Quagga Mussel (Dreissena Bugensis)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Zebra & Quagga Mussels: Species Guide
SPECIES IN DEPTH Zebra and Quagga Mussels NATIVE AND INVASIVE RANGE Zebra mussels are native to the Caspian and Black Seas (Eurasia); quagga mussels are native to the Dneiper River drainage in Ukraine. Both mussels have invaded freshwater systems of the United Kingdom, Western Europe, Canada, and the United States. In the United States, zebra mussels were established in the Great Lakes by 1986; quagga mussels were discovered in the Erie Canal and Lake Ontario in 1991. Now, zebra mussels are widespread in the Great Lakes and all Randy Westbrooks the major river drainages east of the Rocky Mountains. Zebra Mussel Quagga mussels are mostly confined to the lower Great Dreissena polymorpha Lakes area and seem to be replacing zebra mussels where their populations overlap. The zebra mussel is a West Coast distribution freshwater bivalve that, true to its name, is often Quagga and zebra mussels have breached the striped with dark bands Rockies and invaded Western states. Quagga mussels like a zebra, but it can were discovered in Lake Mead (Arizona) in 2007, and Fred Snyder Fred also be pure black or within months their shells were washing up on the unpigmented. This small mussel (about 3 cm shores of Lake Mohave (borders Arizona, California, long) is can be recognized from other mussels by and Nevada), and Lake Havasu (borders California and its triangular shape and one flat edge where its Arizona). From there, the mussels were transported byssal threads (for attaching to hard surfaces; see into many Southern California reservoirs via infested inset photo) emerge. However, it is not as easily Colorado River water that runs through aqueducts distinguished from quagga mussels, as both to the reservoirs, providing the region with half of its have byssal threads, which is a key feature for drinking water. -
Zebra Mussels Georgia Is Home to Several Species of Mussels, but Thankfully Zebra Mussels Currently Are Not One of Them
Zebra Mussels Georgia is home to several species of mussels, but thankfully zebra mussels currently are not one of them. A small mollusk having “zebra” stripes, it has spread throughout the country and has been described by the USGS as the “poster child of biological invasions”. In areas where it becomes established it can pose significant negative Photo: A Benson - USGS ecological and economic impacts through biofouling and outcompeting native species. Discoveries of Zebra Mussels Zebra Mussel Identification Though zebra mussels (Dreissena polymorpha) have been found in several states since their introduction via ballast water into the Great Lakes, the species has thus far not been found in Georgia. Zebra mussels can be confused with other mussel species, particularly the non-native quagga mussel (Dreissena bugensis). The guide below can help further distinguish the species. Should you have questions regarding identification of a mussel you have found, or if you suspect you have found a zebra mussel, RETAIN THE SPECIMEN and IMMEDIATELY contact your regional Georgia DNR Wildlife Resources Division Fisheries Office. Source: USGS https://nas.er.usgs.gov/queries/factsheet.aspx?speciesid=5 So, What Harm do Zebra Mussels Cause? A notorious mussel introduced into the Great Lakes via ballast water a few decades ago, zebra mussels have since spread to several states throughout the U.S. Though small in size, the mussel has been known to cause enormous-sized problems, most notably its biofouling capabilities that often result in clogged water lines for power plants, industrial facilities, and other commercial entities. Such biofouling has resulted in significant economic costs to several communities. -
Classification
Biology Classification Zebras have a distinctive striped pattern that makes them easily recognizable to most people, but they also display features common to many other animals. So how can we easily compare animals? This is a print version of an interactive online lesson. To sign up for the real thing or for curriculum details about the lesson go to www.cosmoslessons.com Introduction: Classication Why do zebras have stripes? It’s a question that scientists have been asking for more than 100 years but now new research may nally have an answer. Most animal species have developed distinctive colours and patterns to help disguise them in their natural environment. Like a soldier’s camouage, the colouring and patterns look like the background, so it's hard to tell the dierence between the animal and its surroundings. But zebras live on brown grassy plains and their stripes make them stand out, not disappear. They may as well be holding signs for the lions saying, “come and eat me”. Now we may have the answer. By studying where most zebras live, scientists have found that the animals share their home with lots of nasty biting tsetse ies and horse ies. They also discovered that these ies don’t like striped patterns and will stay away from them. So, it’s likely that the zebras developed stripes to act as an insect repellent. That may sound crazy – to make yourself a target for lions just to keep away the ies. But these aren’t ordinary irritating ies. Tsetse ies carry diseases that can kill, while horse ies tear the animals’ skins leaving them at risk of infections. -
AEBR 114 Review of Factors Affecting the Abundance of Toheroa Paphies
Review of factors affecting the abundance of toheroa (Paphies ventricosa) New Zealand Aquatic Environment and Biodiversity Report No. 114 J.R. Williams, C. Sim-Smith, C. Paterson. ISSN 1179-6480 (online) ISBN 978-0-478-41468-4 (online) June 2013 Requests for further copies should be directed to: Publications Logistics Officer Ministry for Primary Industries PO Box 2526 WELLINGTON 6140 Email: [email protected] Telephone: 0800 00 83 33 Facsimile: 04-894 0300 This publication is also available on the Ministry for Primary Industries websites at: http://www.mpi.govt.nz/news-resources/publications.aspx http://fs.fish.govt.nz go to Document library/Research reports © Crown Copyright - Ministry for Primary Industries TABLE OF CONTENTS EXECUTIVE SUMMARY ....................................................................................................... 1 1. INTRODUCTION ............................................................................................................ 2 2. METHODS ....................................................................................................................... 3 3. TIME SERIES OF ABUNDANCE .................................................................................. 3 3.1 Northland region beaches .......................................................................................... 3 3.2 Wellington region beaches ........................................................................................ 4 3.3 Southland region beaches ......................................................................................... -
History of Quagga Mussels
History of Quagga Mussels By Christine Moskell WS ‘08 Zebra mussels (Dreissena polymorpha) have long been the poster child of invasive species in Seneca Lake. Most people don’t even realize there are other varieties of mussels inhabiting the lake. Today, the tide is changing for zebra mussels in Seneca Lake, as another invasive mussel species has displaced the zebra mussels. Meet the quagga mussel. A close relative to zebra mussels, Quagga mussels (Dreissena bugensis) invaded the Finger Lakes in the same way as zebra mussels. Native to Ukraine, quagga mussels were first transported to the United States when foreign ships unknowingly carrying microscopic quagga larvae discharged their ballast water into the Great Lakes. Quagga mussels were first observed in the United States in the Great Lakes in September 1989, but were not at first considered a different species from zebra mussels.1 In 1991 during a zebra mussel survey near Palmyra, New York, researchers Dr. Bernie May of Cornell University and Dr. Ellen Marsden of the Illinois Natural Survey discovered a mussel with a different genotype than the zebra mussels.2 Genetic tests confirmed that this unique mussel was indeed a different species of Dreissena. The mussel was named “quagga” after an extinct African relative of the zebra. 3 Like zebra mussels, quagga mussels spread to the Finger Lakes via the waterways connected to the Great Lakes. The quagga mussel first arrived in Seneca Lake in 2000.4 Since their arrival to the United States, quagga mussels have expanded their populations throughout the country. Quagga mussels have been established in four of the five Great Lakes; Lake Michigan, Lake Huron, Lake Erie and Lake Ontario. -
Appertizers Soup
APPERTIZERS SPRING ROLLS (3 pcs) 5 THAI FISH CAKE Stuffed with vegetable and fried to a crisp served with plum sauce EDAMAME 5 Boiled soy bean tossed with sea salt SALT & PEPPER CALAMARI 10 Fried calamari tossed with salt, garlic, jalapeno, pepper, and scallion THAI CHICKEN WINGS (6 pcs) 8 Fried chicken wing tossed in tamarind sauce, topped with fried onion & cilantro CRAB CAKE (2 pcs) 10 Lump crab meat served with tartar sauce THAI FISH CAKE (TOD MUN PLA) (7 pcs) 9 STEAMED MUSSEL Homemade fish cake (curry paste, basil) served with sweet peanut&cucumber sauce STEAMED MUSSEL 10 Steamed mussel in spicy creamy lemongrass broth, kaffir lime leaves, basil leaves SHRIMP TEMPURA (3 pcs) 8 Shrimp, broccoli, sweet potato, & zucchini tempura served with tempura sauce GRILLED WHOLE SQUID 12 Served with spicy seafood sauce (garlic, lime juice, fresh chili, cilantro) GYOZA (5 pcs) 5 Fried or Steamed pork and chicken dumplings served with ponzu sauce SHRIMP SHUMAI (4 pcs) 6 CHICKEN SATAY Steamed jumbo shrimp dumplings served with ponzu sauce CHICKEN SATAY (5 pcs) 8 Grilled marinated chicken on skewers served with peanut & sweet cucumber sauce CRISPY CALAMARI 9 Fried calamari tempura served with sweet chili sauce SOFTSHELL CRAB APPERTIZER (2 pcs) 13 Fried jumbo softshell crab tempura served with ponzu sauce FRESH ROLL 7 Steamed shrimp, mint, cilantro, culantro, lettuce, carrot, basil leaves, rice noodle, wrapped with rice paper & served with peanut-hoisin sauce FRIED OYSTER (SERVED WITH FRIES) 10 FRESH ROLL FISH & CHIPS (SERVED WITH FRIES) 11 CRISPY -
Age Determination of the Mongolian Wild Ass (Equus Hemionus Pallas, 1775) by the Dentition Patterns and Annual Lines in the Tooth Cementum
Journal of Species Research 2(1):85-90, 2013 Age determination of the Mongolian wild ass (Equus hemionus Pallas, 1775) by the dentition patterns and annual lines in the tooth cementum Davaa Lkhagvasuren1,*, Hermann Ansorge2, Ravchig Samiya1, Renate Schafberg3, Anne Stubbe4 and Michael Stubbe4 1Department of Ecology, School of Biology and Biotechnology, National University of Mongolia, PO-Box 377 Ulaanbaatar 210646 2Senckenberg Museum of Natural History, Goerlitz, PF 300154 D-02806 Goerlitz, Germany 3Institut für Agrar- und Ernährungswissenschaften, Professur fuer Tierzucht, MLU, Museum für Haustierkunde, Julius Kuehn-ZNS der MLU, Domplatz 4, D-06099 Halle/Saale, Germany 4Institute of Zoology, Martin-Luther University of Halle Wittenberg, Domplatz 4, D-06099 Halle/Saale, Germany *Correspondent: [email protected] Based on 440 skulls recently collected from two areas of the wild ass population in Mongolia, the time course of tooth eruption and replacement was investigated. The dentition pattern allows identification of age up to five years. We also conclude that annual lines in the tooth cementum can be used to determine the age in years for wild asses older than five years after longitudinal tooth sections were made with a low- speed precision saw. The first upper incisor proved to be most suitable for age determination, although the starting time of cement deposition is different between the labial and lingual sides of the tooth. The accurate age of the wild ass can be determined from the number of annual lines and the time before the first forma- tion of the cementum at the respective side of the tooth. Keywords: age determination, annual lines, dentition, Equus hemionus, Mongolia, Mongolian wild ass, tooth cementum �2013 National Institute of Biological Resources DOI: 10.12651/JSR.2013.2.1.085 ence of poaching on the population size and population INTRODUCTION structure. -
PETITION to LIST the Western Ridged Mussel
PETITION TO LIST The Western Ridged Mussel Gonidea angulata (Lea, 1838) AS AN ENDANGERED SPECIES UNDER THE U.S. ENDANGERED SPECIES ACT Photo credit: Xerces Society/Emilie Blevins Submitted by The Xerces Society for Invertebrate Conservation Prepared by Emilie Blevins, Sarina Jepsen, and Sharon Selvaggio August 18, 2020 The Honorable David Bernhardt Secretary, U.S. Department of Interior 1849 C Street, NW Washington, DC 20240 Dear Mr. Bernhardt: The Xerces Society for Invertebrate Conservation hereby formally petitions to list the western ridged mussel (Gonidea angulata) as an endangered species under the Endangered Species Act, 16 U.S.C. § 1531 et seq. This petition is filed under 5 U.S.C. 553(e) and 50 CFR 424.14(a), which grants interested parties the right to petition for issue of a rule from the Secretary of the Interior. Freshwater mussels perform critical functions in U.S. freshwater ecosystems that contribute to clean water, healthy fisheries, aquatic food webs and biodiversity, and functioning ecosystems. The richness of aquatic life promoted and supported by freshwater mussel beds is analogous to coral reefs, with mussels serving as both structure and habitat for other species, providing and concentrating food, cleaning and clearing water, and enhancing riverbed habitat. The western ridged mussel, a native freshwater mussel species in western North America, once ranged from San Diego County in California to southern British Columbia and east to Idaho. In recent years the species has been lost from 43% of its historic range, and the southern terminus of the species’ distribution has contracted northward approximately 475 miles. Live western ridged mussels were not detected at 46% of the 87 sites where it historically occurred and that have been recently revisited. -
Lake Powell Food Web Structure: Predicting Effects of Quagga Mussel Joshua A
Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2017-04-01 Lake Powell Food Web Structure: Predicting Effects of Quagga Mussel Joshua A. Verde Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Biology Commons BYU ScholarsArchive Citation Verde, Joshua A., "Lake Powell Food Web Structure: Predicting Effects of Quagga Mussel" (2017). All Theses and Dissertations. 6702. https://scholarsarchive.byu.edu/etd/6702 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Lake Powell Food Web Structure: Predicting Effects of Quagga Mussel Joshua A. Verde A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Mark C. Belk, Chair Dennis K. Shiozawa Steven L. Peck Department of Biology Brigham Young University Copyright © 2017 Joshua A. Verde All Rights Reserved ABSTRACT Lake Powell Food Web Structure: Predicting Effects of Quagga Mussel Joshua A. Verde Department of Biology, BYU Master of Science Food webs in aquatic ecosystems can be dramatically altered by invasive species. Quagga mussels are prevalent invaders that compete with existing species and disrupt nutrient cycling. In 2012, the Quagga Mussel (Dreissena rostriformus bugensis) was introduced into Lake Powell and is expected to move throughout the reservoir in the near future. Stable isotope analysis is a powerful tool for characterizing food webs and trophic interactions. -
Risk Assessment for Three Dreissenid Mussels (Dreissena Polymorpha, Dreissena Rostriformis Bugensis, and Mytilopsis Leucophaeata) in Canadian Freshwater Ecosystems
C S A S S C C S Canadian Science Advisory Secretariat Secrétariat canadien de consultation scientifique Research Document 2012/174 Document de recherche 2012/174 National Capital Region Région de la capitale nationale Risk Assessment for Three Dreissenid Évaluation des risques posés par trois Mussels (Dreissena polymorpha, espèces de moules dreissénidées Dreissena rostriformis bugensis, and (Dreissena polymorpha, Dreissena Mytilopsis leucophaeata) in Canadian rostriformis bugensis et Mytilopsis Freshwater Ecosystems leucophaeata) dans les écosystèmes d'eau douce au Canada Thomas W. Therriault1, Andrea M. Weise2, Scott N. Higgins3, Yinuo Guo1*, and Johannie Duhaime4 Fisheries & Oceans Canada 1Pacific Biological Station 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7 2Institut Maurice-Lamontagne 850 route de la Mer, Mont-Joli, QC G5H 3Z48 3Freshwater Institute 501 University Drive, Winnipeg, MB R3T 2N6 4Great Lakes Laboratory for Fisheries and Aquatic Sciences 867 Lakeshore Road, PO Box 5050, Burlington, Ontario L7R 4A6 * YMCA Youth Intern This series documents the scientific basis for the La présente série documente les fondements evaluation of aquatic resources and ecosystems in scientifiques des évaluations des ressources et des Canada. As such, it addresses the issues of the écosystèmes aquatiques du Canada. Elle traite des day in the time frames required and the problèmes courants selon les échéanciers dictés. documents it contains are not intended as Les documents qu‟elle contient ne doivent pas être definitive statements on the subjects addressed considérés comme des énoncés définitifs sur les but rather as progress reports on ongoing sujets traités, mais plutôt comme des rapports investigations. d‟étape sur les études en cours. Research documents are produced in the official Les documents de recherche sont publiés dans la language in which they are provided to the langue officielle utilisée dans le manuscrit envoyé au Secretariat. -
Freshwater Bivalve (Unioniformes) Diversity, Systematics, and Evolution: Status and Future Directions Arthur E
Natural Resource Ecology and Management Natural Resource Ecology and Management Publications 6-2008 Freshwater bivalve (Unioniformes) diversity, systematics, and evolution: status and future directions Arthur E. Bogan North Carolina State Museum of Natural Sciences Kevin J. Roe Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/nrem_pubs Part of the Evolution Commons, Genetics Commons, Marine Biology Commons, Natural Resources Management and Policy Commons, and the Terrestrial and Aquatic Ecology Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ nrem_pubs/29. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Natural Resource Ecology and Management at Iowa State University Digital Repository. It has been accepted for inclusion in Natural Resource Ecology and Management Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Freshwater bivalve (Unioniformes) diversity, systematics, and evolution: status and future directions Abstract Freshwater bivalves of the order Unioniformes represent the largest bivalve radiation in freshwater. The unioniform radiation is unique in the class Bivalvia because it has an obligate parasitic larval stage on the gills or fins of fish; it is divided into 6 families, 181 genera, and ∼800 species. These families are distributed across 6 of the 7 continents and represent the most endangered group of freshwater animals alive today. North American unioniform bivalves have been the subject of study and illustration since Martin Lister, 1686, and over the past 320 y, significant gains have been made in our understanding of the evolutionary history and systematics of these animals. -
Invasive Bivalves in Fresh Waters: Impacts from Individuals to Ecosystems and Possible Control Strategies
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universidade do Minho: RepositoriUM Hydrobiologia (2014) 735:233–251 DOI 10.1007/s10750-012-1409-1 FRESHWATER BIVALVES Review Paper Invasive bivalves in fresh waters: impacts from individuals to ecosystems and possible control strategies Ronaldo Sousa • Adriana Novais • Raquel Costa • David L. Strayer Received: 11 July 2012 / Accepted: 25 November 2012 / Published online: 22 January 2013 Ó Springer Science+Business Media Dordrecht 2013 Abstract Invasive bivalves may cause great ecolog- impacts ranging from individuals to ecosystems. ical, evolutionary, and economic impacts in freshwa- Freshwater invasive bivalves can create no-analog ter ecosystems. Species such as Corbicula fluminea, ecosystems, posing serious difficulties for manage- Dreissena bugensis, Dreissena polymorpha, Limno- ment, but new techniques are becoming available perna fortunei, and Sinanodonta woodiana are widely which may enhance options to detect early introduc- distributed hyper-successful invaders, but several tions and mitigate impacts. Although knowledge about others not yet invasive (or at least not considered as the biology of these bivalves has increased consider- such) may become so in the near future. These species ably in the last two decades, several fundamental gaps can affect hydrology, biogeochemical cycling, and still persist; we suggest new research directions that biotic interactions through several mechanisms, with are worth exploring in the near future. Keywords Bivalves Á Corbicula fluminea Á Dreissena Á Impacts Á Invasive species Á Limnoperna Guest editors: Manuel P. M. Lopes-Lima, Ronaldo G. Sousa, Simone G. P. Varandas, Elsa M. B. Froufe & Amı´lcar A. fortunei Á Sinanodonta woodiana T.