Curcuma Comosa Mixtures
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
“Joy” Winuthayanon, Bs.N., Ph.D
WIPAWEE “JOY” WINUTHAYANON, BS.N., PH.D. School of Molecular Biosciences Center for Reproductive Biology College of Veterinary Medicine Washington State University Biotechnology Life Science Building, Pullman, WA 99164 509.335.8296 | [email protected] | https://labs.wsu.edu/winuthayanon EDUCATION 2003-2009 Ph.D. Human Physiology Mahidol University, Bangkok, Thailand Doctoral Program in the Department of Physiology, Faculty of Science Evaluation and characterization for the estrogenic activity of diarylheptanoids from Curcuma comosa PI: Pawinee Piyachaturawat, Ph.D. 1998-2002 B.Sc. Nursing Science (Second Class Honors) Mahidol University, Bangkok, Thailand School of Nursing, Faculty of Medicine Ramathibodi Hospital Specialty: Nursing and Midwifery POSITIONS effective 07/2021 Associate Professor (Tenured) School of Molecular Biosciences, College of Veterinary Medicine, Washington State University (WSU), Pullman, WA Training Faculty, MARC-WSU Program (05/2021–present) Graduate Faculty, adjunct (05/2020–present) Clinical & Translational Sciences, Dept. of Veterinary Clinical Sciences, WSU Faculty Research Mentor (06/2018–present) Pacific Northwest Louis Stokes Alliance for Minority Participation (LSAMP), WSU Faculty Research Mentor (01/2016–present) Team Mentoring Program (TMP), WSU 08/2015–06/2021 Assistant Professor School of Molecular Biosciences, College of Veterinary Medicine, WSU 08/2009–07/2015 Post-doctoral Fellow National Institutes of Health/National Institute of Environmental Health Sciences (NIH/NIEHS), Research Triangle Park (RTP), NC Reproductive & Developmental Biology Laboratory PIs: Kenneth Korach, Ph.D. and Carmen Williams, M.D. Ph.D. 03/2007–06/2008 Pre-doctoral Fellow NIH/NIEHS, Research Triangle Park, NC Laboratory of Reproduction and Developmental Toxicology PI: Kenneth Korach, Ph.D. 06/2003–01/2009 Graduate Research Assistant Department of Physiology, Faculty of Sciences, Bangkok, Thailand PI: Pawinee Piyachaturawat, Ph.D. -
Distribution of Phytoestrogenic Diarylheptanoids and Sesquiterpenoids Components in Curcuma Comosa Rhizomes and Its Related Spec
Revista Brasileira de Farmacognosia 27 (2017) 290–296 ww w.elsevier.com/locate/bjp Original Article Distribution of phytoestrogenic diarylheptanoids and sesquiterpenoids components in Curcuma comosa rhizomes and its related species a,b,∗ c,∗ Vichien Keeratinijakal , Sumet Kongkiatpaiboon a Department of Agronomy, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand b National Center for Agricultural Biotechnology, Kasetsart University, Bangkok, Thailand c Drug Discovery and Development Center, Thammasat University (Rangsit Campus), Pathumthani, Thailand a b s t r a c t a r t i c l e i n f o Article history: Curcuma comosa Roxb., Zingiberaceae, a phytoestrogen-producing herb with vernacularly named “Wan Received 30 August 2016 Chak Mod Loog” in Thailand, has been traditionally used for treatment of gynecologic diseases and sold Accepted 16 December 2016 as food supplement in the market. However, similar rhizomes of its related species may lead to the Available online 21 March 2017 confusion in the uses of this plant. This study was aimed to investigate the phytochemical constituents of different Curcuma spp. that used as “Wan Chak Mod Loog”. Characteristic major compounds were isolated Keywords: and identified. Phytochemical analysis of 45 Curcuma samples representing Curcuma sp., C. latifolia, and C. Wan Chak Mod Loog comosa were analyzed and compared with their phylogenetic relationship inferred by Amplified Fragment Phytochemicals Length Polymorphism analysis. Phytoestrogen diarylheptanoids were found in all samples of C. comosa Phytoestrogen-producing herb Diarylheptanoids while sesquiterpenoids including hepatoxic zederone were found in C. latifolia and Curcuma sp. samples. Sesquiterpenoids © 2017 Sociedade Brasileira de Farmacognosia. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). -
Genus Curcuma
JOURNAL OF CRITICAL REVIEWS ISSN- 2394-5125 VOL 7, ISSUE 16, 2020 A REVIEW ON GOLDEN SPECIES OF ZINGIBERACEAE FAMILY: GENUS CURCUMA Abdul Mubasher Furmuly1, Najiba Azemi 2 1Department of Analytical Chemistry, Faculty of Chemistry, Kabul University, Jamal Mina, 1001 Kabul, Kabul, Afghanistan 2Department of Chemistry, Faculty of Education, Balkh University, 1701 Balkh, Mazar-i-Sharif, Afghanistan Corresponding author: [email protected] First Author: [email protected] Received: 18 March 2020 Revised and Accepted: 20 June 2020 ABSTRACT: The genus Curcuma pertains to the Zingiberaceae family and consists of 70-80 species of perennial rhizomatous herbs. This genus originates in the Indo-Malayan region and it is broadly spread all over the world across tropical and subtropical areas. This study aims to provide more information about morphological features, biological activities, and phytochemicals of genus Curcuma for further advanced research. Because of its use in the medicinal and food industries, Curcuma is an extremely important economic genus. Curcuma species rhizomes are the source of a yellow dye and have traditionally been utilized as spices and food preservers, as a garnishing agent, and also utilized for the handling of various illnesses because of the chemical substances found in them. Furthermore, Because of the discovery of new bioactive substances with a broad range of bioactivities, including antioxidants, antivirals, antimicrobials and anti-inflammatory activities, interest in their medicinal properties has increased. Lack of information concerning morphological, phytochemicals, and biological activities is the biggest problem that the researcher encountered. This review recommended that collecting information concerning the Curcuma genus may be providing more opportunities for further advanced studies lead to avoid wasting time and use this information for further research on bioactive compounds which are beneficial in medicinal purposes KEYWORDS: genus Curcuma; morphology; phytochemicals; pharmacological 1. -
Isolation and Characterization of Phytoconstituents from Myanmar Medicinal Plants
Isolation and Characterization of Phytoconstituents from Myanmar Medicinal Plants Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Mathematisch-Naturwissenschaftlich-Technischen Fakultät (mathematisch-naturwissenschaftlicher Bereich) der Martin-Luther-Universität Halle-Wittenberg von M. Sc. Myint Myint Khine geboren am 24. September 1964 in Yangon (Myanmar) Gutachter: 1. Prof. Dr. Ludger Wessjohann 2. Prof. Dr. Karsten Krohn Halle (Saale), den 03.03.2006 DECLARATION I hereby declare that I have carried out the analyses and written the thesis myself and that I did not use any devices or received relevant help from any persons other than those mentioned in the text. This dissertation has not been submitted before. …31.01.06…… …………….. Date… Signature Acknowledgements The present study was carried out at the Leibniz Institute for Plant Biochemistry [Halle (Saale)]. Financial support was provided by the Gottlieb Daimler- und Karl Benz-Stiftung. This study would not have succeeded without the permission of the Ministry for Education from Myanmar. In addition, I wish to express my appreciation and gratitude to the many people who have in one way or another helped me over the course of study. In particular I would like to thank the following: Prof. Ludger Wessjohann, my main supervisor, for inviting me to do my Ph. D. work at IPB and for the encouragements, allowing me to develop at my own pace. Dr. Norbert Arnold and Dr. Katrin Franke, my supervisors, for the advice and encouragement as well as supporting my ideas. Dr. A. Porzel for the discussions and NMR-spectra measurement. Mrs. M. Süsse for the NMR-, IR- and UV- spectra measurement. -
Biologically Active Proteins from Curcuma Comosa Roxb. Rhizomes
Journal of Medicinal Plants Research Vol. 5(21), pp. 5208-5215, 9 October, 2011 Available online at http://www.academicjournals.org/JMPR ISSN 1996-0875 ©2011 Academic Journals Full Length Research Paper Biologically active proteins from Curcuma comosa Roxb. rhizomes Apaporn Boonmee 1, Chantragan Srisomsap 2, Aphichart Karnchanatat 3 and Polkit Sangvanich 1* 1Research Center for Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand. 2Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand. 3The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, 10330, Thailand. Accepted 22 December, 2010 Curcuma comosa Roxb., belongs to Zingiberaceae family, is used in folk medicine to relieve postpartum uterine inflammation. The crude protein from C. comosa was assayed to find some interesting bioactivities. The hemagglutination activity assay was performed with erythrocytes from seven different species, and revealed a strong specificity towards rabbit erythrocytes only. After isolation by Concanavalin A (Con A) affinity column chromatography and likely identification by tryptic peptide tandem mass spectrometry, two separate proteins with homology to other plant lectins were found. The free radical scavenging capacity and the superoxide dismutase (SOD) enzyme activity were used to determine any potential antioxidant activity. The results suggested that there were three different SODs in the crude rhizome protein extract. These enzymes were stable over a wide range of temperatures (up to 80°C) which may make them useful for further applications. In addition, alpha- glucosidase inhibitory activity also was found in this plant. Key words: Hemagglutination, antioxidant, superoxide dismutase, alpha-glucosidase inhibition, Curcuma comosa. INTRODUCTION Plants in the Zingiberaceae are widely distributed in many of the biologically active proteins from Southeast Asia, especially in Thailand. -
Molecular Binding Modes of Diarylheptanoids from Curcuma
Jongkon and Tangyuenyongwatana, 2014 82 Original Article TJPS The Thai Journal of Pharmaceutical Sciences 38 (2), April - June 2014: 57-105 Molecular binding modes of diarylheptanoids from Curcuma comosa on the ER- receptor 1 2* Nathjanan Jongkon and Prasan Tangyuenyongwatana 1Department of Social and Applied Science, College of Industrial Technology King Mongkut's University of Technology North Bangkok, Bangkok, 10800, Thailand 2Faculty of Oriental Medicine, Rangsit University, Pathumthani, 12000, Thailand Abstract Curcuma comosa Roxb. is a medicinal plant that belongs to the Zingiberaceae family. The plant has been used in traditional Thai medicine for the treatment of postpartum uterine bleeding. The major compounds found in this plant are diarylheptanoids, which are reported to have estrogenic activity. The aim of the study was to understand the three-dimensional (3-D) aspects of diarylheptanoids from C. comosa on ER- estrogenic receptor at the molecular level. The binding conformations of diarylheptanoid analogues with ER- receptor were obtained by the AutoDock 4.2 program using the Lamarckian genetic algorithm (LGA) in conjunction with an empirical force field to calculate the complex binding free energy. From the analysis of docking results, diarylheptanoid analogues with higher activity have a hydroxyl group in ring C which ca n be modified by using the isosteres groups while the other phenyl ring have less polarity to fit into the hydrophobic pocket of the ER- receptor. In addition, the heptyl chain needs some flexibility to allow the phenyl ring to adjust suitably into the receptor-binding pocket. Molecular modeling using AutoDock 4.2 was effectively applied to understand the binding conformation of diarylheptanoid analogues with ER- receptor. -
Phytochemical Based Strategies for Nematode Control
12 Jul 2002 9:39 AR AR165-PY40-09.tex AR165-PY40-09.SGM LaTeX2e(2002/01/18) P1: GJC 10.1146/annurev.phyto.40.032602.130045 Annu. Rev. Phytopathol. 2002. 40:221–49 doi: 10.1146/annurev.phyto.40.032602.130045 PHYTOCHEMICAL BASED STRATEGIES FOR NEMATODE CONTROL David J. Chitwood Nematology Laboratory, USDA-ARS, Building 011A, BARC-West, Beltsville, Maryland 20705; e-mail: [email protected] Key Words nematicide, natural product, anthelmintic, biological control, fungi ■ Abstract This review examines the discovery of naturally occurring phytochem- icals antagonistic toward plant-parasitic and other nematodes. Higher plants have yielded a broad spectrum of active compounds, including polythienyls, isothiocyanates, glucosinolates, cyanogenic glycosides, polyacetylenes, alkaloids, lipids, terpenoids, sesquiterpenoids, diterpenoids, quassinoids, steroids, triterpenoids, simple and com- plex phenolics, and several other classes. Many other antinematodal compounds have been isolated from biocontrol and other fungi. Natural products active against mam- malian parasites can serve as useful sources of compounds for examination of activity against plant parasites. The agricultural utilization of phytochemicals, although cur- rently uneconomic in many situations, offers tremendous potential. INTRODUCTION Phytoparasitic nematodes are among the most notoriously difficult crop pests to control. Historically, management of nematode-induced crop damage has been achieved with the utilization of plant resistance, crop rotation and other cultural practices, or chemical nematicides. Two groups of chemical nematicides predomi- nate: low-molecular-weight soil fumigants and contact carbamates or organophos- phates (13, 170). The development of new nematicides is a difficult task. Because most plant- parasitic nematode species spend their lives in the soil or within plant roots, the target of any chemical nematicide often resides at a fair distance away from the site of application of the chemical. -