Estrogenic Activity of Diarylheptanoids from Curcuma Comosa Roxb. Requires Metabolic Activation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
“Joy” Winuthayanon, Bs.N., Ph.D
WIPAWEE “JOY” WINUTHAYANON, BS.N., PH.D. School of Molecular Biosciences Center for Reproductive Biology College of Veterinary Medicine Washington State University Biotechnology Life Science Building, Pullman, WA 99164 509.335.8296 | [email protected] | https://labs.wsu.edu/winuthayanon EDUCATION 2003-2009 Ph.D. Human Physiology Mahidol University, Bangkok, Thailand Doctoral Program in the Department of Physiology, Faculty of Science Evaluation and characterization for the estrogenic activity of diarylheptanoids from Curcuma comosa PI: Pawinee Piyachaturawat, Ph.D. 1998-2002 B.Sc. Nursing Science (Second Class Honors) Mahidol University, Bangkok, Thailand School of Nursing, Faculty of Medicine Ramathibodi Hospital Specialty: Nursing and Midwifery POSITIONS effective 07/2021 Associate Professor (Tenured) School of Molecular Biosciences, College of Veterinary Medicine, Washington State University (WSU), Pullman, WA Training Faculty, MARC-WSU Program (05/2021–present) Graduate Faculty, adjunct (05/2020–present) Clinical & Translational Sciences, Dept. of Veterinary Clinical Sciences, WSU Faculty Research Mentor (06/2018–present) Pacific Northwest Louis Stokes Alliance for Minority Participation (LSAMP), WSU Faculty Research Mentor (01/2016–present) Team Mentoring Program (TMP), WSU 08/2015–06/2021 Assistant Professor School of Molecular Biosciences, College of Veterinary Medicine, WSU 08/2009–07/2015 Post-doctoral Fellow National Institutes of Health/National Institute of Environmental Health Sciences (NIH/NIEHS), Research Triangle Park (RTP), NC Reproductive & Developmental Biology Laboratory PIs: Kenneth Korach, Ph.D. and Carmen Williams, M.D. Ph.D. 03/2007–06/2008 Pre-doctoral Fellow NIH/NIEHS, Research Triangle Park, NC Laboratory of Reproduction and Developmental Toxicology PI: Kenneth Korach, Ph.D. 06/2003–01/2009 Graduate Research Assistant Department of Physiology, Faculty of Sciences, Bangkok, Thailand PI: Pawinee Piyachaturawat, Ph.D. -
Influence of Whole-Wheat Consumption on Fecal Microbial Community
Influence of whole-wheat consumption on fecal microbial community structure of obese diabetic mice Jose F. Garcia-Mazcorro1,2, Ivan Ivanov3, David A. Mills4 and Giuliana Noratto5,# 1 Faculty of Veterinary Medicine, Universidad Auto´noma de Nuevo Leo´n, General Escobedo, Nuevo Leon, Mexico 2 Research Group Medical Eco-Biology, Universidad Auto´noma de Nuevo Leo´n, General Escobedo, Nuevo Leon, Mexico 3 Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas, United States 4 Department of Food Science and Technology, University of California, Davis, Davis, California, United States 5 School of Food Science, Washington State University, Pullman, Washington, United States # Current Address: Nutrition and Food Science, Texas A&M University, College Station, Texas, United States ABSTRACT The digestive tract of mammals and other animals is colonized by trillions of metabolically-active microorganisms. Changes in the gut microbiota have been associated with obesity in both humans and laboratory animals. Dietary modifications can often modulate the obese gut microbial ecosystem towards a more healthy state. This phenomenon should preferably be studied using dietary ingredients that are relevant to human nutrition. This study was designed to evaluate the influence of whole-wheat, a food ingredient with several beneficial properties, on gut microorganisms of obese diabetic mice. Diabetic (db/db) mice were fed standard (obese-control) or whole-wheat isocaloric diets (WW group) for eight weeks; Submitted 28 October 2015 non-obese mice were used as control (lean-control). High-throughput sequencing Accepted 27 January 2016 using the MiSeq platform coupled with freely-available computational tools and Published 15 February 2016 quantitative real-time PCR were used to analyze fecal bacterial 16S rRNA gene Corresponding authors sequences. -
Distribution of Phytoestrogenic Diarylheptanoids and Sesquiterpenoids Components in Curcuma Comosa Rhizomes and Its Related Spec
Revista Brasileira de Farmacognosia 27 (2017) 290–296 ww w.elsevier.com/locate/bjp Original Article Distribution of phytoestrogenic diarylheptanoids and sesquiterpenoids components in Curcuma comosa rhizomes and its related species a,b,∗ c,∗ Vichien Keeratinijakal , Sumet Kongkiatpaiboon a Department of Agronomy, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand b National Center for Agricultural Biotechnology, Kasetsart University, Bangkok, Thailand c Drug Discovery and Development Center, Thammasat University (Rangsit Campus), Pathumthani, Thailand a b s t r a c t a r t i c l e i n f o Article history: Curcuma comosa Roxb., Zingiberaceae, a phytoestrogen-producing herb with vernacularly named “Wan Received 30 August 2016 Chak Mod Loog” in Thailand, has been traditionally used for treatment of gynecologic diseases and sold Accepted 16 December 2016 as food supplement in the market. However, similar rhizomes of its related species may lead to the Available online 21 March 2017 confusion in the uses of this plant. This study was aimed to investigate the phytochemical constituents of different Curcuma spp. that used as “Wan Chak Mod Loog”. Characteristic major compounds were isolated Keywords: and identified. Phytochemical analysis of 45 Curcuma samples representing Curcuma sp., C. latifolia, and C. Wan Chak Mod Loog comosa were analyzed and compared with their phylogenetic relationship inferred by Amplified Fragment Phytochemicals Length Polymorphism analysis. Phytoestrogen diarylheptanoids were found in all samples of C. comosa Phytoestrogen-producing herb Diarylheptanoids while sesquiterpenoids including hepatoxic zederone were found in C. latifolia and Curcuma sp. samples. Sesquiterpenoids © 2017 Sociedade Brasileira de Farmacognosia. Published by Elsevier Editora Ltda. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). -
Genus Curcuma
JOURNAL OF CRITICAL REVIEWS ISSN- 2394-5125 VOL 7, ISSUE 16, 2020 A REVIEW ON GOLDEN SPECIES OF ZINGIBERACEAE FAMILY: GENUS CURCUMA Abdul Mubasher Furmuly1, Najiba Azemi 2 1Department of Analytical Chemistry, Faculty of Chemistry, Kabul University, Jamal Mina, 1001 Kabul, Kabul, Afghanistan 2Department of Chemistry, Faculty of Education, Balkh University, 1701 Balkh, Mazar-i-Sharif, Afghanistan Corresponding author: [email protected] First Author: [email protected] Received: 18 March 2020 Revised and Accepted: 20 June 2020 ABSTRACT: The genus Curcuma pertains to the Zingiberaceae family and consists of 70-80 species of perennial rhizomatous herbs. This genus originates in the Indo-Malayan region and it is broadly spread all over the world across tropical and subtropical areas. This study aims to provide more information about morphological features, biological activities, and phytochemicals of genus Curcuma for further advanced research. Because of its use in the medicinal and food industries, Curcuma is an extremely important economic genus. Curcuma species rhizomes are the source of a yellow dye and have traditionally been utilized as spices and food preservers, as a garnishing agent, and also utilized for the handling of various illnesses because of the chemical substances found in them. Furthermore, Because of the discovery of new bioactive substances with a broad range of bioactivities, including antioxidants, antivirals, antimicrobials and anti-inflammatory activities, interest in their medicinal properties has increased. Lack of information concerning morphological, phytochemicals, and biological activities is the biggest problem that the researcher encountered. This review recommended that collecting information concerning the Curcuma genus may be providing more opportunities for further advanced studies lead to avoid wasting time and use this information for further research on bioactive compounds which are beneficial in medicinal purposes KEYWORDS: genus Curcuma; morphology; phytochemicals; pharmacological 1. -
The Genus Alpinia: a Review of Its Phytochemistry and Pharmacology
DOI: 10.15806/j.issn.2311-8571.2015.0026 World J Tradit Chin Med 2016; 2(1): 26–41 Modern Research on Chinese Materia Medica The Genus Alpinia: A Review of Its Phytochemistry and Pharmacology Wei-Jie Zhanga, Jian-Guang Luoa and Ling-Yi Kong* aState Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, China *Correspondence: Prof. Ling-Yi Kong, Department of Natural Medicinal Chemistry,China Pharmaceutical University,24 Tong Jia Xiang, Nanjing 210009, China, E-mail: [email protected] ABSTRACT Genus Alpinia consists of over 250 species, which are widely distributed in south and southeast Asia. Many plants of genus Alpinia have been used for thousands of years to treat digestive system diseases and as anti-inflammatory drugs. Phytochemical research on this genus has led to the isolation of different kinds of diarylheptanoids, terpenes triterpenoids, phenylbutanoids, lignans, and flavonoids. Experimental evidences revealed that both the crude extracts and pure constituents isolated from the genus Alpinia exhibit a wide range of bioactivities such as anti- cancer, anti-oxidant, anti-bacterial, anti-viral, cardiovascular, and digestive system protective effects. Here, we summarize the phytochemistry and pharmacology investigation of the genus Alpinia, which can provide reference for further research and drug development. Key words: Genus Alipinia, phytochemistry, pharmacology, a review Received 3 August 2015; Accept 2 March 2016 INTRODUCTION review, the conclusion can be drawn that, diarylheptanoids, terpenes and flavonoids are abundant in this genus. Genus Alpinia is a large genus of the Zingiberaceae family, which is widely distributed in many tropical regions of Asia, including China, India and Indonesia. -
Fitoterapia 145 (2020) 104610
Fitoterapia 145 (2020) 104610 Contents lists available at ScienceDirect Fitoterapia journal homepage: www.elsevier.com/locate/fitote Flavonoid, stilbene and diarylheptanoid constituents of Persicaria maculosa T Gray and cytotoxic activity of the isolated compounds Andrea Vasasa, Ildikó Lajtera, Norbert Kúsza, Péter Forgóa, Gusztáv Jakabb, Csilla Fazakasc, ⁎ Imola Wilhelmc,d, István A. Krizbaic,d, Judit Hohmanna,e, a Department of Pharmacognosy, University of Szeged, H-6720 Szeged, Hungary b Institute of Environmental Sciences, Faculty of Agricultural Water and Environmental Management, Tessedik Samuel College, H-5540 Szarvas, Hungary c Institute of Biophysics, Biological Research Centre, H-6726 Szeged, Hungary d Institute of Life Sciences, Vasile Goldiş Western University of Arad, RO-310414 Arad, Romania e Interdisciplinary Centre of Natural Products, University of Szeged, H-6720 Szeged, Hungary ARTICLE INFO ABSTRACT Keywords: Persicaria maculosa (Polygonaceae) has been used as edible and as medicinal plant since ancient times. As a result Persicaria maculosa of multistep chromatographic purifications, chalcones [2′-hydroxy-3′,4′,6′-trimethoxychalcone (1), pashanone Flavanones (2), pinostrobin chalcone (3)], flavanones [6-hydroxy-5,7-dimethoxyflavanone (4), pinostrobin (5), onysilin (6), Chalcones 5-hydroxy-7,8-dimethoxyflavanone (7)], flavonol [3-O-methylgalangin (8)], stilbene [persilben (9)], dia- Stilbene rylheptanoids [1,7-diphenylhept-4-en-3-one (10), dihydroyashabushiketol (12), yashabushidiol B (13)] and 3- Diarylheptanoids oxo-α-ionol-glucoside (11) were isolated from P. maculosa. The present paper reports for the first time the Cytotoxicity occurrence of diarylheptanoid-type constituents in the family Polygonaceae. Cytotoxicity of 1–5, 7 and 9–11 on 4 T1 mouse triple negative breast cancer cells was assayed by MTT test. -
Isolation and Characterization of Phytoconstituents from Myanmar Medicinal Plants
Isolation and Characterization of Phytoconstituents from Myanmar Medicinal Plants Dissertation zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) vorgelegt der Mathematisch-Naturwissenschaftlich-Technischen Fakultät (mathematisch-naturwissenschaftlicher Bereich) der Martin-Luther-Universität Halle-Wittenberg von M. Sc. Myint Myint Khine geboren am 24. September 1964 in Yangon (Myanmar) Gutachter: 1. Prof. Dr. Ludger Wessjohann 2. Prof. Dr. Karsten Krohn Halle (Saale), den 03.03.2006 DECLARATION I hereby declare that I have carried out the analyses and written the thesis myself and that I did not use any devices or received relevant help from any persons other than those mentioned in the text. This dissertation has not been submitted before. …31.01.06…… …………….. Date… Signature Acknowledgements The present study was carried out at the Leibniz Institute for Plant Biochemistry [Halle (Saale)]. Financial support was provided by the Gottlieb Daimler- und Karl Benz-Stiftung. This study would not have succeeded without the permission of the Ministry for Education from Myanmar. In addition, I wish to express my appreciation and gratitude to the many people who have in one way or another helped me over the course of study. In particular I would like to thank the following: Prof. Ludger Wessjohann, my main supervisor, for inviting me to do my Ph. D. work at IPB and for the encouragements, allowing me to develop at my own pace. Dr. Norbert Arnold and Dr. Katrin Franke, my supervisors, for the advice and encouragement as well as supporting my ideas. Dr. A. Porzel for the discussions and NMR-spectra measurement. Mrs. M. Süsse for the NMR-, IR- and UV- spectra measurement. -
Synthesis of Natural and Non-Natural Diarylheptanoids and Evaluation of Their Neuroprotective Activity
Synthesis of natural and non-natural diarylheptanoids and evaluation of their neuroprotective activity Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) der Fakultät für Chemie und Pharmazie der Universität Regensburg vorgelegt von Petr Jirásek aus Prag 2014 Gedruckt mit Unterstützung des Deutschen Akademischen Austauschdienstes Die vorliegende Arbeit wurde im Zeitraum vom Januar 2011 bis September 2014 unter der Leitung von Prof. Dr. Jörg Heilmann und PD Dr. Sabine Amslinger am Lehrstuhl für Pharmazeutische Biologie und am Institut für Organische Chemie der Universität Regensburg angefertigt. Das Promotionsgesuch wurde eingereicht am: Tag der mündlichen Prüfung: 29.09.2014 Prüfungsausschuss: Prof. Dr. Jörg Heilmann (Erstgutachter) PD Dr. Sabine Amsliger (Zweitgutachter) Prof. Dr. Sigurd Elz (dritter Prüfer) Prof. Dr. Siavosh Mahboobi (Vorsitzender) Danksagung An dieser Stelle möchte ich mich bei allen Personen bedanken, die zum Gelingen dieser Arbeit beigetragen haben: bei Prof. Dr. Jörg Heilmann für die Vergabe dieses spannenden Themas, für viele wertvolle Anregungen, sein Vertrauen und für die schöne Jahre in seiner Arbeitsgruppe; bei PD Dr. Sabine Amslinger für die lehrreiche Zeit in Ihrem Umfeld, für all die Hilfe in Sachen organischer Chemie und für die herzliche Aufnahme in Ihrem Arbeitskreis; mein besonderer Dank gilt dem Deutschen Akademischen Austauschdienst für die Finanzierung meiner Promotion; bei allen jetzigen und ehemaligen Kolleginen und Kollegen am Lehrstuhl für Pharmazeutische Biologie möchte ich mich für das besonders freundliche Arbeitsklima und ihre Hilfsbereitschaft ganz herzlich bedanken; mein Dank gilt natürlich auch meinen Laborkolleginen und Laborkollegen von AK Amslinger für die angenehme Laborzeit und viele anregende Disskusionen; bei Frau Gabriele Brunner für ihre Geduld und Hilfe bei allen praktischen Aspekten der alltägigen Laborarbeit, genauso wie bei Frau Anne Grashuber für ihre unabdingbare und freundliche Unterstützung bei der Betreung der Praktika; weiterhin möchte ich mich bei Dr. -
Biologically Active Proteins from Curcuma Comosa Roxb. Rhizomes
Journal of Medicinal Plants Research Vol. 5(21), pp. 5208-5215, 9 October, 2011 Available online at http://www.academicjournals.org/JMPR ISSN 1996-0875 ©2011 Academic Journals Full Length Research Paper Biologically active proteins from Curcuma comosa Roxb. rhizomes Apaporn Boonmee 1, Chantragan Srisomsap 2, Aphichart Karnchanatat 3 and Polkit Sangvanich 1* 1Research Center for Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand. 2Laboratory of Biochemistry, Chulabhorn Research Institute, Bangkok, 10210, Thailand. 3The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, 10330, Thailand. Accepted 22 December, 2010 Curcuma comosa Roxb., belongs to Zingiberaceae family, is used in folk medicine to relieve postpartum uterine inflammation. The crude protein from C. comosa was assayed to find some interesting bioactivities. The hemagglutination activity assay was performed with erythrocytes from seven different species, and revealed a strong specificity towards rabbit erythrocytes only. After isolation by Concanavalin A (Con A) affinity column chromatography and likely identification by tryptic peptide tandem mass spectrometry, two separate proteins with homology to other plant lectins were found. The free radical scavenging capacity and the superoxide dismutase (SOD) enzyme activity were used to determine any potential antioxidant activity. The results suggested that there were three different SODs in the crude rhizome protein extract. These enzymes were stable over a wide range of temperatures (up to 80°C) which may make them useful for further applications. In addition, alpha- glucosidase inhibitory activity also was found in this plant. Key words: Hemagglutination, antioxidant, superoxide dismutase, alpha-glucosidase inhibition, Curcuma comosa. INTRODUCTION Plants in the Zingiberaceae are widely distributed in many of the biologically active proteins from Southeast Asia, especially in Thailand. -
Promising Natural Products As Anti-Cancer Agents Against Neuroblastoma
In: Horizons in Cancer Research. Volume 59 ISBN: 978-1-63483-093-5 Editor: Hiroto S. Watanabe © 2015 Nova Science Publishers, Inc. Chapter 6 Promising Natural Products As Anti-Cancer Agents against Neuroblastoma Ken Yasukawa* and Keiichi Tabata Nihon University School of Pharmacy, Narashinodai, Funabashi, Chiba, Japan Abstract Neuroblastoma is a neuroendocrine tumor arising from neural crest elements of the sympathetic nervous system (SNS). It most frequently originates in one of the adrenal glands, but can also develop in nerve tissues of the neck, chest, abdomen or pelvis, and exhibits extreme heterogeneity, being stratified into three risk categories; low, intermediate, and high. Low-risk disease is most common in infants and good outcomes are common with observation only or surgery, whereas high-risk disease is difficult to treat successfully, even with the most intensive multi-modal therapies available. Esthesioneuroblastoma, also known as olfactory neuroblastoma, is believed to arise from the olfactory epithelium and its classification remains controversial. However, as it is not a sympathetic nervous system malignancy, esthesioneuroblastoma is a distinct clinical entity and is not to be confused with neuroblastoma. This review describes novel natural products with which neuroblastoma can be treated. Abbreviations AIF Apoptosis-inducing factor AMPK Adenosine monophosphate kinase ATF3 Activating transcription factor 3 * E-mail: [email protected], yasukawa.ken@nihon-u,ne.jp. 92 Ken Yasukawa and Keiichi Tabata Bcl-2 B-cell -
Curcuma Comosa Mixtures
CURCUMA COMOSA MIXTURES Curcuma comosa mixtures NAT GEN brand Curcuma comosa mixtures NAT GEN brand is a traditional Thai herbal medicine carefully formulated to specifically promote women’s health. All NAT GEN herbal products are produced in a well-established pharmaceutical facility that meets the stringent Good Manufacturing Practice standards or (GMP) standards. Curcuma comosa mixtures NAT GEN brand has been approved as herbal medicine by the Thai Food and Drug Administration (TFDA) of the Department of Medical Sciences, Ministry of Public Health. THAI CAREFULLY FORMULATED To NAT GEN, quality and safety are our number one priority. FDA FOR WOMEN APPROVED 【PRODUCT NAME】 Curcuma comosa mixtures NAT GEN brand 【NET WEIGHT】 300 ML. 【PRODUCT OF】 Thailand 【ACTIVE INGREDIENTS】 Curcuma comosa Roxb., Curcuma aeruginosa Roxb., Zingiber cassumunar Roxb., Bixa orellana L., Carthamus tinctorius L., Curcuma aromatica Salisb. 【DIRECTIONS】 1 Tablespoon (15ml.) twice daily, before breakfast and dinner (Shake well before use) Storage temperature between 15-30°C Refrigerate after opening 【USES】 Uterine involution, Blood tonic 【WARNINGS】 1. Do not use during pregnancy and breastfeeding 2. Avoid prolonged usage CURCUMA COMOSA MIXTURES About active ingredients: Wan Mahamek (Curcuma aeruginosa Roxb.) helps tighten uterine and vagina muscles, reduce pelvic pain, cures cervicitis, cures leucorrhea, brightens skin, tighten breasts, prevent Amniotic Fluid Embolism after childbirth, heal surgical scars from cesarean section, and restore the uterine health in order to maintain the mother’s fertility. Wan Chak Mod Luk (Curcuma comosa Roxb.) has been mentioned in many ancient Thai Plai (Zingiber cassumunar Roxb.) medicinal manuscripts as an herb that has helps increase blood circulation, great beneficial properties for woman. -
Antioxidant, Cytotoxic, and Antimicrobial Activities of Glycyrrhiza Glabra L., Paeonia Lactiflora Pall., and Eriobotrya Japonica (Thunb.) Lindl
Medicines 2019, 6, 43; doi:10.3390/medicines6020043 S1 of S35 Supplementary Materials: Antioxidant, Cytotoxic, and Antimicrobial Activities of Glycyrrhiza glabra L., Paeonia lactiflora Pall., and Eriobotrya japonica (Thunb.) Lindl. Extracts Jun-Xian Zhou, Markus Santhosh Braun, Pille Wetterauer, Bernhard Wetterauer and Michael Wink T r o lo x G a llic a c id F e S O 0 .6 4 1 .5 2 .0 e e c c 0 .4 1 .5 1 .0 e n n c a a n b b a r r b o o r 1 .0 s s o b b 0 .2 s 0 .5 b A A A 0 .5 0 .0 0 .0 0 .0 0 5 1 0 1 5 2 0 2 5 0 5 0 1 0 0 1 5 0 2 0 0 0 1 0 2 0 3 0 4 0 5 0 C o n c e n tr a tio n ( M ) C o n c e n tr a tio n ( M ) C o n c e n tr a tio n ( g /m l) Figure S1. The standard curves in the TEAC, FRAP and Folin-Ciocateu assays shown as absorption vs. concentration. Results are expressed as the mean ± SD from at least three independent experiments. Table S1. Secondary metabolites in Glycyrrhiza glabra. Part Class Plant Secondary Metabolites References Root Glycyrrhizic acid 1-6 Glabric acid 7 Liquoric acid 8 Betulinic acid 9 18α-Glycyrrhetinic acid 2,3,5,10-12 Triterpenes 18β-Glycyrrhetinic acid Ammonium glycyrrhinate 10 Isoglabrolide 13 21α-Hydroxyisoglabrolide 13 Glabrolide 13 11-Deoxyglabrolide 13 Deoxyglabrolide 13 Glycyrrhetol 13 24-Hydroxyliquiritic acid 13 Liquiridiolic acid 13 28-Hydroxygiycyrrhetinic acid 13 18α-Hydroxyglycyrrhetinic acid 13 Olean-11,13(18)-dien-3β-ol-30-oic acid and 3β-acetoxy-30-methyl ester 13 Liquiritic acid 13 Olean-12-en-3β-ol-30-oic acid 13 24-Hydroxyglycyrrhetinic acid 13 11-Deoxyglycyrrhetinic acid 5,13 24-Hydroxy-11-deoxyglycyirhetinic