacordaire, 1835). Species parasitizing Cattle Egrets (Bubulcus ibis) in Eastern of Algeria. World Journal of Environmental Biosciences 2018; 7(2): 45-49. *pdf available. Abdulkareem BO, Christy AL, Samuel UU. Prevalence of ectoparasite infestations in owned dogs in Kwara State, Nigeria. Parasite Epidemiology and Control 2018; 3: e00079. doi: 10.1016/j.parepi.2018.e00079. *pdf available Abdullah SH, Mohammed AA, Saeid NM. Study of ecto and haemo parasites in domestic pigeons (Columba livia domestica) in Sulaimani province Kurdistan region Iraq. Journal of Zankoy Sulaimani 2018; 20-1 doi: 10.17656/jzs.10640. *pdf available Acıöz M, Öztürk T. Investigation of the prevalence of Pediculus humanus capitis and risk factors in a village in Isparta. Turkiye Parazitoliji Dergisi. 2018; 42: 202-206. doi: 10.5152/tpd.2018.5217. [Epub Jul 3] *pdf available Ahmad A. Egg laying pattern and the egg morphology of an ischnoceran louse, Goniocotes jirufti (Ansari, 1947) parasitizing black partridges, Francolinus francolinus (Phthiraptera: Ischnocera). -
Human Lice: Body Louse, Pediculus Humanus Humanus Linnaeus and Head Louse, Pediculus Humanus Capitis De Geer (Insecta: Phthiraptera (=Anoplura): Pediculidae)1 H
EENY-104 Human Lice: Body Louse, Pediculus humanus humanus Linnaeus and Head Louse, Pediculus humanus capitis De Geer (Insecta: Phthiraptera (=Anoplura): Pediculidae)1 H. V. Weems and T. R. Fasulo2 Introduction Human louse infestation, called pediculosis, can spread rapidly and may reach epidemic proportions if left un- Throughout time, lice, particularly head lice (Pediculus checked. In a group of people, such factors as age, race (for humanus capitis De Geer), have been a common reoccur- example, African-Americans are rarelyinfested with head ring problem, especially in schools. Millions of American lice (Slonka et al. 1975)), sex, crowding at home, family size, school children may encounter head lice during the school and method of closeting clothes influence the course and year. Head louse infestations throughout the United States distribution of the disease. The length of the hair does not affect people on all social and economic levels. appear to be a significant factor. Before World War II, head lice were fairly common in the It is generallyassumed that body lice evolved from head lice United States, body and crab lice much less so. After World after mankind began wearing clothes. War II and the emergence of DDT as a louse control agent, outbreaks of lice were much less common. Now lice again are intruding into the environment of the average Ameri- Identification can. Lice or their eggs are easily transmitted from person Three types of lice infest humans: the body louse, Pediculus to person on shared hats, coats, scarves, combs, brushes, humanus humanus Linnaeus, also known as Pediculus towels, bedding, upholstered seats in public places, and by humanus corporis; the head louse Pediculus humanus capitis personal contact. -
Pediculus Humanus)
Edinburgh Research Explorer The unusual reproductive system of head and body lice (Pediculus humanus) Citation for published version: García de la Filia, A, Andrews, S, Clark, JM & Ross, L 2018, 'The unusual reproductive system of head and body lice (Pediculus humanus)', Medical and veterinary entomology, vol. 32, no. 2, pp. 226-234. https://doi.org/10.1111/mve.12287 Digital Object Identifier (DOI): 10.1111/mve.12287 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Medical and veterinary entomology Publisher Rights Statement: © 2017 The Authors. Medical and Veterinary Entomology published by John Wiley & Sons Ltd on behalf of Royal Entomological Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 27. Sep. 2021 Medical and Veterinary Entomology (2017), doi: 10.1111/mve.12287 The unusual reproductive system of head and body lice (Pediculus humanus) A. -
Crab Louse, Pthirus Pubis (Linnaeus) (Insecta: Phthiraptera (Anoplura): Pediculidae)1 H
EENY-103 Crab Louse, Pthirus pubis (Linnaeus) (Insecta: Phthiraptera (Anoplura): Pediculidae)1 H. V. Weems and T. R. Fasulo2 Introduction caused by Borrellia recurrentis (Lebert) Bergy et al. (PAHO 1973). Sucking lice are small wingless external parasites that feed on blood. Three types of sucking lice infest humans: the Crab lice most commonly inhabit adults and are not found body louse, Pediculus humanus humanus Linnaeus, also on children prior to puberty. Infestation with crab lice is known as Pediculus humanus corporis; the head louse, said to result most often from contact during coitus. As Pediculus humanus capitis De Geer; and the crab louse or with body lice and head lice, but less so with crab lice, pubic louse, Pthirus pubis (Linnaeus). transmission may occur from crowding of infested clothing with uninfested clothing in locker rooms and gymnasiums, The head louse and the body louse are morphologically by sleeping in infested beds, or from contact with badly indistinguishable, but are easily distinguished from the infested persons in a crowd. Pubic lice tend to remain on crab louse. The crab louse usually infests the hairs of the their hosts throughout their lives unless dislodged, taken off pubic and perineal regions, but may move to the armpits, with clothing, or controlled. beard, or mustache. It occurs rarely on the eyelids and in a few instances has been found in all stages on the scalp of Little is known about the incidence of infestation with unusually hairy individuals. It is relatively immobile when Pthirus in a human community, but generally it seems on the host, remaining attached and feeding for hours or to be much lower than with Pediculus. -
For Peer Review Onlyemail: [email protected] 7
Page 1 of 48 Systematic Biology 1 Robert S. de Moya 2 Department of Entomology 3 University of Illinois Urbana-Champaign 4 505 S. Goodwin Ave. 5 Urbana, IL 61801 6 For Peer Review OnlyEmail: [email protected] 7 8 Phylogenomics of parasitic and non-parasitic lice (Insecta: Psocodea): Combining sequence data 9 and Exploring compositional bias solutions in Next Generation Datasets 10 Robert S. de Moya1,2, Kazunori Yoshizawa3, Kimberly K.O. Walden1, Andrew D. Sweet4, 11 Christopher H. Dietrich2, Kevin P. Johnson2 12 1Department of Entomology, University of Illinois Urbana-Champaign, 505 S. Goodwin Ave., 13 Urbana, IL 61801, USA 14 2Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 15 61820, USA 16 3Systematic Entomology, School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan 17 4Department of Entomology, Purdue University, 901 W. State St., West Lafayette, IN 47907, 18 USA 19 http://mc.manuscriptcentral.com/systbiol Systematic Biology Page 2 of 48 de Moya et al. 20 Abstract 21 22 The insect order Psocodea is a diverse lineage comprising both parasitic (Phthiraptera) 23 and non-parasitic members (Psocoptera). The extreme age and ecological diversity of the group 24 may be associated with major genomic changes, such as base compositional biases expected to 25 affect phylogeneticFor inference. Peer Divergent morphologyReview between Only parasitic and non-parasitic 26 members has also obscured the origins of parasitism within the order. We conducted a 27 phylogenomic analysis on the order Psocodea utilizing both transcriptome and genome 28 sequencing to obtain a data set of 2,370 orthologous genes. -
Lice of Public Health Importance and Their Control
LICE OF PUBLIC HEALTH IMPORTANCE AND THEIR CONTROL Training Guide - Insect Control Series Harry D. Pratt and Kent S. Littig U. S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE PUBLIC HEALTH SERVICE Communicable Disease Center Atlanta, Georgia 1961 This publication is Part VUG of the Insect Control Series to be published by the U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE, PUBLIC HEALTH SERVICE as PHS Publication No. 772 Additional parts in the series will appear at intervals. Public Health Service Publication No. 772 Insect Control Series: Part VIII UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1961 For sate by the Superintendent of Documents, U.S. Government Printing Office, Washington 25, D.C, - Price 20 cents CONTENTS INTRODUCTION ........................................................ 1 LICE AND HISTORY...................................................... 1 EPIDEMIC TYPHUS ...................................................... 2 The Typhus Organism. ................................................. 2 Cycle of Rickeffsia prowazeki ............................................ 3 Modern Epidemic Typhus Control .......................................... 3 TRENCH FEVER ............ ..... ...................................... 4 RELAPSING FEVERS .................................................... 4 GENERAL BIOLOGY OF SUCKING LICE ......................................... 5 BIOLOGY AND HABITS OF THE HEAD AND BODY LOUSE ............................ 5 The Egg .......................................................... 5 The Nymph