Lion (Panthera Leo Melanochaita) Diet in Relation to Prey Preference and Density in Meru National Park, Kenya

Total Page:16

File Type:pdf, Size:1020Kb

Lion (Panthera Leo Melanochaita) Diet in Relation to Prey Preference and Density in Meru National Park, Kenya Lion (Panthera leo melanochaita) diet in relation to prey preference and density in Meru National Park, Kenya MSc Research Project Report 2019 – 2020 Mateo Bal MSc Biodiversity, Conservation and Restoration Evolutionary Ecology Group Department of Biology Institute of Environmental Sciences Antwerp University Leiden University Research supervisors: Prof. Dr. Ir. Hans H. de Iongh (Leiden University, Leo Foundation) MSc Luka L. Narisha (Kenya Wildlife Service) Lion (Panthera leo melanochaita) diet in relation to prey preference and density in Meru National Park, Kenya Mateo Bal s0185753 This research project was developed within a collaborative framework between the University of Antwerp, the Institute of Environmental Sciences of Leiden University, Kenya Wildlife Service, the Leo Foundation and the Born Free Foundation. Submitted to obtain the master’s degree in biology - specialisation Biodiversity, Conservation and Restoration. 2 ABSTRACT The African lion (Panthera leo) plays a key role in savannah ecosystems by directly and indirectly regulating trophic structure. Their foraging behavior has frequently been described as opportunistic, but often reveals a distinct preference for certain prey species that are energetically more profitable. This research project focussed on the population structure and diet of lions in Kenya’s Meru National Park. Data were collected from February until April 2019 and contribute to the PhD research of MSc Luka Narisha. A total of 28 lions were identified during fieldwork, indicating a lion density of 2.2 adult lions per 100 km2. Transect counts of potential prey species in the park revealed that Kirk’s dik-dik (Madoqua kirkii) had the highest relative abundance of all prey species (50.89%), while African buffalo (Syncerus caffer) contributed the most to the total prey biomass (33.94%). Based on carcass counts and microscopic prey hair analysis from lion scats, African buffalo and plains zebra were found to be the principal prey species of the lions in Meru National Park. Few hairs of livestock were found in the lion scats, which indicates a low level of livestock raiding. Prey preference analysis using Jacobs’ Index showed that lions had a high prey preference for African buffalo and plains zebra, but Grevy’s zebra appeared to be the most preferred prey species. Lions did not seem to have a significant preference or avoidance for selected prey body mass ranges. Overall, results from this study indicate that Meru National Park hosts a healthy lion population in a relatively undisturbed ecosystem, but further research is needed to eliminate remaining uncertainties and monitor the prey and lion populations in view of climate change. 3 SUMMARY The global lion (Panthera leo) population is declining rapidly. Loss of habitat and prey, and the resulting conflicts between humans and lions, are increasingly threatening the very survival of the species. This study, which contributes to the PhD research of Luka Narisha, aims to better understand the ecology of the lion population in Meru National Park (Kenya) in order to support local management and conservation efforts. Meru National Park is situated in central Kenya and is largely unfenced, allowing wildlife to move freely between the protected area and the surrounding community lands. Over the course of 3 months, lions were actively tracked to understand their population dynamics and structure, and prey populations were monitored to map prey availability inside the park. By recording carcasses and analysing prey hair found in lion scats, it was possible to assess what prey species the lions generally consumed, and how this might be related to conflicts between lions and humans in neighbouring communities. Overall, African buffalo and plains zebra made up the largest portion of the lions’ diet, and only a few remains of livestock were found in their diet. This indicates that the lion population in the park is relatively healthy, since it predominantly predates on large, wild prey species. Ample prey was available inside Meru National Park, and it seems unlikely that the lions would resort to livestock raiding due to a shortage of wild prey. However, with large numbers of livestock congregating just outside the park, and climate change potentially disturbing water and prey availability, the risk of conflict between lions and local people may increase in the future. Continuous research and monitoring of the lion population and their prey is therefore critical in establishing mitigation measures and preventing losses on both sides of the conflict. 4 TABLE OF CONTENTS ABSTRACT ............................................................................................................................. 3 SUMMARY .............................................................................................................................. 4 INTRODUCTION ................................................................................................................... 6 General background ............................................................................................................................ 6 Lion taxonomy and conservation status in Africa and Kenya ............................................................ 7 Social structure of the African lion ..................................................................................................... 8 Diet and prey preference ..................................................................................................................... 9 Research hypothesis .......................................................................................................................... 11 RESEARCH OBJECTIVES ................................................................................................. 12 METHODS ............................................................................................................................. 13 Site description .................................................................................................................................. 13 Lion population size and structure .................................................................................................... 15 Prey population characteristics .......................................................................................................... 15 Lion diet ............................................................................................................................................ 20 Prey preference .................................................................................................................................. 21 Data analysis and statistics ................................................................................................................ 22 RESULTS ............................................................................................................................... 23 Lion population size and structure .................................................................................................... 23 Prey population characteristics .......................................................................................................... 25 Lion diet ............................................................................................................................................ 30 Prey preference .................................................................................................................................. 31 DISCUSSION ......................................................................................................................... 34 Lion population size and structure .................................................................................................... 34 Prey population characteristics .......................................................................................................... 36 Lion diet ............................................................................................................................................ 39 Prey preference .................................................................................................................................. 41 CONCLUSION ...................................................................................................................... 43 ACKNOWLEDGMENTS ..................................................................................................... 43 REFERENCES ...................................................................................................................... 44 APPENDIX ............................................................................................................................ 52 5 INTRODUCTION GeNeral backgrouNd Large carnivores play an important ecological role in regulating and maintaining ecosystem dynamics and integrity (Ripple et al., 2014). Through so-called trophic cascades, the direct predation pressure they exert on prey populations trickles down across other trophic levels and may directly and indirectly affect other herbivores, sympatric carnivores and vegetation structures (Ripple et al., 2014; Atkins et al., 2019). The impact of large carnivores on other predators is not only manifested by altering prey availability, their mere presence leads to avoidance behaviour and intraguild competition, especially when there is dietary overlap (Ripple et al., 2014; Vogel et al., 2019). Furthermore, in addition to reducing grazing-
Recommended publications
  • Reconstruction of Phylogenetic History to Resolve the Subspecies Anomaly of Pantherine Cats
    bioRxiv preprint doi: https://doi.org/10.1101/082891; this version posted October 24, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title: Reconstruction of phylogenetic history to resolve the subspecies anomaly of Pantherine cats Authors: Ranajit Das1, Priyanka Upadhyai2 1Manipal Centre for Natural Sciences, Manipal University, Manipal, Karnataka 576104, India 2Department of Medical Genetics, Kasturba Medical College, Manipal University, Manipal, Karnataka 576104, India Email address: [email protected] Running title: Mitogenome phylogeny of Pantherine cats Abstract All charismatic big cats including tiger (Panthera tigris), lion (Panthera leo), leopard (Panthera pardus), snow leopard (Panthera uncial), and jaguar (Panthera onca) are grouped into the subfamily Pantherinae. Several mitogenomic approaches have been employed to reconstruct the phylogenetic history of the Pantherine cats but the phylogeny has remained largely unresolved till date. One of the major reasons for the difficulty in resolving the phylogenetic tree of Pantherine cats is the small sample size. While previous studies included only 5-10 samples, we have used 43 publically available taxa to reconstruct Pantherine phylogenetic history. Complete mtDNA sequences were used from all individuals excluding the control region (15,489bp). A Bayesian MCMC approach was employed to investigate the divergence times among different Pantherine clades. Both maximum likelihood and Bayesian phylogeny generated a dendrogram: Neofelis nebulosa (Panthera tigris (Panthera onca (Panthera uncia (Panthera leo, Panthera pardus)))), grouping lions with leopards and placing snow leopards as an outgroup to this clade.
    [Show full text]
  • POPULATION STATUS of OLIVE BABOON Papio Anubis (LESSON, 1827) in KAINJI LAKE NATIONAL PARK, NIGERIA *Ajayi, S. R. , Ejidike, B
    Ajayi et al., 2020 Journal of Research in Forestry, Wildlife & Environment Vol. 12(2) June, 2020 E-m a il: [email protected] ; [email protected] http://www.ajol.info/index.php/jrfwe 270 jfewr ©2020 - jfewr Publications This work is licensed under a ISBN: 2141 – 1778 Creative Commons Attribution 4.0 License Ajayi et al., 2020 POPULATION STATUS OF OLIVE BABOON Papio anubis (LESSON, 1827) IN KAINJI LAKE NATIONAL PARK, NIGERIA *Ajayi, S. R. 1, Ejidike, B. N. 2, Ogunjemite, B.G. 2, Olaniyi, O. E2 and Adeola, A.J. 1 1Federal College of Wildlife Management, New Bussa, Niger State, Nigeria 2Federal University of Technology, Akure, Department of Ecotourism and Wildlife Management, Ondo State, Nigeria *Correspondence author E-mail: [email protected]; +234 706 841 7840 ABSTRACT The study assessed the population status of Olive Baboon Papio anubis in Kainji Lake National Park, in both sectors of the park. Direct count was carried out on the line transect where activities of Olive Baboon Papio anubis was observed during reconnaissance survey. It involves counting of individual or group of individual species sighted. While the indirect method involves gathering information on current locations for primate through consultation with experience Park Rangers, hunters, farmers and community leaders, counting of animal index such as feacal droppings, foot prints, calls, and feeding remnants, within each transect. These were related to relative abundance/distribution of Primates in a particular area at a particular time. Data was collected from November, 2017-August, 2019. Data was analyzed using distance software. Student t-test was used to compare between wet and dry seasons population.
    [Show full text]
  • Classification
    Biology Classification Zebras have a distinctive striped pattern that makes them easily recognizable to most people, but they also display features common to many other animals. So how can we easily compare animals? This is a print version of an interactive online lesson. To sign up for the real thing or for curriculum details about the lesson go to www.cosmoslessons.com Introduction: Classication Why do zebras have stripes? It’s a question that scientists have been asking for more than 100 years but now new research may nally have an answer. Most animal species have developed distinctive colours and patterns to help disguise them in their natural environment. Like a soldier’s camouage, the colouring and patterns look like the background, so it's hard to tell the dierence between the animal and its surroundings. But zebras live on brown grassy plains and their stripes make them stand out, not disappear. They may as well be holding signs for the lions saying, “come and eat me”. Now we may have the answer. By studying where most zebras live, scientists have found that the animals share their home with lots of nasty biting tsetse ies and horse ies. They also discovered that these ies don’t like striped patterns and will stay away from them. So, it’s likely that the zebras developed stripes to act as an insect repellent. That may sound crazy – to make yourself a target for lions just to keep away the ies. But these aren’t ordinary irritating ies. Tsetse ies carry diseases that can kill, while horse ies tear the animals’ skins leaving them at risk of infections.
    [Show full text]
  • HAMADRYAS BABOON (Papio Hamadryas) CARE MANUAL
    HAMADRYAS BABOON (Papio hamadryas) CARE MANUAL CREATED BY THE AZA Hamadryas Baboon Species Survival Plan® Program IN ASSOCIATION WITH THE AZA Old World Monkey Taxon Advisory Group Hamadryas Baboon (Papio hamadryas) Care Manual Hamadryas Baboon (Papio hamadryas) Care Manual Published by the Association of Zoos and Aquariums in collaboration with the AZA Animal Welfare Committee Formal Citation: AZA Baboon Species Survival Plan®. (2020). Hamadryas Baboon Care Manual. Silver Spring, MD: Association of Zoos and Aquariums. Original Completion Date: July 2020 Authors and Significant Contributors: Jodi Neely Wiley, AZA Hamadryas Baboon SSP Coordinator and Studbook Keeper, North Carolina Zoo Margaret Rousser, Oakland Zoo Terry Webb, Toledo Zoo Ryan Devoe, Disney Animal Kingdom Katie Delk, North Carolina Zoo Michael Maslanka, Smithsonian National Zoological Park and Conservation Biology Institute Reviewers: Joe Knobbe, San Francisco Zoological Gardens, former Old World Monkey TAG Chair, SSP Vice Coordinator Hamadryas Baboon AZA Staff Editors: Felicia Spector, Animal Care Manual Editor Consultant Candice Dorsey, PhD, Senior Vice President, Conservation, Management, & Welfare Sciences Rebecca Greenberg, Animal Programs Director Emily Wagner, Conservation Science & Education Intern Raven Spencer, Conservation, Management, & Welfare Sciences Intern Hana Johnstone, Conservation, Management, & Welfare Sciences Intern Cover Photo Credits: Jodi Neely Wiley, North Carolina Zoo Disclaimer: This manual presents a compilation of knowledge provided by recognized animal experts based on the current science, practice, and technology of animal management. The manual assembles basic requirements, best practices, and animal care recommendations to maximize capacity for excellence in animal care and welfare. The manual should be considered a work in progress, since practices continue to evolve through advances in scientific knowledge.
    [Show full text]
  • Analysis of 100 High-Coverage Genomes from a Pedigreed Captive Baboon Colony
    Downloaded from genome.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Resource Analysis of 100 high-coverage genomes from a pedigreed captive baboon colony Jacqueline A. Robinson,1 Saurabh Belsare,1 Shifra Birnbaum,2 Deborah E. Newman,2 Jeannie Chan,2 Jeremy P. Glenn,2 Betsy Ferguson,3,4 Laura A. Cox,5,6 and Jeffrey D. Wall1 1Institute for Human Genetics, University of California, San Francisco, California 94143, USA; 2Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas 78245, USA; 3Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA; 4Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239, USA; 5Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina 27101, USA; 6Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas 78245, USA Baboons (genus Papio) are broadly studied in the wild and in captivity. They are widely used as a nonhuman primate model for biomedical studies, and the Southwest National Primate Research Center (SNPRC) at Texas Biomedical Research Institute has maintained a large captive baboon colony for more than 50 yr. Unlike other model organisms, however, the genomic resources for baboons are severely lacking. This has hindered the progress of studies using baboons as a model for basic biology or human disease. Here, we describe a data set of 100 high-coverage whole-genome sequences obtained from the mixed colony of olive (P. anubis) and yellow (P. cynocephalus) baboons housed at the SNPRC.
    [Show full text]
  • The Social Daily Activity Correlation of Olive Baboon (Papio Anubis) in Gashaka-Gumti National Park, Nigeria
    Annals of Ecology and Environmental Science Volume 2, Issue 1, 2018, PP 23-28 The Social Daily Activity Correlation of Olive Baboon (Papio Anubis) in Gashaka-Gumti National Park, Nigeria Melle Ekane Maurice1*, Lameed G.A1 1Department of Environmental Science, Faculty of Science, University of Buea, Cameroon 1Department of Wildlife and Fisheries Management, Faculty of Agriculture and Forestry, University of Ibadan, Nigeria *Corresponding Author: Melle Ekane Maurice, Department of Environmental Science, Faculty of Science, University of Buea, Cameroon. ABSTRACT Baboons range throughout sub-Saharan Africa, across a multitude of habitat types making them the most widespread African primate genus and perhaps coincidentally, are one of the best studied primates. In recent times, the rapid expansion of human population, the spread of agriculture, and the resulting destruction of natural habitats has drastically increased in sub-saharan Africa. Thus, the consequences of this close association between wildlife and humans are absolutely relevant to conservation and management strategies. The objective of this study was to determine the daily correlation of social behavior of the Olive baboon in the national park ecosystem. The study was undertaken for one year in Gashaka-Gumti National Park, Taraba State, Nigeria. A single animal group habituated for some years by a previous research team was constantly followed for a focal and scan data collection. The daily and monthly data collected on checksheets was statistically analysed using the Chi-square and correlation statistical models. The Olive baboon daily movement activity or, positively and significantly correlated to feeding r2 = 0.82, and vocal r2 = 0.80 at (P<0.05) respectively.
    [Show full text]
  • The Sex Lives of Female Olive Baboons (Papio Anubis)
    Competition, coercion, and choice: The sex lives of female olive baboons (Papio anubis) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Jessica Terese Walz Graduate Program in Anthropology The Ohio State University 2016 Dissertation Committee: Dawn M. Kitchen, Chair Douglas E. Crews W. Scott McGraw Copyrighted by Jessica Walz 2016 Abstract Since Darwin first described his theory of sexual selection, evolutionary biologists have used this framework to understand the potential for morphological, physiological, and behavioral traits to evolve within each sex. Recently, researchers have revealed important nuances in effects of sexual coercion, intersexual conflict, and sex role reversals. Among our closest relatives living in complex societies in which individuals interact outside of just the context of mating, the sexual and social lives of individuals are tightly intertwined. An important challenge to biological anthropologists is demonstrating whether female opportunities for mate choice are overridden by male- male competitive and male-female coercive strategies that dominate multi-male, multi- female societies. In this dissertation, I explore interactions between these various mechanisms of competition, coercion, and choice acting on the lives of female olive baboons to determine how they may influence expression of female behavioral and vocal signals, copulatory success with specific males, and the role of female competition in influencing mating patterns. I found females solicit specific males around the time of ovulation. Although what makes some males more preferred is less clear, there is evidence females choose males who might be better future protectors – males who will have long group tenures and are currently ascending the hierarchy.
    [Show full text]
  • Population Size and Genetic Diversity of Nigerian Lions (Panthera Leo)
    POPULATION SIZE AND GENETIC DIVERSITY OF NIGERIAN LIONS (PANTHERA LEO) POPULATION SIZE AND GENETIC DIVERSITY OF NIGERIAN LIONS (PANTHERA LEO) Talatu Tende AKADEMISK AVHANDLING Som för av filosofie doktorsexamen vid naturvetenskapliga fakulteten, Lunds universitet, kommer att offentligen försvaras i Blå Hallen, Ekologihuset, Lund, Fredagen den 31 January 2014, kl.9:00. ACADEMIC DISSERTATION Presented in fulfilment of the requirements for the degree of Philosophie Doctor at the Faculty of Science, Lund University, to be defended publicly in the Blue Hall, Ecology Building, Sölvegatan 37, Lund, Sweden, Friday 31st January 2014, 9 AM. Fakultetsopponent: Göran Spong, Swedish University of Agricultural Sciences, Umeå POPULATION SIZE AND GENETIC DIVERSITY OF NIGERIAN LIONS (PANTHERA LEO) Talatu Tende A doctoral thesis at a university in Sweden is produced either as a monograph or as a collection of papers. In the latter case, the introductory part constitutes the formal thesis, which summa- rizes the accompanying papers. These have either already been published or are manuscripts at various stages (in press, submitted or in ms). Copyright © Talatu Tende Department of Biology | Lund University Cover art and intro chapter title art: Stina Andersson Layout and formatting: Katarina Eriksson Printed in Sweden at Media Tryck, Lund, 2013 ISBN: 978-91-7473-773-8 CONTENTS List of papers 8 List of contribution 8 Introduction 11 References 30 Popular Summary 37 Acknowledgments 39 Papers Paper I 45 Paper II 57 Paper III 73 Paper IV 85 Paper V 91 7 LIST OF PAPERS This thesis is based on the following papers which are referred to by their Roman numerals. I Ulf Ottosson, Talatu Tende, Christian Hjort & Bengt Hansson.
    [Show full text]
  • Human Wildlife Conflict Around Dinder National Park (DNP) Sudan
    www.kosmospublishers.com [email protected] Research Article Journal of Aquaculture, Marine Biology & Ecology JAMBE-102 Human Wildlife Conflict around Dinder National Park (DNP) Sudan * Tahani Ali Hassan Department of Wildlife, College of Natural Resources and Environmental Studies, University of Bahri, Sudan Received Date: February 17, 2020; Accepted Date: March 4, 2020; Published Date: March 13, 2020 *Corresponding author: Tahani Ali Hassan, Department of Wildlife, College of Natural Resources and Environmental Studies, University of Bahri, Sudan. Email: [email protected] Abstract Dinder National Park (DNP) is located in the North-eastern Blue Nile State adjacent to the Ethiopian border. The study has been conducted in five villages namely: HiletHashim, Elgemam, HenuElshitaib, ElhanuElazrege and Om Elkhir around the park along the Rahad River in El Gadaref state;from March to May 2019 with the aim to determine the effect crop damage by wild animals and it is impact on food and economic security of the local communities around the park. The most ominous animals are patus monkey followed by olive baboon and warthog, crops plant by the local communities are sesames, sorghum, lentil, fruits and vegetables, crop raiding and losses by wildlife greatly affect the food and economic security of the local communities in the five villages around the park therefore compensation system is needed in that areas. Keywords: Crop Damage; Dinder National Park; Food And Economic Security Introduction Often wildlife management is thought of in terms of protecting, enhancing and nurturing wildlife population and habitats needed for their survival and wellbeing. Many species however at one time or another require management actions to reduce conflicts with people or other wildlife species.
    [Show full text]
  • Dheer, Arjun. 2016. Resource Partitioning Between Spotted Hyenas
    University of Southampton 16th August 2016 FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES CENTRE FOR BIOLOGICAL SCIENCES RESOURCE PARTITIONING BETWEEN SPOTTED HYENAS (CROCUTA CROCUTA) AND LIONS (PANTHERA LEO) Arjun Dheer A dissertation submitted in partial fulfilment of the requirements for the degree of M.Res. Wildlife Conservation. 1 As the nominated University supervisor of this M.Res. project by Arjun Dheer, I confirm that I have had the opportunity to comment on earlier drafts of the report prior to submission of the dissertation for consideration of the award of M.Res. Wildlife Conservation. Signed………………………………….. UoS Supervisor’s name: Prof. C. Patrick Doncaster As the nominated Marwell Wildlife supervisor of this M.Res. project by Arjun Dheer, I confirm that I have had the opportunity to comment on earlier drafts of the report prior to submission of the dissertation for consideration of the award of M.Res. Wildlife Conservation. Signed…………………………………… MW Supervisor’s name: Dr. Zeke Davidson 2 Abstract The negative impact of anthropogenic activities on wildlife has led to protected areas being set aside to prevent human-wildlife conflict. These protected areas are often small and fenced in order to meet the needs of expanding human communities and to conserve wildlife. This creates challenges for the management of wide-ranging animals such as large carnivores, especially those that compete with one another for limited resources. This study focused on resource partitioning between GPS-GSM collared spotted hyenas (hereafter referred to as hyenas) and lions in Lewa Wildlife Conservancy (LWC) and Borana Conservancy (BC), Kenya. Scat analysis revealed that hyenas and lions show a high degree of dietary overlap, though hyenas have broader diets and feed on livestock species, which lions completely avoid.
    [Show full text]
  • North African Lion Fact Sheet
    North African Lion Fact Sheet Common Name: North African Lion, Barbary Lion Scientific Name: Panthera leo leo Wild Status: Extinct Habitat: Forests, hills, mountains, plains Country: Egypt, Algeria, Morocco, Libya Shelter: Forests Life Span: Unknown Size: 10ft long Details Present in Roman history and Biblical tales, the Barbary Lion had a reputation as an enormous and vicious creature with a giant mane. Much of their personality and history are, however, exaggerated. This overblown persona made them targets for human hunters, looking to keep their ever expanding territories safe, leading to the extinction of the Barbary Lions. In the wild, they were social mammals who lived in prides, much like the lions of today. They resided in mountainous and hilly areas and often took shelter in forests. Being carnivorous predators, they relied on instinct and teamwork to take down prey such as gazelles. Their fate has often been tied to that of humans who had the ability to catch and control them. The decline of Barbary Lions remains to this day a curious topic for researchers, with efforts being made to locate the purest specimens. Cool Facts • Lions were used as tax payments or lavish gifts. This caused royal families of Morocco to house many Barbary Lions, which eventually made their way to zoos across the world. • These lions are believed to have gone extinct in the 20th century. This would make them one of the most recent extinctions • They are said to have fought gladiators in the Roman empire. The lions present in the Bible are also believed to be Barbary Lions • Many zoos have claimed to have "the last Barbary Lion", however DNA testing has shown these lions are often mixed with other species • Not limited to deserts and savannas, they were often found in forests near mountains • The last Barbary Lion is thought to have been shot in 1942, although some may have survived until the 1960s Taxonomic Breakdown Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Carnivora Suborder: Feliformia Family: Felidae Subfamily: Pantherinae Genus: Panthera Species: P.
    [Show full text]
  • Husbandry Guidelines for African Lion Panthera Leo Class
    Husbandry Guidelines For (Johns 2006) African Lion Panthera leo Class: Mammalia Felidae Compiler: Annemarie Hillermann Date of Preparation: December 2009 Western Sydney Institute of TAFE, Richmond Course Name: Certificate III Captive Animals Course Number: RUV 30204 Lecturer: Graeme Phipps, Jacki Salkeld, Brad Walker DISCLAIMER The information within this document has been compiled by Annemarie Hillermann from general knowledge and referenced sources. This document is strictly for informational purposes only. The information within this document may be amended or changed at any time by the author. The information has been reviewed by professionals within the industry, however, the author will not be held accountable for any misconstrued information within the document. 2 OCCUPATIONAL HEALTH AND SAFETY RISKS Wildlife facilities must adhere to and abide by the policies and procedures of Occupational Health and Safety legislation. A safe and healthy environment must be provided for the animals, visitors and employees at all times within the workplace. All employees must ensure to maintain and be committed to these regulations of OHS within their workplace. All lions are a DANGEROUS/ HIGH RISK and have the potential of fatally injuring a person. Precautions must be followed when working with lions. Consider reducing any potential risks or hazards, including; Exhibit design considerations – e.g. Ergonomics, Chemical, Physical and Mechanical, Behavioural, Psychological, Communications, Radiation, and Biological requirements. EAPA Standards must be followed for exhibit design. Barrier considerations – e.g. Mesh used for roofing area, moats, brick or masonry, Solid/strong metal caging, gates with locking systems, air-locks, double barriers, electric fencing, feeding dispensers/drop slots and ensuring a den area is incorporated.
    [Show full text]