The Asian Clam and Its Relationship to the Balanced Indigenous
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Zebra & Quagga Mussels: Species Guide
SPECIES IN DEPTH Zebra and Quagga Mussels NATIVE AND INVASIVE RANGE Zebra mussels are native to the Caspian and Black Seas (Eurasia); quagga mussels are native to the Dneiper River drainage in Ukraine. Both mussels have invaded freshwater systems of the United Kingdom, Western Europe, Canada, and the United States. In the United States, zebra mussels were established in the Great Lakes by 1986; quagga mussels were discovered in the Erie Canal and Lake Ontario in 1991. Now, zebra mussels are widespread in the Great Lakes and all Randy Westbrooks the major river drainages east of the Rocky Mountains. Zebra Mussel Quagga mussels are mostly confined to the lower Great Dreissena polymorpha Lakes area and seem to be replacing zebra mussels where their populations overlap. The zebra mussel is a West Coast distribution freshwater bivalve that, true to its name, is often Quagga and zebra mussels have breached the striped with dark bands Rockies and invaded Western states. Quagga mussels like a zebra, but it can were discovered in Lake Mead (Arizona) in 2007, and Fred Snyder Fred also be pure black or within months their shells were washing up on the unpigmented. This small mussel (about 3 cm shores of Lake Mohave (borders Arizona, California, long) is can be recognized from other mussels by and Nevada), and Lake Havasu (borders California and its triangular shape and one flat edge where its Arizona). From there, the mussels were transported byssal threads (for attaching to hard surfaces; see into many Southern California reservoirs via infested inset photo) emerge. However, it is not as easily Colorado River water that runs through aqueducts distinguished from quagga mussels, as both to the reservoirs, providing the region with half of its have byssal threads, which is a key feature for drinking water. -
The Asiatic Clam Corbicula Fluminea (Müller, 1774)
The Asiatic clam Corbicula fluminea (Müller, 1774) (Bivalvia: Corbiculidae) in Europe R. Araujo, D. Moreno and M. A. Ramos Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal, 2. 28006, Madrid, Spain Abstract. Two populations of Corbicula fluminea were found in the Iberian Península; one in Spain and the other in Portugal. A detailed description in terms of ecology shell morphology and microstructure, morphometrics and anatomy is given for the Spanish population from the Mino River. Lectotypes for Tellina fluminea and T. fluminalis, and a neotype for T. fluviatilis are designated and illustrated. Distribuüon and spread of C. fluminea in Europe are revised. Comparisons among some European populations and the populations from Cantón, China, and the Mino River are made. Results suggest that, except for one doubtful population, all records of Corbicula in Europe are attributable to C. fluminea. Corbicula taxonomy begins in 1774 with Müller who Thus, Talavera and Faustino (1933) {In: Britton and described three species in the genus Tellina Linne, 1758: T. Morton, 1979) placed Corbicula manilensis (Philippi, 1844) fluminalis "in fluvio Asiae Euphrat"; T. fluminea "in arena into synonymy with C. fluminea, Morton (1977) considered fluviali Chinae"; T. fluviatilis "in ilumine emporium Can C. leana to be a júnior synonym of C. fluminea, while C. tón Chinae praeterlabente". Since then, many living species fluviatilis was previously placed into synonymy with C. of Corbicula Mühlfeldt, 1811, have been described in fluminea by Prashad (1929). Moreover, a thorough review by freshwater and estuarine habitáis from Southeast Asia, the Britton and Morton (1979) lead the authors to consider that Indian subcontinent, the Pacific islands, and the easternmost most Asiatic species previously described could be attributed part of Europe and África (McMahon, 1983). -
Diets of Freshwater Turtles Often Reflect the Availability of Food Resources in the Environment
Herpetological Conservation and Biology 8(3):561−570. HerpetologicalSubmitted: 26 March Conservation 2013; Accepted: and Biology 21 October 2013; Published: 31 December 2013. RazoR-Backed Musk TuRTle (SternotheruS carinatuS) dieT acRoss a GRadienT of invasion carla l. atkinSon1,2, 3 1Oklahoma Biological Survey, 111 E. Chesapeake St., Norman, OK 73019 2Department of Biology and Ecology and Evolutionary Biology Graduate Program, University of Oklahoma, Norman, Ok 73019 3Present Address: Dept. of Ecology and Evolutionary Biology, Corson Hall, Cornell University, Ithaca, NY 14853 e-mail: [email protected] abstract.—diets of freshwater turtles often reflect the availability of food resources in the environment. accordingly, bottom- feeding turtles’ diets are typically composed of benthic macroinvertebrate fauna (e.g., insects and mollusks). However, the composition of benthic systems has changed because many freshwater ecosystems have been invaded by non-native species, including bivalve species such as the asian clam, corbicula fluminea. i studied the diet of Sternotherus carinatus, the Razor- backed Musk Turtle, in southeastern oklahoma across three zones of corbicula abundances: no corbicula, moderate corbicula densities, and high corbicula densities. i hypothesized that the composition of corbicula in the diet would increase with increased abundance of corbicula in the riverine environment. Turtles were caught by snorkel surveys in the little and Mountain fork rivers and kept overnight for the collection of fecal samples. The diet was similar to that found in previous studies on S. carinatus except that corbicula is a new component of the diet and composed the majority of the diet in high-density corbicula areas. an index of Relative importance (iRi) showed that corbicula was the most important prey item in the areas with high corbicula density, was equally as important as gastropods in the areas with moderate corbicula density, and was absent from the diet in areas without corbicula. -
Freshwater Bivalve (Unioniformes) Diversity, Systematics, and Evolution: Status and Future Directions Arthur E
Natural Resource Ecology and Management Natural Resource Ecology and Management Publications 6-2008 Freshwater bivalve (Unioniformes) diversity, systematics, and evolution: status and future directions Arthur E. Bogan North Carolina State Museum of Natural Sciences Kevin J. Roe Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/nrem_pubs Part of the Evolution Commons, Genetics Commons, Marine Biology Commons, Natural Resources Management and Policy Commons, and the Terrestrial and Aquatic Ecology Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ nrem_pubs/29. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Natural Resource Ecology and Management at Iowa State University Digital Repository. It has been accepted for inclusion in Natural Resource Ecology and Management Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Freshwater bivalve (Unioniformes) diversity, systematics, and evolution: status and future directions Abstract Freshwater bivalves of the order Unioniformes represent the largest bivalve radiation in freshwater. The unioniform radiation is unique in the class Bivalvia because it has an obligate parasitic larval stage on the gills or fins of fish; it is divided into 6 families, 181 genera, and ∼800 species. These families are distributed across 6 of the 7 continents and represent the most endangered group of freshwater animals alive today. North American unioniform bivalves have been the subject of study and illustration since Martin Lister, 1686, and over the past 320 y, significant gains have been made in our understanding of the evolutionary history and systematics of these animals. -
Invasive Bivalves in Fresh Waters: Impacts from Individuals to Ecosystems and Possible Control Strategies
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Universidade do Minho: RepositoriUM Hydrobiologia (2014) 735:233–251 DOI 10.1007/s10750-012-1409-1 FRESHWATER BIVALVES Review Paper Invasive bivalves in fresh waters: impacts from individuals to ecosystems and possible control strategies Ronaldo Sousa • Adriana Novais • Raquel Costa • David L. Strayer Received: 11 July 2012 / Accepted: 25 November 2012 / Published online: 22 January 2013 Ó Springer Science+Business Media Dordrecht 2013 Abstract Invasive bivalves may cause great ecolog- impacts ranging from individuals to ecosystems. ical, evolutionary, and economic impacts in freshwa- Freshwater invasive bivalves can create no-analog ter ecosystems. Species such as Corbicula fluminea, ecosystems, posing serious difficulties for manage- Dreissena bugensis, Dreissena polymorpha, Limno- ment, but new techniques are becoming available perna fortunei, and Sinanodonta woodiana are widely which may enhance options to detect early introduc- distributed hyper-successful invaders, but several tions and mitigate impacts. Although knowledge about others not yet invasive (or at least not considered as the biology of these bivalves has increased consider- such) may become so in the near future. These species ably in the last two decades, several fundamental gaps can affect hydrology, biogeochemical cycling, and still persist; we suggest new research directions that biotic interactions through several mechanisms, with are worth exploring in the near future. Keywords Bivalves Á Corbicula fluminea Á Dreissena Á Impacts Á Invasive species Á Limnoperna Guest editors: Manuel P. M. Lopes-Lima, Ronaldo G. Sousa, Simone G. P. Varandas, Elsa M. B. Froufe & Amı´lcar A. fortunei Á Sinanodonta woodiana T. -
Upper Columbia River Basin Aquatic Invasive Species 2021 Early
Upper Columbia River Basin Aquatic Invasive Species 2021 Early Detection and Monitoring Plan June 2021 Contents 1.0 Introduction ........................................................................................................................................................ 1 2.0 Statewide History and Perspective of Aquatic Invasive Species Issue .............................................................. 1 3.0 Role of Upper Columbia Conservation Commission .......................................................................................... 3 3.1 Members and Partners ................................................................................................................................... 3 4.0 Aquatic Invasive Species in the Upper Columbia River Basin .......................................................................... 4 4.1 Aquatic Invasive Species of Concern for the Upper Columbia River Basin ................................................... 7 5.0 Importance of Aquatic Invasive Species Early Detection Monitoring ................................................................ 7 5.1 Management Case Studies ................................................................................................................................. 7 6.0 Early Detection Monitoring (2020) ..................................................................................................................... 10 7.0 Sample Collection and Equipment Decontamination Protocols ....................................................................... -
First Record of Corbicula Fluminalis (O. F. Müller, 1774) (Bivalvia: Corbiculidae) – in Poland
Vol. 13(1): 25–27 FIRST RECORD OF CORBICULA FLUMINALIS (O. F. MÜLLER, 1774) (BIVALVIA: CORBICULIDAE) – IN POLAND ANNA MARIA £ABÊCKA,JÓZEF DOMAGA£A,MA£GORZATA PILECKA-RAPACZ Department of General Zoology, University of Szczecin, Felczaka 3a, 71-412 Szczecin (e-mail: [email protected]) ABSTRACT: A human-modified environment may provide a favourable habitat for acclimation of invasive spe- cies. The resulting new niche is often unavailable for the native fauna and, consequently, can be successfully inhabited by alien invaders. This is also due to relatively low competition for food resources and space. New species inhabiting heated waters are being reported increasingly often. Recently, the presence of an Asiatic clam, Corbicula fluminalis (O. F. Müller, 1774), was confirmed in the lower course of the Odra River. This is the second taxon of the genus Corbicula found in Poland, in Western Pomerania, in a heated channel. KEY WORDS: Asiatic clam, Corbicula fluminalis, bivalves, heated waters, invasions of molluscs, Poland INTRODUCTION The first taxonomic reference to the genus now Far East city of Omsk. Fossil Corbicula fluminalis was called Corbicula appeared in 1774, when O. F. Müller also found in Poland with Pleistocene mollusc fauna, described three species, and at that time assigned e.g. in drill core samples of interglacial sediments in them to the genus Tellina: T. fluminalis, T. fluminea, Koczarki, Masuria (SKOMPSKI 2002). and T. fluviatilis. Later papers refer to these bivalves as A number of reports have been published lately on Corbicula, members of which inhabit freshwaters and the progressive world-wide spreading of two Corbicula estuaries of South-East Asia, India, the Pacific islands, species. -
Freshwater Molluscs
FRESHWATER MOLLUSCS Photo © Piotr Naskrecki Photo © Steven Buck, Illinois Natural History Survey BIODIVERSITY SAMPLING PROTOCOLS 185 RAPID BIOASSESSMENT METHODS FOR FRESHWATER MOLLUSCS Kevin S. Cummings1, Hugh A. Jones2 and Manuel Lopes-Lima3 Introduction Freshwater molluscs are found worldwide, occurring on all continents except Antarctica. There are approximately 1,200 species of freshwater bivalves, 97% of which belong to eight primary freshwater families: Unionidae, Margaritiferidae, Hyriidae, Mycetopodidae, Iridinidae, and Etheriidae (all Unionoida or freshwater mussels), Sphaeriidae, and Cyrenidae (both Veneroida) (Graf 2013). The world’s freshwater gastropod fauna comprises approximately 4,000 described species (Strong et al. 2008). Many species are globally imperiled and freshwater molluscs are considered to be the most threatened group of animals in the world (Williams et al. 1993; Lydeard et al. 2004; Johnson et al. 2013). Freshwater mussels (unionoids) are an integral component of aquatic ecosystems. Freshwater mussels can comprise >90% of the benthic biomass of rivers and an individual mussel can filter 40 L of water each day (Tankersley & Dimock 1993; Pusch et al. 2001; Strayer 2008). In addition, their shells function as substrate for many organisms including caddisflies, mayflies and other aquatic insects. Unionoids are often described as ecosystem engineers due to the direct and indirect physical effects that they have on freshwater ecosystems (Gutiérrez et al. 2003). Freshwater mussels also provide important direct services to humans, such as water purification, serving as an important prey for several mammals and commercial fishes, and providing a direct source of protein. Given their importance within aquatic ecosystems, the cascading consequences of unionoid declines can be considerable (Haag 2012; Vaughn et al. -
A Comparison of Bacteria Cultured from Unionid Mussel Hemolymph
A Comparison of Bacteria Cultured from Unionid Mussel Hemolymph between Stable Populations in the Upper Mississippi River Basin and Populations Affected by a Mortality Event in the Clinch River Authors: Eric Leis, Sara Erickson, Diane Waller, Jordan Richard, and Tony Goldberg Source: Freshwater Mollusk Biology and Conservation, 22(2) : 70-80 Published By: Freshwater Mollusk Conservation Society URL: https://doi.org/10.31931/fmbc.v22i2.2019.70–80 BioOne Complete (complete.BioOne.org) is a full-text database of 200 subscribed and open-access titles in the biological, ecological, and environmental sciences published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Complete website, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/terms-o-use. Usage of BioOne Complete content is strictly limited to personal, educational, and non - commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Downloaded From: https://bioone.org/journals/Freshwater-Mollusk-Biology-and-Conservation on 03 Jan 2020 Terms of Use: https://bioone.org/terms-of-use Freshwater Mollusk Biology and Conservation 22:70–80, 2019 Ó Freshwater Mollusk Conservation Society 2019 REGULAR ARTICLE A COMPARISON OF BACTERIA CULTURED FROM UNIONID MUSSEL HEMOLYMPH BETWEEN STABLE POPULATIONS IN THE UPPER MISSISSIPPI RIVER BASIN AND POPULATIONS AFFECTED BY A MORTALITY EVENT IN THE CLINCH RIVER Eric Leis1*, Sara Erickson1, Diane Waller2, Jordan Richard3, and Tony Goldberg4 1 La Crosse Fish Health Center, Midwest Fisheries Center, U.S. -
Zebra and Quagga Mussels
SPECIES AT A GLANCE Zebra and Quagga Mussels Two tiny mussels, the zebra mussel (Dreissena poly- morpha) and the quagga mussel (Dreissena rostriformis bugensis), are causing big problems for the economy and the environment in the west. Colonies of millions of mussels can clog underwater infrastructure, costing Zebra mussel (Actual size is 1.5 cm) taxpayers millions of dollars, and can strip nutrients from nearly all the water in a lake in a single day, turning entire ecosystems upside down. Zebra and quagga mussels are already well established in the Great Lakes and Missis- sippi Basin and are beginning to invade Western states. It Quagga mussel takes only one contaminated boat to introduce zebra and (Actual size is 2 cm) quagga mussels into a new watershed; once they have Amy Benson, U.S. Geological Survey Geological Benson, U.S. Amy been introduced, they are virtually impossible to control. REPORT THIS SPECIES! Oregon: 1-866-INVADER or Oregon InvasivesHotline.org; Washington: 1-888-WDFW-AIS; California: 1-916- 651-8797 or email [email protected]; Other states: 1-877-STOP-ANS. Species in the news Learning extensions Resources Oregon Public Broadcasting’s Like a Mussel out of Water Invasion of the Quagga Mussels! slide coverage of quagga mussels: www. show: waterbase.uwm.edu/media/ opb.org/programs/ofg/episodes/ cruise/invasion_files/frame.html view/1901 (Only viewable with Microsoft Internet Explorer) Why you should care How they got here and spread These tiny invaders have dramatically changed Zebra and quagga mussels were introduced to the entire ecosystems, and they cost taxpayers billions Great Lakes from the Caspian and Black Sea region of dollars every year. -
Facilitating Foundation Species: the Potential for Plant–Bivalve Interactions to Improve Habitat Restoration Success
Received: 28 March 2019 | Accepted: 3 February 2020 DOI: 10.1111/1365-2664.13605 REVIEW Facilitating foundation species: The potential for plant–bivalve interactions to improve habitat restoration success Karine Gagnon1 | Eli Rinde2 | Elizabeth G. T. Bengil3,4 | Laura Carugati5 | Marjolijn J. A. Christianen6,7 | Roberto Danovaro5,8 | Cristina Gambi5 | Laura L. Govers7,9 | Silvija Kipson10 | Lukas Meysick1 | Liina Pajusalu11 | İnci Tüney Kızılkaya3,12 | Johan van de Koppel9,13 | Tjisse van der Heide7,9,14 | Marieke M. van Katwijk7 | Christoffer Boström1 1Environmental and Marine Biology, Åbo Akademi University, Turku, Finland; 2Norwegian Institute for Water Research, Oslo, Norway; 3Mediterranean Conservation Society, Izmir, Turkey; 4Girne American University, Marine School, Girne, TRNC via Turkey; 5Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy; 6Aquatic Ecology and Water Quality Management Group, Wageningen University, Wageningen, The Netherlands; 7Department of Environmental Science, Institute for Wetland and Water Research, Radboud University Nijmegen, Nijmegen, The Netherlands; 8Stazione Zoologica Anton Dohrn, Naples, Italy; 9Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands; 10Faculty of Science, Department of Biology, University of Zagreb, Zagreb, Croatia; 11Estonian Marine Institute, University of Tartu, Tallinn, Estonia; 12Faculty of Science, Ege University, Izmir, Turkey; 13Royal Netherlands Institute for Sea Research and Utrecht -
The Freshwater Bivalve Mollusca (Unionidae, Sphaeriidae, Corbiculidae) of the Savannah River Plant, South Carolina
SRQ-NERp·3 The Freshwater Bivalve Mollusca (Unionidae, Sphaeriidae, Corbiculidae) of the Savannah River Plant, South Carolina by Joseph C. Britton and Samuel L. H. Fuller A Publication of the Savannah River Plant National Environmental Research Park Program United States Department of Energy ...---------NOTICE ---------, This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Depart mentof Energy.nor any of theircontractors, subcontractors,or theiremploy ees, makes any warranty. express or implied or assumes any legalliabilityor responsibilityfor the accuracy, completenessor usefulnessofanyinformation, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. A PUBLICATION OF DOE'S SAVANNAH RIVER PLANT NATIONAL ENVIRONMENT RESEARCH PARK Copies may be obtained from NOVEMBER 1980 Savannah River Ecology Laboratory SRO-NERP-3 THE FRESHWATER BIVALVE MOLLUSCA (UNIONIDAE, SPHAERIIDAE, CORBICULIDAEj OF THE SAVANNAH RIVER PLANT, SOUTH CAROLINA by JOSEPH C. BRITTON Department of Biology Texas Christian University Fort Worth, Texas 76129 and SAMUEL L. H. FULLER Academy of Natural Sciences at Philadelphia Philadelphia, Pennsylvania Prepared Under the Auspices of The Savannah River Ecology Laboratory and Edited by Michael H. Smith and I. Lehr Brisbin, Jr. 1979 TABLE OF CONTENTS Page INTRODUCTION 1 STUDY AREA " 1 LIST OF BIVALVE MOLLUSKS AT THE SAVANNAH RIVER PLANT............................................ 1 ECOLOGICAL