Powerpoint Handout: Lab 10, Arm, Cubital Fossa, and Elbow Joint

Total Page:16

File Type:pdf, Size:1020Kb

Powerpoint Handout: Lab 10, Arm, Cubital Fossa, and Elbow Joint PowerPoint Handout: Lab 10, Arm, Cubital Fossa, and Elbow Joint Slide Title Slide Number Slide Title Slide Number Osteology of Elbow Complex Slide 2 Supracondylar Fractures Slide 16 Review of Superficial Veins in Arm Slide 3 Radial Head Fracture Slide 17 Arm: Introduction Slide 4 Median Nerve Lesion at Elbow Slide 18 Arm: Anterior Compartment Muscles Slide 5 Radial Nerve Slide 19 Arm: Posterior Compartment Muscles Slide 6 Humeral Shaft Fracture Slide 20 Cubital Fossa Slide 7 Medial Cutaneous Nerve of Arm Slide 21 Brachial Artery Slide 8 Elbow Joint Complex Slide 22 Brachial Artery Pulse Slide 9 Elbow Capsule & Ligaments Slide 23 Bicipital Aponeurosis Slide 10 Nursemaid’s Elbow Slide 24 Musculocutaneous Nerve Slide 11 Olecranon Bursitis (Student’s Bursitis) Slide 25 Ulnar Nerve Slide 12 Ulnar Nerve Lesion at Elbow Slide 13 Ulnar Nerve Lesion at Wrist Slide 14 Median Nerve Slide 15 Osteology of Elbow Complex To adequately review the learning objectives covering osteology of the distal humerus, radius, and ulna, view the Lower Limb Osteology and Medical Imaging Guide. Review of Superficial Veins in Arm The cephalic and basilic veins are the main superficial veins of the upper limb. They originate from the dorsal venous network on the dorsum of the hand. • The cephalic vein ascends along the anterolateral aspect of the forearm and arm. It then follows the superior border of the pectoralis major muscle to enter the deltopectoral triangle. It ultimately joins the axillary vein after passing through the clavipectoral fascia. • The basilic vein ascends along the medial forearm and the arm. In the arm, it passes deep to the brachial fascia where it courses in close proximity to the brachial artery and medial cutaneous nerve of the forearm along its path into the axilla. In the axilla, it joins with venae comitantes (accompanying axillary artery) to form the axillary vein. • The median cubital vein is a branch of the cephalic vein that passes obliquely across the anterior elbow region (cubital fossa) to join with the basilic vein. CLINICAL ANATOMY: Veins in the dorsal venous network are commonly used for long-term introduction of fluids. Arm: Introduction The arm consists of the humerus, which articulates proximally and distally. Glenohumeral (Shoulder) Joint • Proximally, the humerus articulates with the scapula at the glenohumeral (shoulder) joint. • Distally, the humerus articulates with the forearm at the elbow joint The fascia of the arm separates the arm’s muscles into two compartments. • Anterior: The anterior compartment of the arm contains primarily flexors of the shoulder and elbow. • The muscles of the anterior compartment are innervated by the musculocutaneous nerve (motor and sensory). • Blood supply is from the brachial artery. • Posterior: The posterior compartment of the arm contains primarily extensors of the shoulder and elbow. • The muscles of the posterior compartment are innervated by the radial nerve (motor and sensory). • Blood supply is from the deep brachial artery. Elbow Joint • Humeroulnar Joint • Humeroradial Joint • Radioulnar Joint Arm: Anterior Compartment Muscles MUSCLE INNERVATION BLOOD SUPPLY ACTION Biceps brachii Musculocutaneous n Brachial a Flexes and supinates forearm Coracobrachialis Musculocutaneous n Brachial a Adducts and flexes arm Brachialis Musculocutaneous n Brachial a Flexes forearm FUNCTIONAL ANATOMY: Because the biceps brachii muscle inserts on the radial tuberosity it is capable of supinating the forearm when the elbow is flexed. In this position, the biceps brachii is the most powerful supinator of the forearm. https://3d4medic.al/2gPqFlNq https://3d4medic.al/PPKGOOIE Arm: Posterior Compartment Muscles MUSCLE INNERVATION BLOOD SUPPLY ACTION • Medial Head: Radial n. • Lateral Head: Radial n. Triceps brachii Deep Brachial a Extends forearm • Long Head: Radial n. (in addition to radial, sometimes innervation by axillary n) https://3d4medic.al/7Z6xn1C2 https://3d4medic.al/4pXmeeTR Cubital Fossa The cubital fossa is a depression on the anterior side of the elbow that is a transition area between the arm and the forearm. The boundaries of the cubital fossa are listed below • Lateral: brachioradialis muscle • Medial: pronator teres muscle • Superior: an imaginary line connecting the epicondyles of the humerus • Roof: the bicipital aponeurosis • Floor: brachialis muscle (proximally) supinator muscle (distally) The contents of the cubital fossa are listed below from lateral to medial. • Bicipital tendon • Brachial artery • Median nerve • (Radial nerve: Technically , the radial nerve isn’t considered to be a structure within the cubital fossa, but courses close by as it passes along the deep surface of the brachioradialis muscle. In this area, it bifurcates into the superficial and deep radial nerves.) https://3d4medic.al/CmWeGhiV Brachial Artery The brachial artery is a continuation of the axillary artery after it crosses the tendon of the inferior border of the teres major muscle in the arm. • The profunda brachii artery (deep artery of the arm or deep brachial artery) is the first branch of the brachial artery in the arm. After branching from the brachial artery, it courses posteriorly to pass through the triceps hiatus along with the radial nerve to supply the posterior compartment of the arm. • The brachial artery courses through the arm in the medial bicipital groove along its path to the cubital fossa where it typically terminates by bifurcating into the radial and ulnar arteries. • It supplies blood to structures in the anterior compartment of the arm • At the elbow it gives off several collateral branches that supply the elbow joint. The elbow joint is also supplied by recurrent arteries that branch from the ulnar and radial arteries. CLINICAL ANATOMY: In approximately 3% of limbs, the bifurcation of the brachial artery occurs in the arm. When it does, the ulnar artery may course superficial to the superficial group of flexor muscles, where it can be mistaken for a superficial vein. A quick check for a pulse prevents such a mishap. https://3d4medic.al/sQCe946a https://3d4medic.al/Fhm3HUJE https://3d4medic.al/4pXmeeTR Brachial Artery Pulse CLINICAL ANATOMY: The best place to compress the brachial artery to control hemorrhage (bleeding) is in the middle of the arm, in what is known anatomically as the medial bicipital groove. In the proximal portion of the medial bicipital groove, the brachial artery is coursing between the biceps brachii and and the triceps brachii. In the distal part of the medial bicipital groove the brachial artery courses between brachialis and biceps brachii. The brachial pulse can be palpated easily in the proximal medial bicipital groove by pushing the biceps brachii muscle anteriorly to compress the brachial artery against the humerus. Bicipital Aponeurosis The bicipital aponeurosis (an aponeurosis is a broad, flat tendon) fuses with deep fascia of the proximal, medial forearm. The biceps brachii tendon crosses the cubital fossa deep to the bicipital aponeurosis on its path to its attachment on the radial tuberosity. https://3d4medic.al/hszyWLgA CLINICAL ANATOMY: The bicipital aponeurosis is located between the more superficial median cubital vein and the brachial artery, which is deep. Because of this location, the brachial artery is protected when blood is drawn from the median cubital vein during venipuncture. Musculocutaneous Nerve The musculocutaneous nerve pierces coracobrachialis and descends through the arm by passing between the biceps brachii and brachialis muscles. Ultimately, it emerges from between the biceps brachii, pierces the deep fascia, and continues into the forearm as the lateral antebrachial cutaneous nerve. • Motor innervation • Coracobrachialis • Biceps brachii https://3d4medic.al/idCSLm3n • Brachialis • Sensory innervation via lateral cutaneous nerve of forearm • Anterior lateral forearm CLINICAL ANATOMY: The musculocutaneous nerve is rarely injured because of its protected position beneath the biceps brachii muscle. If it is injured high up in the arm, this results in weakness of supination (biceps brachii) and forearm flexion (brachialis and biceps brachii) Ulnar Nerve In the arm, the Ulnar nerve pierces the medial intermuscular septum to course on the anterior surface of the medial head of the triceps brachii. It then passes https://3d4medic.al/DDP9bPKH posterior to the medial epicondyle of the humerus to enter the cubital tunnel, which is a fibro-osseous passage along the ulnar groove of the medial epicondyle of the humerus. It doesn’t give off any branches in the arm. The tunnel is bounded by the following structures: • Roof: humero-ulnar arcade (arcuate ligament of Osborne) • Floor: elbow joint capsule • Medial border: medial epicondyle • Lateral border: olecranon It enters the anterior compartment of the forearm by passing between the two heads of the flexor carpi ulnaris muscle. Ulnar Nerve Lesion at Elbow CLINICAL ANATOMY: • The most common site of ulnar nerve entrapment is at or near the elbow, especially in the the cubital tunnel. Cubital tunnel syndrome results from a narrowing of the cubital tunnel, which is reduced in size when the elbow is flexed. This reduction in size, increases pressure on the ulnar nerve and results in an ulnar neuropathy. The arcuate ligament of Osborne is thought to be the point of maximum compression in this condition. Cubital tunnel syndrome is diagnosed based on signs and symptoms of ulnar neuropathy. • Common symptoms include: • Pain and numbness in the elbow • Paresthesia/numbness on palmar and dorsal aspects of ulnar (medial) half of ring finger and all of little finger • More severe symptoms can include: • Weakened flexion of wrist (hand will deviate towards radial side during flexion) • Inability to flex MCP joints and extend PIP and DIP joints of ring and little finger • Inability to abduct and adduct the digits Ulnar Nerve Lesion at Wrist The second most likely site for ulnar nerve entrapment is at or near the wrist, especially in the area of the anatomic structure called the ulnar tunnel (canal of Guyon), which will be studied in detail in the next lab. However, it makes sense to compare an ulnar lesion at the elbow to a lesion at the wrist at this point in time.
Recommended publications
  • List: Bones & Bone Markings of Appendicular Skeleton and Knee
    List: Bones & Bone markings of Appendicular skeleton and Knee joint Lab: Handout 4 Superior Appendicular Skeleton I. Clavicle (Left or Right?) A. Acromial End B. Conoid Tubercle C. Shaft D. Sternal End II. Scapula (Left or Right?) A. Superior border (superior margin) B. Medial border (vertebral margin) C. Lateral border (axillary margin) D. Scapular notch (suprascapular notch) E. Acromion Process F. Coracoid Process G. Glenoid Fossa (cavity) H. Infraglenoid tubercle I. Subscapular fossa J. Superior & Inferior Angle K. Scapular Spine L. Supraspinous Fossa M. Infraspinous Fossa III. Humerus (Left or Right?) A. Head of Humerus B. Anatomical Neck C. Surgical Neck D. Greater Tubercle E. Lesser Tubercle F. Intertubercular fossa (bicipital groove) G. Deltoid Tuberosity H. Radial Groove (groove for radial nerve) I. Lateral Epicondyle J. Medial Epicondyle K. Radial Fossa L. Coronoid Fossa M. Capitulum N. Trochlea O. Olecranon Fossa IV. Radius (Left or Right?) A. Head of Radius B. Neck C. Radial Tuberosity D. Styloid Process of radius E. Ulnar Notch of radius V. Ulna (Left or Right?) A. Olecranon Process B. Coronoid Process of ulna C. Trochlear Notch of ulna Human Anatomy List: Bones & Bone markings of Appendicular skeleton and Knee joint Lab: Handout 4 D. Radial Notch of ulna E. Head of Ulna F. Styloid Process VI. Carpals (8) A. Proximal row (4): Scaphoid, Lunate, Triquetrum, Pisiform B. Distal row (4): Trapezium, Trapezoid, Capitate, Hamate VII. Metacarpals: Numbered 1-5 A. Base B. Shaft C. Head VIII. Phalanges A. Proximal Phalanx B. Middle Phalanx C. Distal Phalanx ============================================================================= Inferior Appendicular Skeleton IX. Os Coxae (Innominate bone) (Left or Right?) A.
    [Show full text]
  • Clinical Musculoskeletal Upper Limb Anatomy and Assessment
    Clinical Musculoskeletal Upper Limb Anatomy and Assessment Dr Matthew Szarko and Jeshni Amblum-Almér www.belmatt.co.uk 0207 692 8709 Email: [email protected] Contents: Shoulder Clinical Shoulder Anatomy Clinical Shoulder Assessment Clinical Case Studies of the Shoulder Elbow Clinical Elbow Anatomy Clinical Elbow Assessment Clinical Case Studies of the Elbow Wrist and Hand Clinical Wrist and Hand Anatomy Clinical Wrist and Hand Assessment Clinical Case Studies of the Wrist and Hand Clinical Shoulder Anatomy: The shoulder is the most mobile joint in the human body. Ranges of Movement - In which two of the following are we most mobile? Flexion, Extension, Abduction, Adduction Internal Rotation, External Rotation Clavicle o S-Shaped, double curved bone o Protects underlying brachial plexus and vascular structures. o Elevates along with upper limb elevation. Most clavicular fractures occur between the lateral 1/3 and medial 2/3. What is the characteristic deformity that results from a fractured clavicle? How does this affect mechanics of the shoulder? Clavicular Joints • Sternoclavicular joint • Acromioclavicular joint • Coracoacromial ligament What is the role of the acromion and coracoacromial ligament in maintaining glenohumeral stability? Scapula • Glenoid fossa • Spine • Acromion • Coracoid process • Supraglenoid tubercle • Infraglenoid tubercle • Supraspinous fossa • Infraspinous fossa • Subscapular fossa • Scapular notch Scapulothoracic Articulation Provides the following movements: Protraction, Retraction, Elevation, Rotation (during shoulder abduction): Proximal Humerus • Head • Anatomical neck • Surgical neck • Greater tubercle • Lesser tubercle • Intertubercular sulcus (bicipital groove) • Deltoid tuberosity • Spiral groove Glenohumeral Joint • Glenoid fossa • Glenoid labrum Extends the depth of the glenoid fossa to confer more stability. SLAP Tear - Detachment of Superior Labrum with Anterior-Posterior extension can occur from repetitive overhead activities or a sudden pull on the arm or compression (fall on outstretched arm).
    [Show full text]
  • Peripheral Nerve Examination Ortho433
    433 Orthopedic Team [Date] Peripheral Nerve Examination OSCE Peripheral Nerve Examination Learning Objectives: By the end of the teaching session, Students should be able to identify normality and abnormality by of the peripheral nerve by performing a proper physical examination. [email protected] 1 | P a g e 433 Orthopedic Team [Date] Peripheral Nerve Examination 1- Introduce yourself to the patient. 2- Confirm identity of the patient. ALWAYS 3- Explain and Obtain permission. COMPARE BOTH 4- Wash your hands and Ensure privacy. SIDES!!!! 5- Exposure: chest and arms, from umbilicus downward. 6- Position: standing\sitting - Follow same rule with U.L and L.L: Look Scars, ecchymosis, Muscle wasting/atrophy, dry cold skin, loss of hair, deformities. “Observe from front and behind” Feel Temperature, tenderness, Dermatome (pinprick\fine touch: Ask the patient to close his eyes and tell you if he felt your fine touch). “Check the dermatome next page” Move Active, Passive (motor power test against gravity and resistance). “Check the myotome next page” Special test Pulse, Capillary refill, Allen test “radial and ulnar arteries” 1st: Upper Limbs C4-T2 Radial .n (C5-T1) Median .n (C5-T1) Ulnar .n (C8-T1) Sensory Lateral 3 ½ dorsum of 3 1\2 lateral palm of the Medial 1 ½ fingers. the hand. hand. “test volar aspect of little 1st web space “test volar aspect of finger” index finger” Motor Wrist Dorsiflexion. Thumb Opposition Hypothenar muscles. Metacarpal joints “thumb to little finger” Abduction& Abduction of the extension. Thumb Abduction. fingers. Defect Wrist Drop Ape hand. Claw hand. Loss of sensory of Weak OK sign.
    [Show full text]
  • Scapular Dyskinesis
    Scapular Dyskinesis Presented by: Scott Sevinsky MSPT Presented by: Scott Sevinsky SPT 1 What is Scapular Dyskinesis? Alteration in the normal static or dynamic position or motion of the scapula during coupled scapulohumeral movements. Other names given to this catch-all phrase include: “floating scapula” and “lateral scapular slide”.1, 2 1 Alterations in scapular position and motion occur in 68 – 100% of patients with shoulder injuries. Scapular Dyskinesis Classification System 1, 3 Pattern Definitions Inferior angle At rest, the inferior medial scapular border may be prominent dorsally. During arm motion, the inferior (type I) angle tilts dorsally and the acromion tilts ventrally over the top of the thorax. The axis of the rotation is in the horizontal plane. Medial border At rest, the entire medial border may be prominent dorsally. During arm motion, the medial scapular (type II) border tilts dorsally off the thorax. The axis of the rotation is vertical in the frontal plane. Superior border At rest, the superior border of the scapula may be elevated and the scapula can also be anteriorly (type III) displaced. During arm motion, a shoulder shrug initiates movement without significant winging of the scapula occurring. The axis of this motion occurs in the sagittal plane. Symmetric At rest, the position of both scapula are relatively symmetrical, taking into account that the dominant scapulohumeral arm may be slightly lower. During arm motion, the scapulae rotate symmetrically upward such that the (type IV) inferior angles translate laterally away from the midline and the scapular medial border remains flush against the thoracic wall. The reverse occurs during lowering of the arm.
    [Show full text]
  • Bone Limb Upper
    Shoulder Pectoral girdle (shoulder girdle) Scapula Acromioclavicular joint proximal end of Humerus Clavicle Sternoclavicular joint Bone: Upper limb - 1 Scapula Coracoid proc. 3 angles Superior Inferior Lateral 3 borders Lateral angle Medial Lateral Superior 2 surfaces 3 processes Posterior view: Acromion Right Scapula Spine Coracoid Bone: Upper limb - 2 Scapula 2 surfaces: Costal (Anterior), Posterior Posterior view: Costal (Anterior) view: Right Scapula Right Scapula Bone: Upper limb - 3 Scapula Glenoid cavity: Glenohumeral joint Lateral view: Infraglenoid tubercle Right Scapula Supraglenoid tubercle posterior anterior Bone: Upper limb - 4 Scapula Supraglenoid tubercle: long head of biceps Anterior view: brachii Right Scapula Bone: Upper limb - 5 Scapula Infraglenoid tubercle: long head of triceps brachii Anterior view: Right Scapula (with biceps brachii removed) Bone: Upper limb - 6 Posterior surface of Scapula, Right Acromion; Spine; Spinoglenoid notch Suprspinatous fossa, Infraspinatous fossa Bone: Upper limb - 7 Costal (Anterior) surface of Scapula, Right Subscapular fossa: Shallow concave surface for subscapularis Bone: Upper limb - 8 Superior border Coracoid process Suprascapular notch Suprascapular nerve Posterior view: Right Scapula Bone: Upper limb - 9 Acromial Clavicle end Sternal end S-shaped Acromial end: smaller, oval facet Sternal end: larger,quadrangular facet, with manubrium, 1st rib Conoid tubercle Trapezoid line Right Clavicle Bone: Upper limb - 10 Clavicle Conoid tubercle: inferior
    [Show full text]
  • The Painful Shoulder Part II: Common Acute & Chronic Disorders
    The Painful Shoulder Part II: Common Acute & Chronic Disorders © Jackson Orthopaedic Foundation www.jacksonortho.org Presenters AJ Benham, DNP, FNP, ONC Kathleen Geier, DNP, FNP, ONC Jackson Orthopedic Foundation 3317 Elm Street - Suite 102 Oakland, CA 94609 [email protected] [email protected] http://www.orthoprimarycare.info/ Conflict Of Interest Disclosures We hereby certify that, to the best of our knowledge, no aspect of our current personal or professional situation might reasonably be expected to affect significantly our views on the subject on which we are presenting. Objectives • 1. Differentiate among common conditions associated with shoulder pain based on history and physical exam • 2. Formulate plans for imaging and treatment of specific shoulder conditions according to evidence based guidelines. • 3. Discuss indications & appropriate communication techniques for referral of patients with shoulder conditions to services including PT, surgery, etc. Common Sites of Shoulder Pain A A good place for a chart ACUTE CHRONIC • Fractures • Impingement Syndrome Humerus • Frozen Shoulder Clavicle Adhesive capsulitis Scapula • Biceps Tendonitis • *Dislocations • Labral Injury Humerus SLAP Tear AC Joint • Osteoarthritis SC Joint Glenohumeral • *Rotator Cuff Tear Acromioclavicular S.I.T.S. Muscles • Osteolysis Distal clavicle Shoulder Landmarks A A good place for a chart More Shoulder Landmarks A A good place for a chart Musculoskeletal Exam • Inspection • Palpation * • Range of Motion • Resisted Strength • Sensation • Provocative Testing * One joint above; one below www.jacksonortho.org ACUTE CHRONIC • Fractures • Impingement Syndrome Clavicle • Frozen Shoulder Humerus Adhesive capsulitis Scapula • Biceps Tendonitis • *Dislocations • Labral Injury Humerus SLAP Tear AC Joint • Osteoarthritis SC Joint Glenohumeral • *Rotator Cuff Tear Acromioclavicular S.I.T.S.
    [Show full text]
  • Anatomy and Physiology II
    Anatomy and Physiology II Review Bones of the Upper Extremities Muscles of the Upper Extremities Anatomy and Physiology II Review Bones of the Upper Extremities Questions From Shoulder Girdle Lecture • Can you name the following structures? A – F • Acromion F – B B • Spine of the Scapula G – C • Medial (Vertebral) Border H – E C • Lateral (Axillary) Border – A • Superior Angle E I – D • Inferior Angle – G • Head of the Humerus D – H • Greater Tubercle of Humerus – I • Deltoid Tuberosity Questions From Shoulder Girdle Lecture • Would you be able to find the many of the same landmarks on this view (angles, borders, etc)? A • Can you name the following? – D • Coracoid process of scapula C – C D B • Lesser Tubercle – A • Greater Tubercle – B • Bicipital Groove (Intertubercular groove) Questions From Upper Extremities Lecture • Can you name the following structures? – B • Lateral epicondyle – A • Medial epicondyle A B Questions From Upper Extremities Lecture • Can you name the following landmarks? – C • Olecranon process – A • Head of the radius – B D • Medial epicondyle B A – D C • Lateral epicondyle Questions From Upper Extremities Lecture • Can you name the following bones and landmarks? – Which bone is A pointing to? • Ulna – Which bone is B pointing A to? • Radius E – C B • Styloid process of the ulna – D • Styloid process of the radius C – E D • Interosseous membrane of forearm Questions From Upper Extremities Lecture • Can you name the following bony landmarks? – Which landmark is A pointing to? • Lateral epicondyle of humerus – Which
    [Show full text]
  • Brachial Plexus Injuries: an Interactive Teaching and Learning Academic Model
    International Journal of ChemTech Research CODEN (USA): IJCRGG, ISSN: 0974-4290, ISSN(Online):2455-9555 Vol.11 No.03, pp 01-08, 2018 Brachial plexus injuries: An interactive teaching and learning academic model Tarek M. El-gohary1,2*, Samiha M. Abdelkader3 1) Biomechanics Department, Faculty of Physical Therapy, Cairo University, Egypt 1) Board Certified Orthopedic Clinical Specialist, USA 1) Mechanical Diagnosis& Therapy, McKenzie Institute, USA 1) Pediatric Physical Therapy Consultant, NY,NY,USA 2) College of Medical Rehabilitation Sciences, Taibah University, Saudi Arabia 3) Physical Therapy Department, College of Applied Medical Science, King Saud University, Saudi Arabia Abstract : The purpose of this educational paper is to report the feedback from academics and students regarding newly introduced interactive teaching- learning model aiming to master brachial plexus injuries. An interactive questions and answers format was presented to number of academics and students at college of medical rehabilitation sciences. All academics and 90% of students reported that the newly introduced interactive teaching- learning model was helpful. It has been concluded that the interactive teaching- learning model is feasible and self- explanatory to be used and adopted by students and academics to facilitate the educational process. Keywords : Brachial plexus, injuries, teaching, learning, educational model. Introduction Brachial plexus is a group of intertwined nerves that emerge from the spinal cord in the cervical region and travel down the
    [Show full text]
  • Section 1 Upper Limb Anatomy 1) with Regard to the Pectoral Girdle
    Section 1 Upper Limb Anatomy 1) With regard to the pectoral girdle: a) contains three joints, the sternoclavicular, the acromioclavicular and the glenohumeral b) serratus anterior, the rhomboids and subclavius attach the scapula to the axial skeleton c) pectoralis major and deltoid are the only muscular attachments between the clavicle and the upper limb d) teres major provides attachment between the axial skeleton and the girdle 2) Choose the odd muscle out as regards insertion/origin: a) supraspinatus b) subscapularis c) biceps d) teres minor e) deltoid 3) Which muscle does not insert in or next to the intertubecular groove of the upper humerus? a) pectoralis major b) pectoralis minor c) latissimus dorsi d) teres major 4) Identify the incorrect pairing for testing muscles: a) latissimus dorsi – abduct to 60° and adduct against resistance b) trapezius – shrug shoulders against resistance c) rhomboids – place hands on hips and draw elbows back and scapulae together d) serratus anterior – push with arms outstretched against a wall 5) Identify the incorrect innervation: a) subclavius – own nerve from the brachial plexus b) serratus anterior – long thoracic nerve c) clavicular head of pectoralis major – medial pectoral nerve d) latissimus dorsi – dorsal scapular nerve e) trapezius – accessory nerve 6) Which muscle does not extend from the posterior surface of the scapula to the greater tubercle of the humerus? a) teres major b) infraspinatus c) supraspinatus d) teres minor 7) With regard to action, which muscle is the odd one out? a) teres
    [Show full text]
  • Shoulder Shoulder
    SHOULDER SHOULDER ⦿ Connects arm to thorax ⦿ 3 joints ◼ Glenohumeral joint ◼ Acromioclavicular joint ◼ Sternoclavicular joint ⦿ https://www.youtube.com/watch?v=rRIz6oO A0Vs ⦿ Functional Areas ◼ scapulothoracic ◼ scapulohumeral SHOULDER MOVEMENTS ⦿ Global Shoulder ⦿ Arm (Shoulder Movement Joint) ◼ Elevation ◼ Flexion ◼ Depression ◼ Extension ◼ Abduction ◼ Abduction ◼ Adduction ◼ Adduction ◼ Medial Rotation ◼ Medial Rotation ◼ Lateral Rotation ◼ Lateral Rotation SHOULDER MOVEMENTS ⦿ Movement of shoulder can affect spine and rib cage ◼ Flexion of arm Extension of spine ◼ Extension of arm Flexion of spine ◼ Adduction of arm Ipsilateral sidebending of spine ◼ Abduction of arm Contralateral sidebending of spine ◼ Medial rotation of arm Rotation of spine ◼ Lateral rotation of arm Rotation of spine SHOULDER GIRDLE ⦿ Scapulae ⦿ Clavicles ⦿ Sternum ⦿ Provides mobile base for movement of arms CLAVICLE ⦿ Collarbone ⦿ Elongated S shaped bone ⦿ Articulates with Sternum through Manubrium ⦿ Articulates with Scapula through Acromion STERNOCLAVICULAR JOINT STERNOCLAVICULAR JOINT ⦿ Saddle Joint ◼ Between Manubrium and Clavicle ⦿ Movement ◼ Flexion - move forward ◼ Extension - move backward ◼ Elevation - move upward ◼ Depression - move downward ◼ Rotation ⦿ Usually movement happens with scapula Scapula Scapula ● Flat triangular bone ● 3 borders ○ Superior, Medial, Lateral ● 3 angles ○ Superior, Inferior, Lateral ● Processes and Spine ○ Acromion Process, Coracoid Process, Spine of Scapula ● Fossa ○ Supraspinous, Infraspinous, Subscapularis, Glenoid SCAPULA
    [Show full text]
  • Clinical Approaches to the Wrist and Hand
    Clinical Approaches to the Wrist and Hand Dr. Matthew Szarko [email protected] Clinical Anatomy Wrist Anatomy • Ulna – Styloid process • Styloid process of ulna connected to triquetral and pisiform bones by ulnar carpal ligament. – Triangular fibrocartilage Wrist Anatomy • Radius – Articulating surface for scaphoid and lunate • Radioulnar joint – Head of ulna-ulnar notch on distal radius – Motion: Supination and pronation Wrist Anatomy • Colle’s Fracture – Complete transverse fracture within distal 2 cm of radius. – Distal fragment displaced dorsally. – Results from forced dorsiflexion (fall from outstretched limb) – Dinner fork deformity Wrist Anatomy • Carpals – Proximal Row • Moveable • Scaphoid • Lunate • Triquetrum • Pisiform – Within flexor carpi ulnaris tendon- enhances mechanical advantage. Wrist Anatomy • Carpals – Distal Row • Immobile • Trapezium • Trapezoid • Capitate • Hamate Hand Anatomy • Metacarpals – I-V – Head – Neck • Phalanges – Proximal – Intermediate – Distal Hand Anatomy • Joints – Carpometacarpal (CMC) Joints – Metacarpophalangeal (MCP)Joints – Interphalangeal • Proximal Interphalangeal Joint (PIP) • Distal Interphalangeal Joint (DIP) • Digital articulations all designed to function in flexion. Arches of the Hand • Intrinsic hand muscles maintain arches . Distal Transverse • Proximal Transverse . Head of 3rd metacarpal as – Capitate as keystone keystone – Relatively flexed . Passes through all the – Along immobile distal carpal row metacarpal heads . More mobile Arches of the Hand • Longitudinal – Connects
    [Show full text]
  • The Bicipital Aponeurosis
    Surg Radiol Anat DOI 10.1007/s00276-017-1885-0 ORIGINAL ARTICLE Ultrasound visualization of an underestimated structure: the bicipital aponeurosis 1 1 1 M. Konschake • H. Stofferin • B. Moriggl Received: 15 February 2017 / Accepted: 31 May 2017 Ó The Author(s) 2017. This article is an open access publication Abstract the BA. Therefore, we suggest additional BA scanning during Purpose We established a detailed sonographic approach to clinical examinations of several pathologies, not only for BA the bicipital aponeurosis (BA), because different pathologies augmentation procedures in distal biceps tendon tears. of this, sometimes underestimated, structure are associated with vascular, neural and muscular lesions; emphasizing its Keywords Bicipital aponeurosis Á Lacertus fibrosus Á further implementation in routine clinical examinations. Biceps brachii muscle Á Ultrasonography Methods The BA of 100 volunteers, in sitting position with the elbow lying on a suitable table, was investigated. Patients were aged between 18 and 28 with no history of Introduction distal biceps injury. Examination was performed using an 18–6 MHz linear transducer (LA435; system MyLab25 by The biceps brachii muscle (BM) is attached distally to the Esaote, Genoa, Italy) utilizing the highest frequency, radial tuberosity via the strong biceps tendon (BT) and to scanned in two planes (longitudinal and transverse view). the antebrachial fascia via the bicipital aponeurosis (BA), In each proband, scanning was done with and without also known as lacertus fibrosus. As previously described, isometric contraction of the biceps brachii muscle. the BT consists of two distinct portions separated by an Results The BA was characterized by two clearly distin- endotenon septum and surrounded by a common paratenon, guishable white lines enveloping a hypoechoic band.
    [Show full text]