Classification

Total Page:16

File Type:pdf, Size:1020Kb

Classification Biology Classification Zebras have a distinctive striped pattern that makes them easily recognizable to most people, but they also display features common to many other animals. So how can we easily compare animals? This is a print version of an interactive online lesson. To sign up for the real thing or for curriculum details about the lesson go to www.cosmoslessons.com Introduction: Classication Why do zebras have stripes? It’s a question that scientists have been asking for more than 100 years but now new research may nally have an answer. Most animal species have developed distinctive colours and patterns to help disguise them in their natural environment. Like a soldier’s camouage, the colouring and patterns look like the background, so it's hard to tell the dierence between the animal and its surroundings. But zebras live on brown grassy plains and their stripes make them stand out, not disappear. They may as well be holding signs for the lions saying, “come and eat me”. Now we may have the answer. By studying where most zebras live, scientists have found that the animals share their home with lots of nasty biting tsetse ies and horse ies. They also discovered that these ies don’t like striped patterns and will stay away from them. So, it’s likely that the zebras developed stripes to act as an insect repellent. That may sound crazy – to make yourself a target for lions just to keep away the ies. But these aren’t ordinary irritating ies. Tsetse ies carry diseases that can kill, while horse ies tear the animals’ skins leaving them at risk of infections. Believe it or not, to a zebra infectious diseases are actually more dangerous than lions! Read the full Cosmos Magazine article here. A plains (or Burchell's) zebra (left) and a donkey, approximately to scale. Question 1 Observe: A lot of science is about good observation. Look closely at the pictures of the zebra and donkey above and list four similarities and four dierences. Note: If there's time and the teacher doesn't mind, don't stop at four – see how many similarities and dierences you can get. 1 Gather: Classication You may already know that we can divide the things around us into two groups: living and non-living. Living things can move, respire, grow, reproduce, eat, excrete and respond to the environment around them. But how can we distinguish one living thing from another and why is this important? 0:00 / 3:59 Credit: Classication of Living Things by Mark Drollinger (YouTube). 2 Question 1 Notes: Use this space to take notes for the video. Note: This is not a question and is optional, but we recommend taking notes – they will help you remember the main points of the video and also help if you need to come back to answer a question or review the lesson. Question 2 Question 3 Recall: Greek or Latin words are used to classify living Recall: The bear was eliminated from the group of animals things because they are known all around the world. at the level: True Animalia False Chordata I'm not sure Mammalia Carnivora Felidae I'm not sure Living things are divided into kingdoms. There are six in all: animals, plants, bacteria, archaea, fungi and protists. This lesson will focus on the animal kingdom, or Animalia. The animal kingdom is divided into many dierent phyla but a simple division is between vertebrates (Chordata) and invertebrates. Vertebrates are animals that have a backbone, while invertebrates are animals without a backbone. Vertebrates are divided into ve classes – mammals, sh, birds, reptiles and amphibians. Question 4 Think: Why do we classify organisms? 3 Question 5 Describe: Complete the diagram below by adding the following for each class of vertebrates: their typical surface covering, how they give birth, whether they are warm- or cold-blooded, and an example. The rst class has been completed for you. Hint: You may need to perform an internet search to help with some of the features. Question 6 Select: Which class do you think zebras and white tigers best t into? Justify your choice. 4 Process: Classication 0:00 / 2:38 Credit: Dichotomous Key by Mark Drollinger (YouTube). Question 1 Notes: Use this space to take notes for the video. Note: This is not a question and is optional. 5 Question 2 Classify: From the images above, select the animal that best suits each blank space to complete the dichotomous key. Behavioural or physical feature Action or species 1 ying go to 2 not ying go to 6 2 feathered go to 3 not feathered Little brown bat 3 web-footed, water dwelling Mallard duck not web-footed, not water dwelling go to 4 4 hovering ight, very small Ruby-throated hummingbird not hovering ight go to 5 5 mouse eater, nocturnal Great horned owl insect eater, diurnal American robin 6 hairy or furred, mammalian go to 8 not hairy, not furred, not mammalian go to 7 7 legs present legs absent 8 aquatic animal Harbour seal land animal go to 9 9 hopping or jumping locomotion go to 10 not hopping or jumping locomotion go to 11 10 large with tail used for balance small with small bobbed tail 11 large at leathery tail Beaver tail neither at nor leathery go to 12 12 hoofed, herbivorous go to 13 not hoofed, omnivorous or carnivorous 13 spotted or striped coat go to 14 no spots or stripes on coat 14 spots on coat stripes on coat 6 Question 3 Determine: Do you think that two animals' coat colour and pattern is sucient to determine whether or not they belong to the same species? Support your answer with an example. Question 4 Think: New species are discovered every year. What diculties do you think researchers might have in determining whether or not an organism belongs to a new or existing species? Question 5 Research: The classication of the plains zebra is: Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Perissodactyla Family: Equidae Genus: Equus Species: quagga Use the internet to nd out the genus and species of the three other animals shown below. Note: The genus always begins with a capital letter and the species is always written in lower case. 7 Question 6 Recall: The Cosmos Magazine article stated four theories for why zebras have stripes. What were they? Question 7 Calculate: The approximate distribution of the three species of zebra can be seen on the map above. If the continent of Africa is approximately 30,244,049 km2, calculate the approximate area (in square kilometres) that each species occupies. Approximate fraction of Africa Species Area (square kilometres) occupied 1 Grevy's zebra /100 1 Plains zebra /5 1 Mountain zebra /80 8 Project: Classication Classifying striped animals Background This task will test your understanding of classication and of how dichotomous keys can be used to identify species based on their distinguishing features. You will need to carefully study the eight striped animals shown above and see if you can zero in on their key similarities and dierences. Are you ready for this stripy challenge? 9 Question 1 Complete: Complete the following table to identify the eight species by their common names and summarize their distinguishing features. The features you will need to consider are whether or not they: have a backbone, live in the sea, have legs, have hooves, have horns and have a regular striped pattern. In the next question you will use this information to construct a dichotomous key for these species. Hint: An internet search of the genus and species will help you nd the common names and any extra information you might need. Common name of Lives in Regular Image Genus and species Backbone Legs Hooves Horns species the sea stripes Equus quagga yes no Red lionsh Pterois volitans no no no Purple-striped Chrysaora colorata no no jellysh Panthera tigris no no Monarch caterpillar Danaus plexippus no yes Lampropeltis getula no no yes californiae Equus ferus yes yes no Tragelaphus eurycerus no yes Recall that a dichotomous key uses specic features to characterize and distinguish species. In this lesson we have seen an example of a step by step tabular dichotomous key, but you can also construct a dichotomous key in graphical form, as shown below. 10 Question 2 Design: Construct a dichotomous key that can be used to distinguish between each of the eight animals pictured at the top of this page. Use the project space provided to create your key in either tabular or graphical form. Illustrate your dichotomous key with an image of each animal sourced from the internet, and remember to include their scientic names (genus and species). You may wish to add additional animals to your key, however you must include all of the animals pictured above. Good luck! 11 Career: Classication Tim Caro was only three years old when his mother gave him a book about birds. Captivated by the beautiful and colourful birds he saw within its pages, young Tim knew then that he wanted to become a zoologist. Tim isn’t satised with just admiring beautiful animals. He wants to know exactly why animals look the way they do. Although we learn about what animals look like as children, he says that few people really understand the reasons behind the striking geometrical patterns of a girae’s coat, or why a panda is black and white. At home in sunny California, Tim divides his time between teaching biology at the University of California and writing books and papers about his research.
Recommended publications
  • Dheer, Arjun. 2016. Resource Partitioning Between Spotted Hyenas
    University of Southampton 16th August 2016 FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES CENTRE FOR BIOLOGICAL SCIENCES RESOURCE PARTITIONING BETWEEN SPOTTED HYENAS (CROCUTA CROCUTA) AND LIONS (PANTHERA LEO) Arjun Dheer A dissertation submitted in partial fulfilment of the requirements for the degree of M.Res. Wildlife Conservation. 1 As the nominated University supervisor of this M.Res. project by Arjun Dheer, I confirm that I have had the opportunity to comment on earlier drafts of the report prior to submission of the dissertation for consideration of the award of M.Res. Wildlife Conservation. Signed………………………………….. UoS Supervisor’s name: Prof. C. Patrick Doncaster As the nominated Marwell Wildlife supervisor of this M.Res. project by Arjun Dheer, I confirm that I have had the opportunity to comment on earlier drafts of the report prior to submission of the dissertation for consideration of the award of M.Res. Wildlife Conservation. Signed…………………………………… MW Supervisor’s name: Dr. Zeke Davidson 2 Abstract The negative impact of anthropogenic activities on wildlife has led to protected areas being set aside to prevent human-wildlife conflict. These protected areas are often small and fenced in order to meet the needs of expanding human communities and to conserve wildlife. This creates challenges for the management of wide-ranging animals such as large carnivores, especially those that compete with one another for limited resources. This study focused on resource partitioning between GPS-GSM collared spotted hyenas (hereafter referred to as hyenas) and lions in Lewa Wildlife Conservancy (LWC) and Borana Conservancy (BC), Kenya. Scat analysis revealed that hyenas and lions show a high degree of dietary overlap, though hyenas have broader diets and feed on livestock species, which lions completely avoid.
    [Show full text]
  • Ecology and Habitat Suitability of Cape Mountain Zebra (Equus Zebra Zebra) in the Western Cape, South Africa
    Ecology and habitat suitability of Cape mountain zebra (Equus zebra zebra) in the Western Cape, South Africa by Adriaan Jacobus Olivier Thesis presented in partial fulfilment of the requirements for the degree Masters of Science at Stellenbosch University Department of Conservation Ecology and Entomology, Faculty of AgriScience Supervisor: Dr Alison J. Leslie Co-supervisor: Dr Jason I. Ransom December 2019 Stellenbosch University https://scholar.sun.ac.za Declaration By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitly otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Jaco Olivier December 2019 Copyright © 2019 Stellenbosch University All rights reserved ii Stellenbosch University https://scholar.sun.ac.za Abstract Endemic to South Africa, the Cape mountain zebra (Equus zebra zebra) historically occurred throughout the Western Cape, and parts of the Northern and Eastern Cape. However, due to human impacts fewer than 50 individuals remained by the 1950’s. Conservation efforts over the past 50 years have resulted in the population increasing to over 4700 individuals and having moved on the IUCN red list, from Critically Endangered to Least Concern. As there are still many isolated meta-populations, CapeNature established a Biodiversity Management Plan for the conservation of Cape mountain zebra in the Western Cape. In 2001, 15 (six males and nine females) Cape mountain zebra was reintroduced into Bakkrans Nature Reserve, situated in the Cederberg Wilderness Area of South Africa.
    [Show full text]
  • Mammal Species Richness at a Catena and Nearby Waterholes During a Drought, Kruger National Park, South Africa
    diversity Article Mammal Species Richness at a Catena and Nearby Waterholes during a Drought, Kruger National Park, South Africa Beanélri B. Janecke Animal, Wildlife & Grassland Sciences, University of the Free State, 205 Nelson Mandela Road, Park West, Bloemfontein 9301, South Africa; [email protected]; Tel.: +27-51-401-9030 Abstract: Catenas are undulating hillslopes on a granite geology characterised by different soil types that create an environmental gradient from crest to bottom. The main aim was to determine mammal species (>mongoose) present on one catenal slope and its waterholes and group them by feeding guild and body size. Species richness was highest at waterholes (21 species), followed by midslope (19) and sodic patch (16) on the catena. Small differences observed in species presence between zones and waterholes and between survey periods were not significant (p = 0.5267 and p = 0.9139). In total, 33 species were observed with camera traps: 18 herbivore species, 10 carnivores, two insectivores and three omnivores. Eight small mammal species, two dwarf antelopes, 11 medium, six large and six mega-sized mammals were observed. Some species might not have been recorded because of drought, seasonal movement or because they travelled outside the view of cameras. Mammal presence is determined by food availability and accessibility, space, competition, distance to water, habitat preferences, predators, body size, social behaviour, bound to territories, etc. The variety in body size and feeding guilds possibly indicates a functioning catenal ecosystem. This knowledge can be beneficial in monitoring and conservation of species in the park. Keywords: catena ecosystem; ephemeral mud wallows; habitat use; mammal variety; Skukuza area; Citation: Janecke, B.B.
    [Show full text]
  • Zebra and Quagga Mussels
    SPECIES AT A GLANCE Zebra and Quagga Mussels Two tiny mussels, the zebra mussel (Dreissena poly- morpha) and the quagga mussel (Dreissena rostriformis bugensis), are causing big problems for the economy and the environment in the west. Colonies of millions of mussels can clog underwater infrastructure, costing Zebra mussel (Actual size is 1.5 cm) taxpayers millions of dollars, and can strip nutrients from nearly all the water in a lake in a single day, turning entire ecosystems upside down. Zebra and quagga mussels are already well established in the Great Lakes and Missis- sippi Basin and are beginning to invade Western states. It Quagga mussel takes only one contaminated boat to introduce zebra and (Actual size is 2 cm) quagga mussels into a new watershed; once they have Amy Benson, U.S. Geological Survey Geological Benson, U.S. Amy been introduced, they are virtually impossible to control. REPORT THIS SPECIES! Oregon: 1-866-INVADER or Oregon InvasivesHotline.org; Washington: 1-888-WDFW-AIS; California: 1-916- 651-8797 or email [email protected]; Other states: 1-877-STOP-ANS. Species in the news Learning extensions Resources Oregon Public Broadcasting’s Like a Mussel out of Water Invasion of the Quagga Mussels! slide coverage of quagga mussels: www. show: waterbase.uwm.edu/media/ opb.org/programs/ofg/episodes/ cruise/invasion_files/frame.html view/1901 (Only viewable with Microsoft Internet Explorer) Why you should care How they got here and spread These tiny invaders have dramatically changed Zebra and quagga mussels were introduced to the entire ecosystems, and they cost taxpayers billions Great Lakes from the Caspian and Black Sea region of dollars every year.
    [Show full text]
  • Plains Zebra (<I>Equus Quagga</I>)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. National Park Service Publications and Papers National Park Service 1-7-2020 Plains Zebra (Equus quagga) Behaviour in a Restored Population Reveals Seasonal Resource Limitations Charli de Vos Stellenbosch University, [email protected] Alison J. Leslie Stellenbosch University, [email protected] Jason I. Ransom United States National Park Service, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/natlpark Part of the Environmental Education Commons, Environmental Policy Commons, Environmental Studies Commons, Fire Science and Firefighting Commons, Leisure Studies Commons, Natural Resource Economics Commons, Natural Resources Management and Policy Commons, Nature and Society Relations Commons, Other Environmental Sciences Commons, Physical and Environmental Geography Commons, Public Administration Commons, and the Recreation, Parks and Tourism Administration Commons Vos, Charli de; Leslie, Alison J.; and Ransom, Jason I., "Plains Zebra (Equus quagga) Behaviour in a Restored Population Reveals Seasonal Resource Limitations" (2020). U.S. National Park Service Publications and Papers. 200. https://digitalcommons.unl.edu/natlpark/200 This Article is brought to you for free and open access by the National Park Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in U.S. National Park Service Publications and Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Applied Animal Behaviour Science 224 (2020) 104936 Contents lists available at ScienceDirect Applied Animal Behaviour Science journal homepage: www.elsevier.com/locate/applanim Plains zebra (Equus quagga) behaviour in a restored population reveals seasonal resource limitations T Charli de Vosa, Alison J. Leslieb, Jason I.
    [Show full text]
  • Speciation with Gene Flow in Equids Despite Extensive Chromosomal Plasticity
    Speciation with gene flow in equids despite extensive chromosomal plasticity Hákon Jónssona,1, Mikkel Schuberta,1, Andaine Seguin-Orlandoa,b,1, Aurélien Ginolhaca, Lillian Petersenb, Matteo Fumagallic,d, Anders Albrechtsene, Bent Petersenf, Thorfinn S. Korneliussena, Julia T. Vilstrupa, Teri Learg, Jennifer Leigh Mykag, Judith Lundquistg, Donald C. Millerh, Ahmed H. Alfarhani, Saleh A. Alquraishii, Khaled A. S. Al-Rasheidi, Julia Stagegaardj, Günter Straussk, Mads Frost Bertelsenl, Thomas Sicheritz-Pontenf, Douglas F. Antczakh, Ernest Baileyg, Rasmus Nielsenc, Eske Willersleva, and Ludovic Orlandoa,2 aCentre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen K, Denmark; bNational High-Throughput DNA Sequencing Center, DK-1353 Copenhagen K, Denmark; cDepartment of Integrative Biology, University of California, Berkeley, CA 94720; dUCL Genetics Institute, Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, United Kingdom; eThe Bioinformatics Centre, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark; fCentre for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800 Lyngby, Denmark; gMaxwell H. Gluck Equine Research Center, Veterinary Science Department, University of Kentucky, Lexington, KY 40546; hBaker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853; iZoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; jRee Park, Ebeltoft Safari, DK-8400 Ebeltoft, Denmark; kTierpark Berlin-Friedrichsfelde, 10319 Berlin, Germany; and lCentre for Zoo and Wild Animal Health, Copenhagen Zoo, DK-2000 Frederiksberg, Denmark Edited by Andrew G. Clark, Cornell University, Ithaca, NY, and approved October 27, 2014 (received for review July 3, 2014) Horses, asses, and zebras belong to a single genus, Equus,which Conservation of Nature.
    [Show full text]
  • Zebra Fact Sheet
    ZEBRA FACT SHEET STATUS: The Plains Zebra (Equus quagga, formerly Equus burchelli) is the most common, and has or had about five subspecies distributed across much of southern and eastern Africa. It, or particular subspecies of it, have also been known as the Common Zebra, the Dauw, Burchell's Zebra (actually the extinct subspecies, Equus quagga burchelli), and the Quagga (another extinct subspecies, Equus quagga quagga). The Mountain Zebra (Equus zebra) of southwest Africa tends to have a sleek coat with a white belly and narrower stripes than the Plains Zebra. It has two subspecies and is classified as endangered. Grevy's Zebra (Equus grevyi) is the largest type, with an erect mane, and a long, narrow head making it appear rather mule like. It is a creature of the semi arid grasslands of Ethiopia, Somalia, and northern Kenya. It is endangered too. There are two subspecies of mountain zebra. Equus zebra is endangered and Equus zebra hartmannae is threatened. DESCRIPTION: Zebras have black and white stripes all over their bodies except their stomachs, which are white. They have four one-toed hoofs. Their slender, pointed ears reach up to eight inches in length. Zebras have manes of short hair that stick straight up from their necks. The stripes on their bodies continue to the mane. They also have a tuft of hair at the end of their tails. The Grevy's Zebra differs from all other zebras in its primitive characteristics and different behavior. SIZE: Zebras reach six to eight-and-a-half feet in length. Their tails are an additional one-and-a-half feet long.
    [Show full text]
  • Stripes Faded, Barking Silenced: Remembering Quagga Rick De Vos Curtin University
    Animal Studies Journal Volume 3 | Issue 1 Article 4 5-2014 Stripes Faded, Barking Silenced: Remembering Quagga Rick De Vos Curtin University Follow this and additional works at: http://ro.uow.edu.au/asj Recommended Citation De Vos, Rick, Stripes Faded, Barking Silenced: Remembering Quagga, Animal Studies Journal, 3(1), 2014, 29-45. Available at:http://ro.uow.edu.au/asj/vol3/iss1/4 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Stripes Faded, Barking Silenced: Remembering Quagga Abstract The death of the last quagga on August 12, 1889 represented the loss of a long-term resident of the Artis Magistra Zoo in Amsterdam, at the time a private institution accessible only to members. The am re’s death was not recognised at the time as signifying the extinction of the quagga, largely due to the vague and general usage of the term ‘quagga’. The delay in understanding the significance of this death, and the way in which quaggas rapidly disappeared in the wild in southern Africa in the nineteenth century, have been overshadowed in scientific nda historical accounts by debates concerning the classification of the quagga and its re-creation by elective breeding from plains zebra stock. This paper examines quaggas in terms of their relationships with each other and with other animals on the southern African plains, considering how they have been remembered in different contexts and reflecting on what has been lost in the light of attempts to erase and redeem their extinction.
    [Show full text]
  • Lion (Panthera Leo Melanochaita) Diet in Relation to Prey Preference and Density in Meru National Park, Kenya
    Lion (Panthera leo melanochaita) diet in relation to prey preference and density in Meru National Park, Kenya MSc Research Project Report 2019 – 2020 Mateo Bal MSc Biodiversity, Conservation and Restoration Evolutionary Ecology Group Department of Biology Institute of Environmental Sciences Antwerp University Leiden University Research supervisors: Prof. Dr. Ir. Hans H. de Iongh (Leiden University, Leo Foundation) MSc Luka L. Narisha (Kenya Wildlife Service) Lion (Panthera leo melanochaita) diet in relation to prey preference and density in Meru National Park, Kenya Mateo Bal s0185753 This research project was developed within a collaborative framework between the University of Antwerp, the Institute of Environmental Sciences of Leiden University, Kenya Wildlife Service, the Leo Foundation and the Born Free Foundation. Submitted to obtain the master’s degree in biology - specialisation Biodiversity, Conservation and Restoration. 2 ABSTRACT The African lion (Panthera leo) plays a key role in savannah ecosystems by directly and indirectly regulating trophic structure. Their foraging behavior has frequently been described as opportunistic, but often reveals a distinct preference for certain prey species that are energetically more profitable. This research project focussed on the population structure and diet of lions in Kenya’s Meru National Park. Data were collected from February until April 2019 and contribute to the PhD research of MSc Luka Narisha. A total of 28 lions were identified during fieldwork, indicating a lion density of 2.2 adult lions per 100 km2. Transect counts of potential prey species in the park revealed that Kirk’s dik-dik (Madoqua kirkii) had the highest relative abundance of all prey species (50.89%), while African buffalo (Syncerus caffer) contributed the most to the total prey biomass (33.94%).
    [Show full text]
  • Quagga Mussel (Dreissena Bugensis)
    Zebra Mussel (Dreissena polymorpha) Quagga Mussel (Dreissena bugensis) What are they & where are they found? The Zebra mussel and its clammy cousin the quagga mussel are small freshwater bivalve mollusks named after their distinct zebra‐like stripes. They can be found in freshwater rivers, lakes, reservoirs and brackish water habitats. FACT: Quagga mussels were named after the “Quagga”, an extinct relative of the zebra. (http://en.wikipedia.org/wiki/Quagga) What do they look like? These revolting relatives are frequently mistaken for one another due to their similar appearance and habitat preferences. Like their namesakes, both zebra and quagga mussels have alternating dark (brown, black, or green) and light (yellow, white, or cream) banding on their shells. However, color patterns vary widely between individuals of both species. Shell stripes may be bold, faint, horizontal, vertical or absent from the mussel all together – talk about phenotypic plasticity! Both mussels are relatively small (< 1.5 inches) and generally D‐ shaped. Quagga mussels have a rounded appearance, with a convex ventral (hinge) surface, and two asymmetrical shell halves that meet to form a curved line. Zebra mussels have a more triangular shaped appearance, with a flat ventral surface, and two symmetrical shell halves that meet to form a straight line. Zebra and quagga mussels are relatively short‐lived species (2‐5 years), but they more than make up for this attribute by being extremely prolific breeders. Adult females of both species can produce 30,000 to 1 million eggs per year. Microscopic planktonic larvae, called veligers, float freely in the water column for 2‐5 weeks before settling onto a suitable substrate to feed and mature.
    [Show full text]
  • Risks and Causes of Mortalities in Wild Ungulates of Tanzania
    RISKS AND CAUSES OF MORTALITIES IN WILD UNGULATES OF TANZANIA 1Mbassa GK, 2Pereka AE, 3Matovelo JA, 4Mgasa MN, 5Kaita M, 1Mwangalimi MO Departments of Veterinary 1Anatomy, 2Physiology, Biochemistry, Pharmacology, Toxicology, 3Pathology, 4Surgery and Theriogenology, Sokoine University of Agriculture, P. O. Box 3016 Morogoro, 5Department of Wildlife, Ministry of Natural Resources and Tourism, P. O Box 636 Morogoro Tanzania ABSTRACT Habitat and forensic studies in Mkomazi, Saadani and Selous game reserves and Longido, Gonabis and Doma-Mkata protected areas of Tanzania indicate fires, poachers, hunters, predators, lack of feed and water due to habitat deterioration, agriculture and livestock to pose high risk to survival of plains zebra, buffalo, blue wildebeest, eland, hartebeest, impala, Thomson’s and Grant’s gazelles. Wildebeests and buffaloes suffer high mortality rates followed by hartebeests, elands, zebras and giraffes, the causes being trauma due to wire snares, bullets and predators. Animals acquire intelligence and develop survival strategies including knowledge of being a target species, man and predator preferences, home range for safety, borders of reserve areas, protectors, tools held by man and maintain minimum distances from strangers, perform sudden, fast irregular movements and vertical jumps to avoid being targeted, females separate from males while running and animals migration from high risk areas to safe places. Measurement of risks and causes of deaths is prerequisite to prediction of population trends and developing effective wildlife conservation strategies and as shown by this study ethology, habitant examination, forensic diagnosis on dead animal remains and migrations are useful information sources. INTRODUCTION Wild ungulates are of great economic importance in East Africa and their utilisation for food and export is increasing.
    [Show full text]
  • Risks and Causes of Mortalities in Wild Ungulates of Tanzania
    Mbassa G.K et al.: Mortalities in wild ungulates of Tanzania 731 RISKS AND CAUSES OF MORTALITIES IN WILD UNGULATES OF TANZANIA 1Mbassa G.K, 2Pereka A. E., 3Matovelo J. A., 4Mgasa M. N., 5Kaita M., 1Mwangalimi M. O. Departments of Veterinary 1Anatomy, 2Physiology, Biochemistry, Pharmacology, Toxicology, 3Pathology, 4Surgery and Theriogenology, Sokoine University of Agriculture, P. O. Box 3016 Morogoro, 5Department of Wildlife, Ministry of Natural Resources and Tourism, P. O Box 636 Morogoro Tanzania ABSTRACT Risks and causes of mortalities in wild ungulates in Mkomazi, Saadani and Selous game reserves and Longido, Gonabis and Doma-Mkata protected areas were studied for effective intervention to conserve wildlife. Factors threatening survival of wildlife, animal strategies for survival and responses to risks were examined and causes of deaths were determined by forensic diagnosis of remaining carcasses, bones, horns, heads and skins thus developing parameters for prediction of survival rates. Ungulate population trends in areas studied could be predicted and intervention and re-population approaches suggested. Species studied were plains zebra Equus burchelli, African buffalo Syncerus caffer, blue wildebeest, Connochaeta taurinus, eland, Taurotragus oryx, hartebeest, Alcelaphus buselaphus, impala, Aepyceros melampus, Thomson’s gazelle, Gazella thomsonii, and Grant’s gazelle, Gazella granti. The giraffe, Giraffa camelopadalis, waterbuck, Kobus defasa and warthogs were studied for comparative risk responses. Risk factors threatening wild ungulates included lack of feeds due to habitat deterioration, lack of water in dry season, fire, predators, poachers and hunters. Retrospective forensic diagnosis of remains indicated that trauma caused most deaths. Wildebeests and buffaloes were most hunted, poached and the former killed by predators.
    [Show full text]