Foothill Yellow-Legged Frog Comments

Total Page:16

File Type:pdf, Size:1020Kb

Foothill Yellow-Legged Frog Comments The Center for Biological Diversity submits the following information for the status review of the foothill yellow-legged frog (Rana boylii) (Docket #FWS-R8-ES-2015-0050), including substantial new information regarding the species' biology, population structure (including potential Distinct Population Segments of the species), historical and recent distribution and status, population trends, documented range contraction, habitat requirements, threats to the species and its habitat, disease, and the potential effects of climate change on the species and its habitat. The foothill yellow-legged frog has experienced extensive population declines throughout its range and a significant range contraction. Multiple threats continue unabated throughout much of the species’ remaining range, including impacts from dams, water development, water diversions, timber harvest, mining, marijuana cultivation, livestock grazing, roads and urbanization, recreation, climate change and UV-radiation, pollution, invasive species and disease. The species warrants listing as threatened under the Endangered Species Act. Contact: Jeff Miller, [email protected] Contents: NATURAL HISTORY, BIOLOGY AND STATUS . .. 2 Biology. .2 Habitat . .. .4 Range and Documented Range Contraction . 4 Taxonomy . 9 Population Structure . 9 Historical and Recent Distribution and Status . 15 Central Oregon . .15 Southern Oregon . 18 Coastal Oregon . .20 Northern Coastal California . 25 Upper Sacramento River . 40 Marin/Sonoma . 45 Northern/Central Sierra Nevada . .47 Southern Sierra Nevada . .67 Central Coast/Bay Area . 77 South Coast. 91 Southern California . .. 94 Baja California, Mexico . .98 Unknown Population Affiliation. .99 Population Trends . .. .103 THREATS. .108 Habitat Alteration and Destruction . .. 108 Dams, Water Development and Diversions . .. .109 Logging . .. .111 Marijuana Cultivation . .. .112 Livestock Grazing . .. .112 Mining . .. .. .113 Roads and Urbanization . .. 114 Recreation . .. .. 114 Off-road Vehicles . .. 114 Inadequacy of Existing Regulatory Mechanisms . .. .115 Other Factors . 121 Climate Change and UV-Radiation . .. .121 Pollution . .. 123 Invasive Species . .. .125 Disease . .. .126 Conclusion . .. .. .. .128 LITERATURE CITED. .129 1 NATURAL HISTORY, BIOLOGY, AND STATUS Biology Foothill yellow-legged frogs are small ranid frogs with snout-urostyle lengths ranging from approximately 1.5 to 2 centimeters (cm) at metamorphosis to 6 to 8 cm for adults, with females growing to larger sizes than males. The life cycle is synchronized with the seasonal timing of streamflow condition. Radiotelemetry studies show that adult frogs move throughout dendritic networks of streams from winter refugia where they can avoid mortality due to flooding (Bourque 2008; Gonsolin 2010) to mating habitat where eggs are laid in spring and tadpoles rear in summer (Wheeler and Welsh 2008). Non-breeding habitat is characterized by perennial water where they can forage through the summer and fall months. Breeding is triggered by warming water temperatures, decreasing streamflows, and increasing daylength during the transition between the wet and dry season. Breeding sites are generally (but not always) located in low-gradient stream reaches at depositional features such as lateral point bars and pool tail-outs (Kupferberg 1996; Wheeler and Welsh 2008). Breeding may commence as early as March in warm coastal locations and as late as July in snowmelt dominated rivers (Storer 1925; Zweifel 1955; Ashton et al. 1998; AmphibiaWeb 2012; Wheeler et al. 2014). Like most ranid frogs, males probably defend areas around themselves during breeding season (Martof 1953; Emlen 1968). Foothill yellow-legged frog vocalizations are seldom heard. The voice is a gutteral, grating sound on one pitch or with rising inflection, a single croak lasting ½ to ¾ of a second. Four or five croaks may be given in rapid series followed by a rattling sound, the entire sequence lasting about 2.5 seconds (Stebbins 1985). While much of the mate calling occurs underwater (MacTague and Northern 1993), males also call from above water. Above water calls are faint and are not generally heard over distances greater than 50 meters (Ashton et al. 1998). Examples of both above water, and underwater calls are documented and described on Frog and Toad Calls of the Pacific Coast (Davidson 1995). Females oviposit eggs in shallow water toward the margin of streams, attached to sides of stones in the stream bed (Kupferberg 1996). Cobble and pebble are the preferred substrate for egg mass attachment, but egg masses have been found attached to aquatic vegetation, woody debris, and gravel (Fuller and Lind 1992; Ashton et al. 1998). Females lay a distinct cluster of eggs, with average clutch sizes ranging from 100 to 1,100 eggs (Storer 1925; Wright and Wright 1949). Eggs hatch in 5 to 30 days, or more (Zweifel 1955). In the mainstem Trinity River, eggs hatch in 27 to 36 days (Ashton et al. 1998). The slower development is probably due to colder temperatures from dam released water. At the time of hatching, the embryos are at a Gosner stage of 20 to 22 (Ashton et al. 1998). In the absence of disturbance, the tadpoles will remain associated with the egg mass for several days after hatching then disperse to local interstices of the gravel bed, often moving downstream in areas of moderate flow (Ashton et al. 1998). Larval growth rate is dependent on water temperature (Duellman and Trueb 1986), but metamorphosis generally occurs in three to four months. Foothill yellow-legged frogs usually reach sexual maturity at age 1 to 2 2 years, at a length of about 40 mm (Zweifel 1955), although some individuals may reproduce as early as 6 months after metamorphosis (Jennings 1988). Rana boylii tadpoles feed on algae scraped from rocks or plants. They seem to grow fastest feeding on epiphytic diatoms and have been observed to preferentially graze on this algal type (Jennings and Hayes 1994; Ashton et al. 1998). Tadpoles have been observed actively congregating on dead tadpoles and dead, open bivalves (Ashton et al. 1998). Metamorphosed frogs feed primarily on terrestrial invertebrates, but also eat some aquatic invertebrates (Fitch 1936; Zeiner et al. 1988). Adult diet includes flies, moths, mosquitoes, hornets, ants, beetles, grasshoppers, water striders, and snails (Fitch 1936; Nussbaum 1983; Csuti et al. 2001). Van Wagner (1996) provided a thorough literature review and a detailed diet analysis of post-metamorphic R. boylii. Analysis of 63 post-metamorphic R. boylii found terrestrial arthropods to be the primary (~90%) prey items year round, comprised of 87.5% insects and 12.6% arachnids (Van Wagner 1996). Foothill yellow-legged frogs capture their prey by waiting along stream edges and pouncing (Airola 1980). The foothill yellow-legged frog is primarily diurnal and is active year-round, with peak activity in April and May (Airola 1980). Home ranges and dispersal patterns of the foothill yellow-legged frog are poorly understood (Jennings and Hayes 1994). Frogs have been found 50 m (Nussbaum et al. 1983; Csuti et al. 2001) to 70-80 m (C. Rombough, pers. comm., as cited in Olson and Davis 2009) from water. Along streams, Van Wagner (1996) reported seasonal movements of about 450 m for this species in California, and an 800 m movement distance is known from Oregon (C. Rombough, pers. comm., as cited in Olson and Davis 2009). A telemetry study by Bourque (2008) in Tehama County, California documented movement distances of 0.65 km and 7.04 km for male and female foothill yellow-legged frogs, respectively, and median travel distances of 65.7 and 70.7 meters/day. Frogs used watercourses as movement corridors and rarely moved > 12 m from the stream channel. During breeding season and summer, foothill yellow-legged frogs are rarely encountered far from permanent water. Adults congregate around breeding pools in April, May, and June. In late summer adults were found to be scarce along the main stem of the Trinity River, indicating that they may be dispersing into the vegetation, moving up tributaries, or reducing diurnal activity (Ashton et al. 1998). Recently metamorphosed frogs show a strong tendency to migrate upstream (Twitty 1967). This may be an evolutionary mechanism to repatriate individuals washed downstream from suitable habitat during the larval stage. During the winter, frogs have been observed in abandoned rodent burrows and under logs as far as 100 m from streams (Zeiner et al. 1988; Welsh 1994). Movements of marked animals were not noted to occur November through March in Oregon (C. Rombough, pers. comm., as cited in Olson and Davis 2009). Radio telemetry tracking of postbreeding adult females in California documented dispersal distances from 0 to 7,043 m (R. Bourque, pers. comm., as cited in Olson and Davis 2009) where, over the course of 60 days, one female traveled upstream along the main channel of a perennial stream, then up intermittent and dry tributary channels, then over a ridge eventually working her way downstream to perennial waters in an adjacent watershed (R. Bourque, pers. comm., as cited in Olson and Davis 2009). Other ranids have capabilities of dispersing kilometers overland; however, according to Nussbaum et al. 3 (1983) this species is likely restricted to movements along streams or stream-riparian corridors. Their likely restriction to riparian corridors needs further study because of the low detectability of frogs in uplands. Dever’s (2007) genetic study suggested that a distance of 10 km
Recommended publications
  • TYPICAL VALLEY INDIAN HOMES Vol. 2 No. 11 YUBA CITY, CALIFORNIA
    Vol. 2 No. 11 YUBA CITY, CALIFORNIA OCTOBER 17 1961 TYPICAL VALLEY INDIAN HOMES SUTTER COUNTY HISTORICAL SOCIETY FALL MEETING OCTOBER 17, 1961 TUESDAY EVENING — 8 P.M. PLACE: Board of Supervisors Chambers County Office Building, 2nd Street PRESIDENT: Mrs. Florence Arritt PROGRAM CHAIRMAN: Randolph Schnabel PROGRAM SPEAKER: Waddell F. Smith President, National Pony Express Centennial Association TOPIC: The History of the Pony Express and Its Centennial BOARD OF DIRECTORS MINUTES October 5, 1961 The Board of Directors of Sutter County Historical Society met in regular session October 5, 1961 at 7:30 P.M. in the office of the County Superintendent. The meeting was called to order by Vice President, Mrs. Ida Littlejohn in the absence of the president, Mrs. Florence Arritt. Mrs. Arritt is on her vacation traveling in the southwest and visiting many spots of historic interest such as Tombstone, Arizona. The minutes of the July Board meeting and regular meeting were read and approved. The treasurer reported cash in the bank $737.33. Film Fund $447.00 and general fund $290.33. Mr. Ramey reported a membership of 111. Fifteen new members were secured at the county fair booth. The following bills were approved for payment: Valley Print Shop — Membership Cards, Stationery $41.70. County of Sutter — Bulletin pictures $6.20. Earl Ramey — Postage $3.50. Program Chairman, Randolph Schnabel reported the program had already been arranged for the annual dinner meeting in January. Mrs. Gibson presented an invitation to the Sutter County Historical Society to en- tertain the Symposium of Historical Societies of Northern California and Southern Oregon in the fall of 1962.
    [Show full text]
  • State of Sierra Frogs
    State of Sierra Frogs A report on the status of frogs & toads in the Sierra Nevada & California Cascade Mountains State of Sierra Frogs A report on the status of frogs & toads in the Sierra Nevada & California Cascade Mountains By Marion Gee, Sara Stansfield, & Joan Clayburgh July 2008 www.sierranevadaalliance.org State of Sierra Frogs 1 Acknowledgements The impetus for this report was the invaluable research on pesticides by Carlos Davidson, professor at San Francisco State University. Davidson, along with Amy Lind (US Forest Service), Curtis Milliron (California Department of Fish and Game), David Bradford (United States Environmental Protection Agency) and Kim Vincent (Graduate Student, San Francisco State University), generously donated their time and expertise to speak at two public workshops on the topics of Sierra frogs and toads as well as to provide comments for this document. Our thanks to the other reviewers of this manuscripts including Bob Stack (Jumping Frog Research Institute), Katie Buelterman, Dan Keenan, and Genevieve Jessop Marsh. This project was fortunate to receive contributions of photography and artwork from John Muir Laws, Elena DeLacy, Bob Stack, Ralph & Lisa Cutter and Vance Vredenburg. Photo credits are found with each caption. This work was made possible by generous grants from the Rose Foundation for Communities and the Environment and the State Water Resources Control Board. Funding for this project has been provided in part through an Agreement with the State Water Resources Control Board (SWRCB) pursuant to the Costa-Machado Water Act of 2000 (Proposition 13) and any amendments thereto for the implementation of California’s Non-point Source Pollution Control Program.
    [Show full text]
  • Chiricahua Leopard Frog (Rana Chiricahuensis)
    U.S. Fish & Wildlife Service Chiricahua Leopard Frog (Rana chiricahuensis) Final Recovery Plan April 2007 CHIRICAHUA LEOPARD FROG (Rana chiricahuensis) RECOVERY PLAN Southwest Region U.S. Fish and Wildlife Service Albuquerque, New Mexico DISCLAIMER Recovery plans delineate reasonable actions that are believed to be required to recover and/or protect listed species. Plans are published by the U.S. Fish and Wildlife Service, and are sometimes prepared with the assistance of recovery teams, contractors, state agencies, and others. Objectives will be attained and any necessary funds made available subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. Recovery plans do not necessarily represent the views nor the official positions or approval of any individuals or agencies involved in the plan formulation, other than the U.S. Fish and Wildlife Service. They represent the official position of the U.S. Fish and Wildlife Service only after they have been signed by the Regional Director, or Director, as approved. Approved recovery plans are subject to modification as dictated by new findings, changes in species status, and the completion of recovery tasks. Literature citation of this document should read as follows: U.S. Fish and Wildlife Service. 2007. Chiricahua Leopard Frog (Rana chiricahuensis) Recovery Plan. U.S. Fish and Wildlife Service, Southwest Region, Albuquerque, NM. 149 pp. + Appendices A-M. Additional copies may be obtained from: U.S. Fish and Wildlife Service U.S. Fish and Wildlife Service Arizona Ecological Services Field Office Southwest Region 2321 West Royal Palm Road, Suite 103 500 Gold Avenue, S.W.
    [Show full text]
  • The Impacts of the State and Federal Wild and Scenic Rivers Acts
    THE IMPACTS OF THE STATE AND FEDERAL WILD AND SCENIC RIVERS ACTS IN CONSERVATION EFFORTS ON CALIFORNIA’S TRINITY RIVER ———————— A Thesis Presented to the Faculty of California State University, Chico ———————— In Partial Fulfillment of the Requirement for the Degree Master of Arts in History ———————— by Michael I. Muraki Fall 2018 THE IMPACTS OF THE STATE AND FEDERAL WILD AND SCENIC RIVERS ACTS IN CONSERVATION EFFORTS ON CALIFORNIA’S TRINITY RIVER A Thesis by Michael I. Muraki Fall 2018 APPROVED BY THE INTERIM DEAN OF GRADUATE STUDIES: _________________________________ Sharron A. Barrios, Ph.D.____________ APPROVED BY THE GRADUATE ADVISORY COMMITTEE: _________________________________ Michael F. Magliari, Ph.D., Chair______ _________________________________ Jesse A. Dizard, Ph.D._______________ _________________________________ Timothy G. Sistrunk, Ph.D._________ __ TABLE OF CONTENTS ——————————————————————————————————————— PAGE List of Figures ........................................................................................................... iv Abstract ..................................................................................................................... v CHAPTER Introduction ....................................................................................................... 1 I. Planning for the Future, The Water Bank of California: 1957-1972 .............. 12 II. The California Wild and Scenic Rivers Act and the Fight to Preserve the North- Coast Rivers: 1968-1972 ............................................................................
    [Show full text]
  • No. 40. the System of Lunar Craters, Quadrant Ii Alice P
    NO. 40. THE SYSTEM OF LUNAR CRATERS, QUADRANT II by D. W. G. ARTHUR, ALICE P. AGNIERAY, RUTH A. HORVATH ,tl l C.A. WOOD AND C. R. CHAPMAN \_9 (_ /_) March 14, 1964 ABSTRACT The designation, diameter, position, central-peak information, and state of completeness arc listed for each discernible crater in the second lunar quadrant with a diameter exceeding 3.5 km. The catalog contains more than 2,000 items and is illustrated by a map in 11 sections. his Communication is the second part of The However, since we also have suppressed many Greek System of Lunar Craters, which is a catalog in letters used by these authorities, there was need for four parts of all craters recognizable with reasonable some care in the incorporation of new letters to certainty on photographs and having diameters avoid confusion. Accordingly, the Greek letters greater than 3.5 kilometers. Thus it is a continua- added by us are always different from those that tion of Comm. LPL No. 30 of September 1963. The have been suppressed. Observers who wish may use format is the same except for some minor changes the omitted symbols of Blagg and Miiller without to improve clarity and legibility. The information in fear of ambiguity. the text of Comm. LPL No. 30 therefore applies to The photographic coverage of the second quad- this Communication also. rant is by no means uniform in quality, and certain Some of the minor changes mentioned above phases are not well represented. Thus for small cra- have been introduced because of the particular ters in certain longitudes there are no good determi- nature of the second lunar quadrant, most of which nations of the diameters, and our values are little is covered by the dark areas Mare Imbrium and better than rough estimates.
    [Show full text]
  • Glossary Glossary
    Glossary Glossary Albedo A measure of an object’s reflectivity. A pure white reflecting surface has an albedo of 1.0 (100%). A pitch-black, nonreflecting surface has an albedo of 0.0. The Moon is a fairly dark object with a combined albedo of 0.07 (reflecting 7% of the sunlight that falls upon it). The albedo range of the lunar maria is between 0.05 and 0.08. The brighter highlands have an albedo range from 0.09 to 0.15. Anorthosite Rocks rich in the mineral feldspar, making up much of the Moon’s bright highland regions. Aperture The diameter of a telescope’s objective lens or primary mirror. Apogee The point in the Moon’s orbit where it is furthest from the Earth. At apogee, the Moon can reach a maximum distance of 406,700 km from the Earth. Apollo The manned lunar program of the United States. Between July 1969 and December 1972, six Apollo missions landed on the Moon, allowing a total of 12 astronauts to explore its surface. Asteroid A minor planet. A large solid body of rock in orbit around the Sun. Banded crater A crater that displays dusky linear tracts on its inner walls and/or floor. 250 Basalt A dark, fine-grained volcanic rock, low in silicon, with a low viscosity. Basaltic material fills many of the Moon’s major basins, especially on the near side. Glossary Basin A very large circular impact structure (usually comprising multiple concentric rings) that usually displays some degree of flooding with lava. The largest and most conspicuous lava- flooded basins on the Moon are found on the near side, and most are filled to their outer edges with mare basalts.
    [Show full text]
  • Table of Contents Executive Summary
    MARCH 2012 SACRAMENTO VALLEY WATER QUALITY COALITION Monitoring and Reporting Program Plan Annual Monitoring Report 2011 Prepared by: LARRY WALKER ASSOCIATES Table of Contents Executive Summary ...................................................................................................................... v Summary of Monitoring Program ............................................................................................... v Management Practices and Actions Taken ................................................................................ vi Conclusions and Recommendations ......................................................................................... vii Introduction ................................................................................................................................... 1 Description of the Watershed ...................................................................................................... 3 Monitoring Objectives .................................................................................................................. 4 Sampling Site Descriptions .......................................................................................................... 6 Sampling Site Locations and Land Uses .................................................................................... 7 Site Descriptions ......................................................................................................................... 9 Butte/Yuba/Sutter Subwatershed ...........................................................................................
    [Show full text]
  • Russian River Watershed Directory September 2012
    Russian River Watershed Directory September 2012 A guide to resources and services For management and stewardship of the Russian River Watershed © www.robertjanover.com. Russian River & Big Sulphur Creek at Cloverdale, CA. Photo By Robert Janover Production of this directory was made possible through funding from the US Army Corps of Engineers and the California Department of Conservation. In addition to this version of the directory, you can find updated versions online at www.sotoyomercd.org Russian River Watershed Directory version September 2012 - 1 - Preface The Sotoyome Resource Conservation District (RCD) has updated our Russian River Watershed directory to assist landowners, residents, professionals, educators, organizations and agencies interested in the many resources available for natural resource management and stewardship throughout the Russian River watershed. In 1997, The Sotoyome RCD compiled the first known resource directory of agencies and organization working in the Russian River Watershed. The directory was an example of an emerging Coordinated Resource Management and Planning (CRMP) effort to encourage community-based solutions for natural resource management. Since that Photo courtesy of Sonoma County Water Agency time the directory has gone through several updates with our most recent edition being released electronically and re-formatting for ease of use. For more information or to include your organization in the Directory, please contact the Sotoyome Resource Conservation District Sotoyome Resource Conservation
    [Show full text]
  • Sonoma County Rainfall Map (1.81MB)
    128 OAT VALLEY CREEK ALDER CREEK Mendocino County CREEK BIG SULPHUR CREEK CLOVERDALE 40 Cloverdale 29 60 CREEK OSSER CREEK PORTERFIELD SONOMA COUNTY WATER AGENCY 45 40 LITTLE SULPHUR CREEK BUCKEYE CREEK 40 Lake County FLAT RIDGE CREEK 45 GUALALA RIVER 50 55 60 70 GRASSHOPPER CREEK 55 Sea Ranch 60 65 75 70 RANCHERIA CREEK LITTLE CREEK 55 50 GILL CREEK Annapolis 4 A SAUSAL CREEK 55 45 Lake STRAWBERRY CREEK Sonoma MILLER CREEK BURNS CREEK 50 TOMBS CREEK 45 65 WHEATFIELD Geyserville INGALLS CREEK FORK GUALALA-SALMON GUALALA-SALMON WOOD CREEK 1 GEORGE YOUNG CREEK BOYD CREEK MILL STREAM SOUTH FORK GUALALA BEAR CREEK FULLER CREEK COON CREEK 40 LITTLE BRIGGS CREEK RIVER 50 GIRD CREEK BRIGGS CREEK 7 A MAACAMA CREEK Jimtown WINE CREEK 6 A KELLOGG CREEK GRAIN CREEK HOUSE CREEK 60 CEDAR CREEK INDIANCREEK LANCASTER CREEK DANFIELD CREEK FALL CREEK OWL CREEK 40 Stewarts Point HOOT WOODS CREEK CRANE CREEK HAUPT CREEK YELLOWJACKET CREEK FOOTE CREEK REDWOOD CREEK GUALALA RIVER WALLACE CREEK 60 128 Lake JIM CREEK Berryessa ANGEL CREEK Healdsburg RUSSIAN RIVER SPROULE CREEK MILL CREEK DEVIL CREEK AUSTIN CREEK RUSSIAN RIVER SLOUGHWEST MARTIN CREEK BIG AUSTIN CREEK GILLIAM CREEK THOMPSON CREEK PALMER CREEK FELTA CREEK FRANZ CREEK BLUE JAY CREEK MCKENZIE CREEK BARNES CREEK BIG OAT CREEK Windsor MARK WEST CREEK COVE 75 WARD CREEK POOL CREEK PORTER CREEKMILL CREEK Fort Ross 80 HUMBUG CREEK TIMBER Cazadero STAR FIFE CREEK CREEK 55 PRUITT 45 HOBSON CREEK CREEK 50 NEAL CREEK 1 A 60 Hacienda REDWOOD CREEK RUSSIAN WIKIUP KIDD CREEK Guerneville CREEK VAN BUREN CREEK 101 RINCON CREEK RIVER 70 35 WEEKS CREEK 50 FULTON CREEK 65 BRUSH CREEK DUCKER CREEK GREEN COFFEYCREEK PINER CREEK 5 A VALLEY Forestville 60 CREEK CREEK RUSSELL BRUSH CREEK LAGUNA 55 Monte Rio CREEK AUSTIN BEAR CREEK RIVER CREEK GREEN FORESTVILLECREEK PAULIN CREEK DUTCH PINER CREEK Santa Rosa DE PETERSONCREEKFORESTVIEW SANTA ROSA CREEK OAKMONT STEELE VALLEY WENDELL CREEK CREEK BILL SANTA CREEK 45 SONOMA CREEK RUSSIAN GRUB CREEK SPRING CREEK LAWNDALECREEK 40 Napa County STATE HWY 116 COLLEGE CREEK CREEK HOOD MT.
    [Show full text]
  • Hyla Chrysoscelis)
    Freeze Tolerance as an Overwintering Adaptation in Cope's Grey Treefrog (Hyla chrysoscelis) Jon P. Costanzo; Michael F. Wright; Richard E. Lee, Jr. Copeia, Vol. 1992, No. 2. (May 1, 1992), pp. 565-569. Stable URL: http://links.jstor.org/sici?sici=0045-8511%2819920501%293%3A1992%3A2%3C565%3AFTAAOA%3E2.0.CO%3B2-B Copeia is currently published by American Society of Ichthyologists and Herpetologists. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/asih.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. The JSTOR Archive is a trusted digital repository providing for long-term preservation and access to leading academic journals and scholarly literature from around the world. The Archive is supported by libraries, scholarly societies, publishers, and foundations. It is an initiative of JSTOR, a not-for-profit organization with a mission to help the scholarly community take advantage of advances in technology. For more information regarding JSTOR, please contact [email protected].
    [Show full text]
  • Annual Report 2008 – 2009
    O L D S T U R B R I D G E Summer 2009 Special Annual VILLAGE Report Edition Visitor 2008-2009 2008--2009 Momentum and More The History of Fireworks Farms, Families, and Change Cooking with OSV Summer Events a member magazine that keeps you coming back Old Sturbridge Village, a museum and learning resource of 2008-2009 Building Momentum New England life, invites each visitor to find meaning, pleasure, a letter from President Jim Donahue relevance, and inspiration through the exploration of history. to our newly designed V I S I T O R magazine. We hope that you will learn new things and come to visit t is no secret around the Village that I like to keep my eye on the “dashboard” – a set of key the Village soon. There is always something fun to do at indicators that I am consistently checking to make sure we are steering OSV in the right direction. In fact, Welcome O l d S T u R b ri d g E V I l l a g E . I take a lot of good-natured kidding about how often I peek at the attendance figures each day, eager to see if we beat last year’s number. And I have to admit that I get energized when the daily mail brings in new donations, when the sun is shining, the parking lot is full, when I can hear happy children touring the Village, and the visitor comments are upbeat and favorable. Volume XlIX, No. 2 Summer 2009 Special Annual Report Edition I am happy to report these indicators have been overwhelmingly positive during the past year – solid proof that Old Sturbridge Village is building on last year’s successes and is poised to finish this decade much stronger There is nothing quite like learning about history from than when it started.
    [Show full text]
  • Factors Related to the Distribution and Prevalence
    Biological Conservation 144 (2011) 2913–2921 Contents lists available at SciVerse ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Factors related to the distribution and prevalence of the fungal pathogen Batrachochytrium dendrobatidis in Rana cascadae and other amphibians in the Klamath Mountains ⇑ Jonah Piovia-Scott a,b, , Karen L. Pope c, Sharon P. Lawler a,d, Esther M. Cole e, Janet E. Foley b a Center for Population Biology, University of California – Davis, One Shields Avenue, Davis, CA 95616, USA b Department of Veterinary Medicine and Epidemiology, University of California – Davis, One Shields Avenue, Davis, CA 95616, USA c United States Forest Service, Pacific Southwest Research Station, 1700 Bayview Drive, Arcata, CA 95521, USA d Department of Entomology, University of California – Davis, One Shields Avenue, Davis, CA 95616, USA e Department of Environmental Science and Policy, University of California – Davis, One Shields Avenue, Davis, CA 95616, USA article info abstract Article history: The fungal pathogen Batrachochytrium dendrobatidis (Bd), which causes the disease chytridiomycosis, has Received 5 May 2011 been associated with declines and extinctions of montane amphibians worldwide. To gain insight into Received in revised form 29 July 2011 factors affecting its distribution and prevalence we focus on the amphibian community of the Klamath Accepted 22 August 2011 Mountains in northwest California. The Cascades frog (Rana cascadae), one of the most common amphib- Available online 5 October 2011 ians in these mountains, experienced increased mortality as a result of Bd exposure in laboratory trials and has experienced recent, dramatic declines in other parts of California. We surveyed 112 sites in Keywords: the Klamaths, all of which supported R.
    [Show full text]