Effectiveness of Ear Molding in the Treatment of Congenital Auricular Deformity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sound and the Ear Chapter 2
© Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Chapter© Jones & Bartlett 2 Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Sound and the Ear © Jones Karen &J. Kushla,Bartlett ScD, Learning, CCC-A, FAAA LLC © Jones & Bartlett Learning, LLC Lecturer NOT School FOR of SALE Communication OR DISTRIBUTION Disorders and Deafness NOT FOR SALE OR DISTRIBUTION Kean University © Jones & Bartlett Key Learning, Terms LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR Acceleration DISTRIBUTION Incus NOT FOR SALE OR Saccule DISTRIBUTION Acoustics Inertia Scala media Auditory labyrinth Inner hair cells Scala tympani Basilar membrane Linear scale Scala vestibuli Bel Logarithmic scale Semicircular canals Boyle’s law Malleus Sensorineural hearing loss Broca’s area © Jones & Bartlett Mass Learning, LLC Simple harmonic© Jones motion (SHM) & Bartlett Learning, LLC Brownian motion Membranous labyrinth Sound Cochlea NOT FOR SALE OR Mixed DISTRIBUTION hearing loss Stapedius muscleNOT FOR SALE OR DISTRIBUTION Compression Organ of Corti Stapes Condensation Osseous labyrinth Tectorial membrane Conductive hearing loss Ossicular chain Tensor tympani muscle Decibel (dB) Ossicles Tonotopic organization © Jones Decibel & hearing Bartlett level (dB Learning, HL) LLC Outer ear © Jones Transducer & Bartlett Learning, LLC Decibel sensation level (dB SL) Outer hair cells Traveling wave theory NOT Decibel FOR sound SALE pressure OR level DISTRIBUTION -
The Posterior Muscles of the Auricle: Anatomy and Surgical Applications
Central Annals of Otolaryngology and Rhinology Research Article *Corresponding author Christian Vacher, Department of Maxillofacial Surgery & Anatomy, University of Paris-Diderot, APHP, 100, The Posterior Muscles of the Boulevard Général Leclerc, 92110 Clichy, France, Tel: 0033140875671; Email: Submitted: 19 December 2014 Auricle: Anatomy and Surgical Accepted: 16 January 2015 Published: 19 January 2015 Applications Copyright © 2015 Vacher et al. Rivka Bendrihem1, Christian Vacher2* and Jacques Patrick Barbet3 OPEN ACCESS 1 Department of Dentistry, University of Paris-Descartes, France Keywords 2 Department of Maxillofacial Surgery & Anatomy, University of Paris-Diderot, France • Auricle 3 Department of Pathology and Cytology, University of Paris-Descartes, France • Anatomy • Prominent ears Abstract • Muscle Objective: Prominent ears are generally considered as primary cartilage deformities, but some authors consider that posterior auricular muscles malposition could play a role in the genesis of this malformation. Study design: Auricle dissections of 30 cadavers and histologic sections of 2 fetuses’ ears. Methods: Posterior area of the auricle has been dissected in 24 cadavers preserved with zinc chlorure and 6 fresh cadavers in order to describe the posterior muscles and fascias of the auricle. Posterior auricle muscles from 5 fresh adult cadavers have been performed and two fetal auricles (12 and 22 weeks of amenorhea) have been semi-serially sectioned in horizontal plans. Five µm-thick sections were processed for routine histology (H&E) or for immuno histochemistry using antibodies specific for the slow-twitch and fast-twich myosin heavy chains in order to determine which was the nature of these muscles. Results: The posterior auricular and the transversus auriculae muscles looked in most cases like skeletal muscles and they were made of 75% of slow muscular fibres. -
Specialized for Sound Detection A. Outer
EAR © 2019zillmusom I. Overview - specialized for sound detection A. Outer ear - funnel shaped structure of cartilage and skin that leads to Tympanic membrane; directs sound toward Tympanic membrane; helps detect source of sound. B. Middle ear - air filled chamber that contains bones (ossicles) that link Tympanic membrane to cochlea; also contains muscles that dampen sounds; middle ear is linked to Nasopharynx by auditory tube which allows for equilibration of air pressure on inner side of Tympanic membrane. C. Inner ear - fluid filled chamber in petrous part of temporal bone; inner ear contains Cochlea (hearing) and Vestibular apparatus for gravity detection (both innervated by CN VIII). Clinical Note: Functioning of inner ear can be tested independently by vibrations transmitted directly through bone (Weber test: tuning fork on calvarium is perceived as sound); CONDUCTIVE HEARING LOSS - damage to middle ear (tympanic membrane, auditory ossicles); SENSORINEURAL HEARING LOSS - damage to inner ear (cochlea, CN VIII). II. Outer Ear - composed of two parts: A. Auricle (pinna) - elastic cartilage covered with skin; functions to reflect sound waves. Parts: helix, antihelix, tragus and lobule. Decorative Note: Cartilage does not extend into Lobule; Lobule can be readily pierced to provide support for decorative metal objects. B. External auditory meatus - tube from auricle to the Tympanic membrane; posterior to Parotid gland and TMJ (Temporomandibular joint); located anterior to mastoid process. Outer third consists of elastic cartilage; contains hairs, sebaceous glands and ceruminous glands (produce cerumen = ear wax); serves to protect Tympanic membrane; Inner two thirds is composed of bone lined with skin. Clinical note: External auditory meatus is curved anteriorly in adults, is straight in children; in adults, auricle is pulled up and back to insert otoscope. -
ANATOMY of EAR Basic Ear Anatomy
ANATOMY OF EAR Basic Ear Anatomy • Expected outcomes • To understand the hearing mechanism • To be able to identify the structures of the ear Development of Ear 1. Pinna develops from 1st & 2nd Branchial arch (Hillocks of His). Starts at 6 Weeks & is complete by 20 weeks. 2. E.A.M. develops from dorsal end of 1st branchial arch starting at 6-8 weeks and is complete by 28 weeks. 3. Middle Ear development —Malleus & Incus develop between 6-8 weeks from 1st & 2nd branchial arch. Branchial arches & Development of Ear Dev. contd---- • T.M at 28 weeks from all 3 germinal layers . • Foot plate of stapes develops from otic capsule b/w 6- 8 weeks. • Inner ear develops from otic capsule starting at 5 weeks & is complete by 25 weeks. • Development of external/middle/inner ear is independent of each other. Development of ear External Ear • It consists of - Pinna and External auditory meatus. Pinna • It is made up of fibro elastic cartilage covered by skin and connected to the surrounding parts by ligaments and muscles. • Various landmarks on the pinna are helix, antihelix, lobule, tragus, concha, scaphoid fossa and triangular fossa • Pinna has two surfaces i.e. medial or cranial surface and a lateral surface . • Cymba concha lies between crus helix and crus antihelix. It is an important landmark for mastoid antrum. Anatomy of external ear • Landmarks of pinna Anatomy of external ear • Bat-Ear is the most common congenital anomaly of pinna in which antihelix has not developed and excessive conchal cartilage is present. • Corrections of Pinna defects are done at 6 years of age. -
Anatomy of the Ear ANATOMY & Glossary of Terms
Anatomy of the Ear ANATOMY & Glossary of Terms By Vestibular Disorders Association HEARING & ANATOMY BALANCE The human inner ear contains two divisions: the hearing (auditory) The human ear contains component—the cochlea, and a balance (vestibular) component—the two components: auditory peripheral vestibular system. Peripheral in this context refers to (cochlea) & balance a system that is outside of the central nervous system (brain and (vestibular). brainstem). The peripheral vestibular system sends information to the brain and brainstem. The vestibular system in each ear consists of a complex series of passageways and chambers within the bony skull. Within these ARTICLE passageways are tubes (semicircular canals), and sacs (a utricle and saccule), filled with a fluid called endolymph. Around the outside of the tubes and sacs is a different fluid called perilymph. Both of these fluids are of precise chemical compositions, and they are different. The mechanism that regulates the amount and composition of these fluids is 04 important to the proper functioning of the inner ear. Each of the semicircular canals is located in a different spatial plane. They are located at right angles to each other and to those in the ear on the opposite side of the head. At the base of each canal is a swelling DID THIS ARTICLE (ampulla) and within each ampulla is a sensory receptor (cupula). HELP YOU? MOVEMENT AND BALANCE SUPPORT VEDA @ VESTIBULAR.ORG With head movement in the plane or angle in which a canal is positioned, the endo-lymphatic fluid within that canal, because of inertia, lags behind. When this fluid lags behind, the sensory receptor within the canal is bent. -
KULAK ANATOMİSİ.Pdf
OMÜ SHMYO ANATOMİ KULAK ANATOMİSİ ÖĞR. GÖR. Dr. GÜRSEL AK GÜVEN DİLEK GÜN – 20460810 SELİN ÇETİNKAYA - 20460770 EDANUR ÇEPNİ - 20460780 RÜMEYSA İNAL -20460756 Auris Externa(Dış Kulak) Auris Media (Orta Kulak) Auris İnterna (İç Kulak) Auricula (Kulak Kepçesi) Cavitas Tympani (Timpan Labyrinthus Osseus (Kemik Boşluğu) Labirent) • Ligementa Auricularia • Auris Media’nın Duvarları • Vestibulum • Musculiauriculares • Canales Semicirculares • Auricula’nın Duyu Sinirleri Membrana Tympanica • Cochlea • Auricula’nın Arterleri (Kulak Zarı) • Arterleri Labyrinthus Membranaceus • Auricula’nın Venleri • Venleri (Zar Labirent) • Auricula’nın Lenfatikleri • Sinirleri • Ductus Semicirculares • Utriculus Meatus Acusticus Tuba Auditiva (Östaki • Sacculus Externus (Dış Kulak Yolu) Borusu) • Ductulus Cochlearis • Meatus Acusticus Externus Ossicula Auditus (Kulak • Organum Spirale (Corti Organı) Arterleri Kemikçikleri) • Membrana Tektoria • Meatus Acusticus Externus • Malleus • Incus • Stapes İç Kulak Sıvıları Venleri Musculi Ossiculorum Meatus Acusticus İnternus • Meatus Acusticus Externus Auditorium (Auris (İç Kulak Yolu) Duyu Sinirleri Media’nın Kasları) Auris İnterna’nın Damarları • Meatus Acusticus Externus Auris Media’nın Arterleri • Arterleri • Venleri Lenfatikleri Auris Media’nın Venleri Auris İnterna Sinirleri Auris Media’nın Sinirleri İşitme Siniri ve İşitme Yolları & İşitme Nedir ve Nasıl Gerçekleşir? Kulak Hastalıkları Buşon Hastalığı İşitme ve Sinir Sistemi • Afferent Sistem Timpanik Membran Perforasyonu Hastalığı • Efferent -
The Nervous System: General and Special Senses
18 The Nervous System: General and Special Senses PowerPoint® Lecture Presentations prepared by Steven Bassett Southeast Community College Lincoln, Nebraska © 2012 Pearson Education, Inc. Introduction • Sensory information arrives at the CNS • Information is “picked up” by sensory receptors • Sensory receptors are the interface between the nervous system and the internal and external environment • General senses • Refers to temperature, pain, touch, pressure, vibration, and proprioception • Special senses • Refers to smell, taste, balance, hearing, and vision © 2012 Pearson Education, Inc. Receptors • Receptors and Receptive Fields • Free nerve endings are the simplest receptors • These respond to a variety of stimuli • Receptors of the retina (for example) are very specific and only respond to light • Receptive fields • Large receptive fields have receptors spread far apart, which makes it difficult to localize a stimulus • Small receptive fields have receptors close together, which makes it easy to localize a stimulus. © 2012 Pearson Education, Inc. Figure 18.1 Receptors and Receptive Fields Receptive Receptive field 1 field 2 Receptive fields © 2012 Pearson Education, Inc. Receptors • Interpretation of Sensory Information • Information is relayed from the receptor to a specific neuron in the CNS • The connection between a receptor and a neuron is called a labeled line • Each labeled line transmits its own specific sensation © 2012 Pearson Education, Inc. Interpretation of Sensory Information • Classification of Receptors • Tonic receptors -
22 Stapes Surgery Holger Sudhoff, Henning Hildmann
112 Chapter 22 22 Stapes Surgery Holger Sudhoff, Henning Hildmann Stapes surgery can be performed using local or general anaesthesia. The major- ity of patients are operated on under a combination of local anaesthesia and ade- quate sedation. There is less bleeding with local anaesthesia and the surgeon can ask the patient about hearing improvement intraoperatively. Many experienced surgeons use a transcanal technique. We prefer an endaural approach, which we believe provides a better overview in difficult situations. The nurse assists with the incision, retracting the auricle posterior-superiorly. This straightens the incision line and keeps and protects the cartilage of the anterior helix (Fig. 22.1). The lateral portion of the ear canal is opened using a nasal speculum. The surgeon gains a good view over the superior opening of the external ear canal between the helical and the tragal cartilage. The intercartilaginous incision starts with a No. 10 blade with permanent contact to the bony external ear canal. To reduce tension a parallel incision to the anterior portion of the helix upwards in a smoothly curved line is performed. This procedure reduces the risk of cutting the superficial temporal vein and avoids bleeding. A second skin medial circumferential incision is placed 4–5 mm medial to the opening of the external bony ear canal between the 1 and 5 o’clock positions for the left ear and is extended to the intercartilaginous incision. The underlying soft tis- sue and periosteum are pushed laterally using a raspatory, revealing the supra- meatal spine and tympanomastoid suture. A small portion of the mastoid plane will be exposed as well. -
Myoclonus of the Auricular Muscles As the Cause of Objective Tympanophonia
Otolaryngology Open Access Journal ISSN: 2476-2490 Myoclonus of the Auricular Muscles as the Cause of Objective Tympanophonia 1 1 2 2 Boiko NV , Stagnieva IV , Doykov I and Vicheva D * Editorial 1Department of Otorhinolaryngology, Rostov State Medical University, Russia Volume 3 Issue 2 2Department of Otorhinolaryngology, Plovdiv Medical University, Bulgaria Received Date: July 17, 2018 Published Date: July 19, 2018 *Corresponding author: Dilyana Vicheva, Department of Otorhinolaryngology, DOI: 10.23880/OOAJ-16000173 Plovdiv Medical University, Bulgaria, Tel: +359 888223675; Email: [email protected] Abstract The objective of the present article was to systematize the available data on the etiology, pathogenesis, clinical features, diagnostics and treatment of muscular tympanophonia. The common sourse of muscular tympanophonia is the tremor (myoclonus) of the soft palate or muscles of auditory ossicles. Sometimes this condition can be a consequence of myoclonus of the external ear muscles. Pharmacotherapy of muscular tympanophonia does not invariably result in the favourable outcome. The authors describe a rare observation of objective tympanophonia attributable to myoclonus of auricular muscle. Keywords: Objective tympanophonia; Myoclonus Abbreviations: MEM: Middle Ear Myoclonus. vascular tympanophony may also be attributed to drug administration, arterial hypertension, anemia, or inter Introduction current diseases like browache [6]. Tympanophony, or tinnitus, is a phantom auditory Objective muscle tympanophony is based upon perception without any outer sound stimulation 1]. consensual spastic muscle activity (myoclonus) perceived Tympanophony is subdivided into two categories: as ear clicks. The PubMed database of 1955 to 2016offers subjective and objectively perceived noises. Most patients 104 publications describing cases of objective suffer from subjective tympanophony since statistically it tympanophony caused by myoclonus of various muscle occurs to 5-15% of the population [2], while objective groups. -
The Neural Basis of Speech and Language
© Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION CHAPTER © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC The NeuralNOT FOR SALE Basis OR DISTRIBUTION of NOT FOR SALE OR DISTRIBUTION Speech and Language 2 © Jones & Bartlett Learning, LLC © Jones & Bartlett Learning, LLC NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION Introduction © Jones & BartlettThis section Learning, gives the LLC reader a brief overview ©of Joneswhat takes & Bartlett place neurally Learning, when LLCa per- son starts a conversation by saying, “Hello. How are you? How was your vacation NOT FOR SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION trip?” to another individual whom the person meets on the street. Simply put, the steps involved would be as follows: 1. Basic vision: seeing a person on the street 2. Visual perception: recognizing the person as someone the speaker knows 3. Cognition:© theJones desire & to Bartlett speak with Learning, this person LLC about a trip that the speaker© Jones may & Bartlett Learning, LLC want to takeNOT in FORthe future SALE OR DISTRIBUTION NOT FOR SALE OR DISTRIBUTION 4. Language: searching for the right sounds, syllables, words, and sentences, all pre- sented in the right order, with meaning properly related to the greeting and the subject matter, to be expressed with a positive attitude © Jones5. Motor & Bartlettprogramming Learning, or planning: LLC readying the speech© mechanism Jones & Bartlettjust prior Learning, to LLC NOT speakingFOR SALE so that OR the DISTRIBUTION production is correct NOT FOR SALE OR DISTRIBUTION 6. Motor production or execution: speaking 7. -
Pathway of a Sound Wave
Pathway of a Sound Wave 1. The sound waves arrive at the pinna (auricle), the only visible part of the ear. 2. Once the sound waves have passed the pinna, they move into the auditory canal (external acoustic meatus) before hitting the tympanic membrane (eardrum). 3. Once the sound waves reach the tympanic membrane, it begins to vibrate and they enter into the middle ear. 4. The vibrations are transmitted further into the ear via three bones (ossicles): malleus (hammer), incus (anvil), and the stapes (stirrup). These three bones form a bridge from the tympanic membrane to the oval window. 5. Once sound passes through the oval window, it enters into the cochlea in the inner ear. 6. Hair cells in the organ of Corti (within the cochlea) are stimulated which in turn stimulates the cochlear branch of the vestibulocochlear nerve. 7. The cochlear nerve then transmits electrical impulses to the auditory region of the brain in the temporal lobe. Pathway of a Sound Wave 1. The sound waves arrive at the pinna (auricle), the only visible part of the ear. 2. Once the sound waves have passed the pinna, they move into the auditory canal (external acoustic meatus) before hitting the tympanic membrane (eardrum). 3. Once the sound waves reach the tympanic membrane, it begins to vibrate and they enter into the middle ear. 4. The vibrations are transmitted further into the ear via three bones (ossicles): malleus (hammer), incus (anvil), and the stapes (stirrup). These three bones form a bridge from the tympanic membrane to the oval window. -
Congenital and Acquired Ear Deformities; Treatment Modalities
Congenital and acquired ear deformities; treatment modalities Marieke Petra van Wijk Author: M.P. van Wijk Cover: Ilse Modder, www.ilsemodder.nl Lay-out: Ilse Modder, www.ilsemodder.nl Print by: Gildeprint – Enschede, www.gildeprint.nl ISBN: 978-94-6323-565-5 © M.P. van Wijk, Utrecht, the Netherlands, 2019. All rights reserved. No part of this thesis may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording or any information storage or retrieval system, without prior permission of the author. Congenital and acquired ear deformities; treatment modalities Aangeboren en verworven oorschelpafwijkingen; behandelwijzen (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. H.R.B.M. Kummeling, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op dinsdag 23 april 2019 des middags te 2.30 uur door Marieke Petra van Wijk geboren op zaterdag 15 mei 1976 te Groningen promotor: Prof. dr. M. Kon copromotor: Dr. C. C. Breugem Paranimfen: Mw. Dr. E.M.L Corten Mw. Dr. A.L van Rijssen Leescommissie: Prof. Dr. J.J.M. van Delden Prof. Dr. R.L.A.W Bleys Prof. Dr. C.M.A.M. van der Horst Prof. Dr. R.J. Stokroos Prof. Dr. E.E.S. Nieuwenhuis TABLE OF CONTENTS Chapter 1. 11 Introduction and aim of the thesis Chapter 2. 29 Non-surgical correction of congenital deformities of the auricle: a systematic review of the literature. van Wijk MP, Breugem CC, Kon M.