Clustering of Districts in Erzurum by Number of Injury

Total Page:16

File Type:pdf, Size:1020Kb

Clustering of Districts in Erzurum by Number of Injury Journal of Traffic and Logistics Engineering Vol. 3, No. 2, December 2015 Clustering of Districts in Erzurum by Number of Injury Hümeyra Bolakar Department of Civil Engineering, Engineering Faculty, Aksaray University, Aksaray, Turkey E-mail: [email protected] Ahmet Tortum Department of Civil Engineering, Engineering Faculty, Ataturk University, Erzurum, Turkey E-mail: [email protected] Ahmet Atalay Narman Vocational High School, Ataturk University, Erzurum, Turkey E-mail: [email protected] Abstract—In this study, the number of injuries from road Clustering analysis is performed to determine the black traffic accidents for each district was identified in Erzurum, spots in traffic accident analysis in some studies [3], [6], Turkey during the years of 2012 and 2013. Clustering [8]. Moreover, clustering analysis is used to determine analysis was made according to these rates by using both similar districts or provinces in the literature [4]-[11]. classical k-means and fuzzy c-means technique. Districts In this study, clustering analysis was performed were divided into five clusters by analysis conducted with these two techniques. Districts with the highest injury risk according to the number of injuries from road traffic were determined, and the results obtained were compared. accidents (RTAs) occurred in Erzurum province for 2012 In this study, it was observed that the result of fuzzy c- and 2013. Clustering analysis was realized in two means technique is equal to the result of k-means technique. different forms. Firstly, traditional k-means method, and Moreover, it was determined that geographical information secondly fuzzy c-means method were applied. systems are advantageous to show and understand the Geographical Information System (GIS) software was results of the thematic maps. used to demonstrate the results of the clustering analysis. Thematic maps of the districts were drawn by using GIS Index Terms—clustering, k-means, fuzzy c-means, road software. Erzurum province has eighteen districts. traffic accident, injury The aim of this study is to group similar districts of Erzurum according to the number of injury in road traffic accidents. It is to compare the results of traditional I. INTRODUCTION clustering and fuzzy clustering methods. Traffic accidents and deaths, injuries and material damage caused by these accidents still occupy a large II. METHOD place as one of the most important problems in the world. In Turkey every year more than 500.000 traffic accidents A. Cluster Analysis happen and of these accidents 5.000 end up in death and Cluster Analysis is the group of methods that help to 160.000 results in injuries. In 2012 and 2013, 9861 traffic divide the units, variables, or units and variables that take accidents happened in Erzurum and 87 people died in place in the X data matrix and of which natural groupings these accidents while 5755 people were injured [1], [2]. are not certainly known in terms of sub-clusters similar to In recent years, clustering analysis was carried out by each other. researchers on traffic accidents [3]-[11]. The purpose of In clustering analysis, we used both traditional k- such cluster analyses was to determine the districts means and fuzzy c-means methods. showing similarities with each other in the light of data on traffic accidents. Upon determining similar districts, B. K-Means Clustering Method each group may be analysed separately and the measures K-means technique, the most commonly used of the to be taken for traffic accidents may be easily determined. non-hierarchy methods, was found by MacQueen and it Diminish in death and material loss will be achieved by aims to collect elements with values closest to each other means of special measures taken in each district group in in the same cluster in cases when the number of the addition to general precautions taken to prevent traffic clusters is known [12], [13]. accidents. In this method, individuals are divided into k clusters to make the sum of squares within the groups the smallest. According to the below stated formula individuals are Manuscript received February 1, 2015; revised April 12, 2015. ©2015 Journal of Traffic and Logistics Engineering 125 doi: 10.12720/jtle.3.2.125-128 Journal of Traffic and Logistics Engineering Vol. 3, No. 2, December 2015 classified into the cluster giving the smallest distance (the However the cluster centres should change at the same closest) when a1n, a2n, .... , akn every group is selected as time according to the following weighted average cluster centre for individuals in the same space while formula in (6): each observation vector of x1, x2, x3, ...., xn variables with n p variables expresses a point in the multi-dimensional x- m (üik ) xk space in (1) [9], [13]-[15]. v k1 (1 i c) (6) n i n 1 2 W min x a (1) (üik ) N n i in i1 k1 For the data to be partitioned to clusters by this method, C. Fuzzy c-Means Clustering Method following procedures must be completed step by step. Fuzzy c-means algorithm is the best-known and widely Step 1: Dates are a date series or pattern series X= {x1, used method of fuzzy partitioning clustering techniques. x2, x3,…, xn},in general, c is identified, (2<c<n-1), This algorithm was put forth by Dunn in 1973 and it was Step 2: Just any 1 repeat components of c mean vector, developed by Bezdec in 1981 [16]. Unlike in traditional n m clusters, each data point in fuzzy clusters may belong to ü()l x more than one sub-cluster in different degrees. However, ki k ()l k1 the sum of degrees of the membership of the same data v n m (7) point in different clusters coming one after the other ()l üki should be equal to 1. This means that if the degree of the k 1 membership of belonging of a data i to a cluster j is üi,j, (1ic ) then m being the number of clusters: m Step 3: Membership degree in step 1 according to the following expression, üi, j 1 (2) j1 (11) 1 üik (1 i c; 1 k n) On the other hand, the sum of membership degrees of 2 c m1 (8) the set of data in the same cluster j must be smaller than n, xk vi x v which is the number of data. In an extreme case, if all j1 k j data are in one cluster, then the sum of membership Step 4: In this step, it is controlled that calculations are degrees must be equal to n. This case is theoretical and it close to each other, it is either repeated or stopped [17]. is not meaningful in practice. However, the following may be written for all discussions, III. RESULTS AND DISCUSSION n (3) The aim of this study was to determine the cities üi, j n i1 similar to each other in terms of injury rates in traffic Solution is expected in extreme cases of (2) and (3) accidents happening in the districts. given the degrees of membership for real clustering. Here, In this study, clustering analysis was conducted using all data are common to each cluster with a certain degree the number of injury from RTAs in Erzurum for 2012 and of membership as mentioned above. For assigning the 2013. In this study, both k-means and fuzzy c-means points to different clusters, the idea of taking the gross clustering methods were used. The number of clusters average of the distance between points and given cluster was identified as five in both methods. centres will be used. The function to express this kind of Cluster centres obtained by classical k-means weight is defined as: clustering method were given in Table I. In the cluster analysis, researcher can entitle clusters n c 2 f (ü,v) (ü )m x v (4) [9], [12], [13], [15]. In this study, according to cluster ik k i centres, we entitled the clusters as the highest, more than k1 i1 medium, medium, less than medium and the least. The Here, 0<m<∞ exponent of membership degrees is title shows the number of injuries in a district. taken as weight. Vector v in (4) represents the coordinates of cluster centres. For clustering, this TABLE I. CENTRES OF CLUSTERS BY K-MEANS METHOD function must be minimized in the space of change. For degrees of membership, after this process of minimizing CLUSTER NUMBER which may be solved by taking derivatives according to unknown of which the mathematical details will not be 1 2 3 4 5 given here, the following is obtained in (5): Injuries during 2012 1002 104 8,14 16,86 53,50 1 üik 2 Injuries during 2013 991 117 4,86 27,71 43 c m1 xk vi (5) x v j1 k j According to cluster centres in k-means clustering (1 i c; 1 k n) method, clusters were entitled in Fig. 1. According to k- ©2015 Journal of Traffic and Logistics Engineering 126 Journal of Traffic and Logistics Engineering Vol. 3, No. 2, December 2015 means clustering, thematic map of districts was identified TABLE II. CENTRES OF CLUSTERS BY FUZZY C-MEANS in Fig. 1. CLUSTER NUMBER 1 2 3 4 5 Injuries 103,9394 1002 6,835842 16,4014 51,82501 during 2012 Injuries 116,9276 991 4,373043 26,87263 42,67219 during 2013 According to cluster centres in fuzzy c-means method, clusters were entitled in Fig. 2. According to the result of fuzzy c-means clustering, thematic map of districts was identified in Fig. 2. ArcGis program, the geographic information system software, was prepared and used to show the results in a visual way on the map of Erzurum (Fig.
Recommended publications
  • Osteoporosis Health Belief, Knowledge Level and Risk Factors in Individuals Whose Bone Mineral Density Was Required
    ASLAN G & KILIC D. Belitung Nursing Journal. 2017 June;3(3):162-173 Accepted: 12 May 2017 http://belitungraya.org/BRP/index.php/bnj/ © 2017 Belitung Nursing Journal This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International License which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited ORIGINAL RESEARCH ISSN: 2477-4073 OSTEOPOROSIS HEALTH BELIEF, KNOWLEDGE LEVEL AND RISK FACTORS IN INDIVIDUALS WHOSE BONE MINERAL DENSITY WAS REQUIRED Gulpinar ASLAN1*, Dilek KILIC2 1Agri Ibrahim Cecen University Vocational Department of Health Care Services, Agri, TURKEY 2Associate Professor, Ataturk University, Health Science Faculty, Nursing Department, Erzurum, TURKEY *Correspondence: Gulpinar ASLAN, MScN, RN Agri Ibrahim Cecen University Vocational Department of Health Care Services, Agri, TURKEY E-mail: [email protected] ABSTRACT Aim: This descriptive-relational study aims to identify osteoporosıs health belief, knowledge level and risk factors in individuals whose bone mineral density was required. Method: Target population of the study was 110 men and 126 women aged 35 and over, who applied to Atatürk University Aziziye - Yakutiye Research Hospital Nuclear Medicine Center Bone Densitometer Unit between January 2010 and October 2010. No sampling was performed, the whole target population was involved in the study. Data were collected through the Personal Information Form that included socio-demographic features, The Osteoporosis Health Belief Scale, the Osteoporosis Self-Efficacy Scale and the Osteoporosis Knowledge Test. Results: The Osteoporosis Health Belief score of the participants was 139.99±14.79, Osteoporosis Knowledge score was 10.06±4.30, and Osteoporosis Self-Efficacy score was 742.00±213.44.
    [Show full text]
  • Oltu, Olur, Narman Ve Şenkaya Ilçelerinin Ekoturizm Potansiyelinin Swot Analizi Yöntemiyle Belirlenmesi1
    USOBED Uluslararası Batı International Journal of Research Article Karadeniz Sosyal ve Beşeri Western Black Sea Social and Araştırma Makalesi Bilimler Dergisi, 4(1): 87-115 Humanities Sciences https://doi.org/10.46452/baksoder.727180 30 Haziran-June, 2020 e-ISSN :2602-4594 OLTU, OLUR, NARMAN VE ŞENKAYA İLÇELERİNİN EKOTURİZM POTANSİYELİNİN SWOT ANALİZİ YÖNTEMİYLE BELİRLENMESİ1 Bilim Uzmanı Alparslan TANÇ* Atatürk Üniversitesi, Sosyal Bilimler Enstitüsü [email protected] ORCID: 0000-0001-7191-9434 Dr. Öğr. Üyesi Nilgün SANALAN BİLİCİ Atatürk Üniversitesi, Turizm Fakültesi, Turizm İşletmeciliği Bölümü [email protected] ORCID: 0000-0001-2345-6789 ÖZ Bu günlerde ekoturizm olgusu hem dünyada hem de ülkemizde hızla gelişmektedir. Ülkemizin özellikle doğal, tarihi ve kültürel kaynaklar açısından zengin bir ülke olması ekoturizm olayının gerçekleştirilebilmesi için büyük bir fırsattır. Bu kaynakların verimli ve etkin kullanılabilmesi için tanıtıma ve reklam faaliyetlerine gereken önemi vermeli, ekoturizm prensiplerini oluşturmalı ve uygulamanın geliştirilmesi için plan ve yöntemler geliştirmelidir. Çünkü ekoturizm plansız ve özensiz yapılırsa amacının aksine çevreye ve yapıldığı yöreye ciddi zararlar verebilir. Çalışma alanını Erzurum’un kuzey ilçelerinden Oltu, Olur, Narman ve Şenkaya oluşturmaktadır. Bölge, iklimi, tarihi ve coğrafi konumu sayesinde yapılabilecek ekoturizm faaliyetlerine oldukça elverişlidir. Bu faaliyetlerin bazıları; akarsu turizmi, yayla turizmi, av turizmi, dağ turizmi, botanik turizmi, mağara turizmi, göl turizmi, doğa yürüyüşü, kuş gözlem, kamp turizmidir. Bu çalışmanın amacı, Oltu, Olur, Narman ve Şenkaya ilçelerinin ekoturizm potansiyellerinin belirlenmesi, SWOT analizlerinin yapılması, yerel halkın turizme bakış açısı ve ekoturizme engel olabilecek durumların değerlendirilmesidir. Bölgenin ekoturizm açısından zengin kaynaklara sahip olması, bu kaynakların değerlendirilmesi ve bölgeye katkı sağlaması çalışmanın önemini ortaya koymaktadır. Anahtar Kelimeler: Ekoturizm, Oltu, Olur, Narman, Şenkaya, Swot Analizi 1 Bu makale 1.
    [Show full text]
  • Toponimys with Ancient Turk Origins in the Balkans
    IBAC 2012 vol.2 TOPONIMYS WITH ANCIENT TURK ORIGINS IN THE BALKANS Prof .Ass. Hajiyeva GALIBA Nakhchivan State Univresity, e-mail: [email protected] Abstract One of the sources dealing with the ancient Turkic history are toponyms. Toponymic investigations show that most of the ancient geographical names which have spread in Eurosia, in Central Asia, from North Africa, to Eastern Turkistan even in Siberia and these names were formed before Roman and Byzantine periods. So development of toponymic investigations, study of the history of Turkic peoples and scientific investigation of existing geographical names which keep the history of Turkic peoples have great significance. One of the uninvestigated fields of the Turkic history are geographical names keeping historical facts within are the holy Balkan areas. The toponymic investigations carried on the Balkans show that these territories are the places were the ancient Turkic tribes were firstly settled and possessed. This fact is proved by the Turkic tribe names and by the words of different semantic meaning of the languages of Turkic tribes. The great deal of Balkan geographical names are the names derived out of ethnoniyms thus the names reflecting ancient Turkic tribe names (Astipos//Astepe//Ishtip, Izletdere, Vardar, Sofular, Gilan, Sahsuvar kariyesi, Kosalar village, Tatarli kariyesi, in the Kosova, Uskup, Usturumca, Kumanova, Propishtip, Kochana, Makedonska Kamenika in Makedony, Araz district, Arazli, Azman, Cepine, Coban, Chorlu, Culfalar, Horozlar, Kangirlar, Sakarli, Sungurlar, Karuk, Kaspi, Kaz//Kas, Kazancilar, Kecililer, Kuman, Padarlar, Sofular, Tatar, Uzlar in Bulgaria) show that Balkans historically were Turkic areas. Geographical names are the real witnesses of history. We must pay great attention to the scientific investigations of the geographical names in Balkan states.
    [Show full text]
  • Cabinet of Armenia, 1920
    Cabinet of Armenia, 1920 MUNUC 32 TABLE OF CONTENTS ______________________________________________________ Letter from the Crisis Director…………………………………………………3 Letter from the Chair………………………………………….………………..4 The History of Armenia…………………………………………………………6 The Geography of Armenia…………………………………………………14 Current Situation………………………………………………………………17 Character Biographies……………………………………………………....27 Bibliography…………………………………………………………………...37 2 Cabinet of Armenia, 1920 | MUNUC 32 LETTER FROM THE CRISIS DIRECTOR ______________________________________________________ Dear Delegates, We’re very happy to welcome you to MUNUC XXXII! My name is Andre Altherr and I’ll be your Crisis Director for the Cabinet of Armenia: 1920 committee. I’m from New York City and am currently a Second Year at the University of Chicago majoring in History and Political Science. Despite once having a social life, I now spend my free-time on much tamer activities like reading 800-page books on Armenian history, reading 900-page books on Central European history, and relaxing with the best of Stephen King and 20th century sci-fi anthologies. When not reading, I enjoy hiking, watching Frasier, and trying to catch up on much needed sleep. I’ve helped run and participated in numerous Model UN conferences in both college and high school, and I believe that this activity has the potential to hone public speaking, develop your creativity and critical thinking, and ignite interest in new fields. Devin and I care very deeply about making this committee an inclusive space in which all of you feel safe, comfortable, and motivated to challenge yourself to grow as a delegate, statesperson, and human. We trust that you will conduct yourselves with maturity and tact when discussing sensitive subjects.
    [Show full text]
  • ERZURUM Il Sıfır Atık Yönetim Sistemi Plani
    T.C. ERZURUM VALİLİĞİ Çevre ve Şehircilik İl Müdürlüğü ERZURUM İL SIFIR ATIK YÖNETİM SİSTEMİ PLANI 2020 İÇİNDEKİLER ÖNSÖZ ..................................................................................................................................................... 2 GİRİŞ ........................................................................................................................................................ 3 1. ÇALIŞMA EKİBİNİN BELİRLENMESİ ................................................................................................... 4 2. ATIK YÖNETİMİNDE MEVCUT DURUM ............................................................................................ 6 2.1 Nüfus Bilgileri ................................................................................................................................ 6 2.2 Atık Miktarı ve Karakterizasyonuna İlişkin Bilgiler ........................................................................ 7 2.3 Mahalli İdarelere İlişkin Bilgiler ..................................................................................................... 7 2.3.1 Yönetimi sağlanan atıkların kaynakta (özellikle haneler ve kamusal alanlardan) ayrı toplanması çalışmaları dâhil mevcut atık yönetimine yönelik bilgiler ................................................ 8 2.3.2 İlimizde Yönetimi sağlanan atıklara yönelik biriktirme/toplama ekipmanları yerleştirilen yerlerin ve buralarda mevcut olan toplama-taşıma araç ve ekipmanların envanteri ......................... 8 2.3.3 İlimizde atık toplama
    [Show full text]
  • The Characteristics of Patients Transferred by Helicopter
    Meandros Med Dent J Original Article / Özgün Araştırma The Characteristics of Patients Transferred by Helicopter Ambulance in Erzurum Erzurum İlinde Helikopter Ambulans ile Taşınan Hastaların Özellikleri Sultan Tuna Akgöl Gür1, Atıf Bayramoğlu2, Hüseyin Şahin3 1Bölge Training and Research Hospital, Emergency Service, Erzurum, Turkey 2Atatürk University Faculty of Medicine, Department of Emergency Medicine, Erzurum, Turkey 3Namık Kemal University Faculty of Medicine, Department of Emergency Medicine, Tekirdağ, Turkey Abstract Objective: To analyze the characteristics of patients transferred by ambulance helicopter in Erzurum. Materials and Methods: We retrospectively evaluated the records of patients transferred by ambulance helicopter between 2009 and 2012. Medical, demographics, geographic and flight data of the patients were all analyzed. Results: A total of 347 (185 male, 162 female) patients were included in the study. 167 patients (48.4%) aged between 18 and 65 years. In the adult patients, the most common diagnoses were medical conditions in 82 (65.6%) men and 43 (34.4%) women. The number of male and female patients transferred during the summer was 64 (35%) and 50 (30.9%); in autumn, 54 (29.5%) and 34 (21%); in winter, 35 (19.1%) and 44 (27.1%); and in the spring, 30 (16.4%) and 34 (21%), respectively. Conclusion: Transferring patients living far from medical centers by air ambulance Keywords has become common. Plane and helicopter ambulances have become a part of Helicopter ambulance, patient transportation, emergency services. Since evidence was obtained on the outcomes of patients Erzurum affected positively by helicopter transfer, air health transfer services and the number of air ambulances covered by insurance companies have increased recently.
    [Show full text]
  • Erzincan – Bayburt Bölgesel Gelişme Planı Sentez Ve Öneriler
    EKONOMİK - TOPLUMSAL - MEKÂNSAL ÖRGÜTLENME İÇİN DAR BÖLGELİ POLARİZE MODEL ERZURUM – ERZİNCAN – BAYBURT BÖLGESEL GELİŞME PLANI SENTEZ VE ÖNERİLER - HARİTALAR - KİTAP - IV T.C. BAŞBAKANLIK DEVLET PLANLAMA TEŞKİLATI UNITED NATIONS DEVELOPMENT PROGRAMME YILDIZ TEKNİK ÜNİVERSİTESİ ATATÜRK ÜNİVERSİTESİ MAYIS, 2005 İSTANBUL TAYF MATBAACILIK LTD. ŞTİ. UNDP YILDIZ TEKNİK ÜNİVERSİTESİ Bütün Hakları Saklıdır. © 2005 Bu eserin bir kısmı veya tamamı, Y.T.Ü. Rektörlüğü ile UNDP’nin izni olmadan, hiçbir şekilde çoğaltılamaz, kopya edilemez. ISBN 975-461-399-0 Baskı: TAYF MATBAACILIK LTD. ŞTİ. İSTANBUL Tel: (0212) 264.72.16 TAYF Matbaacılık tarafından 02.05.2005 tarihinde 300 (üç yüz) adet basılan, “Erzurum – Erzincan – Bayburt Bölgesel Gelişme Planı: Sentez ve Öneriler - Haritalar” adlı eserin her türlü bilimsel ve etik sorumluluğu bölüm yazarlarına aittir. EKONOMİK-TOPLUMSAL-MEKANSAL ÖRGÜTLENME İÇİN DAR BÖLGELİ POLARİZE MODEL ERZURUM-ERZİNCAN-BAYBURT BÖLGESEL GELİŞME PLANI ANALİTİK RAPOR: KİTAP I HAZIRLAYANLAR İÇİNDEKİLER Prof Dr Ayşe Nur ÖKTEN Doç Dr Betül ŞENGEZER 1. GİRİŞ Doç Dr İclal DİNÇER Prof Dr Semra ATABAY Doç Dr Betül ŞENGEZER 2. DOĞAL YAPI Yrd Doç Dr Tülay AYAŞLIGİL Uzman Gül TÜZÜN Öğr Gör Dr Ayfer GÜL Öğr Gör Dr Oya AKIN 3. ULAŞIM Arş Gör Elif Örnek ÖZDEN Arş.Gör.Dr. Nazire DİKER 4. NÜFUS VE KURUMSAL YAPI Arş.Gör.Ebru SEÇKİN Doç Dr Betül ŞENGEZER 5. TARIM Yrd Doç Dr Yiğit EVREN 6. SANAYİ Arş Gör Tuba İnal ÇEKİÇ Öğr Gör Dr Ayfer GÜL Öğr Gör Dr Oya AKIN 7. HİZMETLER SEKTÖRÜ Arş Gör Dr Elif Ö.ÖZDEN Arş Gör Ebru SEÇKİN Öğr Gör Dr Ayfer GÜL Öğr Gör Dr Oya AKIN 8. TURİZM Arş Gör Dr Elif Ö.
    [Show full text]
  • Yüzey Araştırmalar Işığında Erzurum Pasinler İlçesinde Tespit Edilen Obsidyen Merkezleri Ve Atölyeleri
    MANAS Sosyal Araştırmalar Dergisi 2021 Cilt: 10 Sayı: 3 MANAS Journal of Social Studies 2021 Volume: 10 No: 3 ISSN: 1694-7215 Research Paper / Araştırma Makalesi Yüzey Araştırmalar Işığında Erzurum Pasinler İlçesinde Tespit Edilen Obsidyen Merkezleri ve Atölyeleri Alpaslan CEYLAN1 ve Seval AKÇELİK2 Öz Kuzeydoğu Anadolu Bölgesi, jeolojik yapısı nedeniyle önemli obsidyen yataklarına ev sahipliği yapmaktadır. Ana hatlarıyla Erzurum-Kars Platosu’nda bulunan volkanik sahalar, bölgenin temel obsidyen kaynaklarını oluşturmaktadır. Erzurum’un batısında yer alan Söğütlü’nün kuzeyindeki tepelik alanlar, Palandöken Dağı’nın güneybatısı, Pasinler ve çevresi obsidyen yataklarının tespit edildiği önemli arazilerdir. Pasinler ilçesi jeolojik karakterini, Pliosen sonu ve Pleistosen içinde meydana gelen tektonik hareketler sonucunda kazanmıştır. İlçe ve yakın çevresinde andezit, bazalt ve obsidyen gibi dış püskürük kayaçlar geniş bir yayılım göstermektedir. Bölgede 1998 yılında başladığımız yüzey araştırmalarında çalışma sahalarımızdan biri de Pasinler olmuştur. Pasinlerde yaptığımız çalışmalarda çok sayıda keramik ve obsidyen tespit edilmiştir. Gelişmiş obsidyen analiz yöntemlerine rağmen çalışma alanımızda bulunan merkezlerin sadece birkaçından alınan örneklerin analizleri yapılmıştır. İlçe ve yakın çevresinde Kotandüzü, Pelitli ve Tımar gibi önemli obsidyen merkezlerinin yanı sıra Cin Kalesi, Çalıyazı Kalesi, Kavuşturan Kalesi ve Sos Höyük’te yapılan araştırmalarda bu merkezlerin de önemli birer obsidyen atölyesi olabileceği düşünülmektedir. Ayrıca
    [Show full text]
  • Eastern Anatolia
    A general survey of the vegetation of north - eastern anatolia by İBRAHİM AT AL AY Introduction The study area named NE Anatolia which is bounded by the Erzurum-Rize line on the west, the Erzurum-Tuzluca line or the Aras river valley on the south, comprises the subregion of the Eastern Black Sea and the subregion of Erzurum- Kars in Eastern Anatolia. From the vegetational point of view, the lower part of the Eastern Black Sea Mountains was covered by broad-leaved forests, and the upper section was occupied by pine forests. The southern slopes of the East Black Sea Mountains were covered by xerophytic and winter hardy forest from the bottom to the upper section, while the slopes facing the north of the ranges were covered by winter hardy and humid forests such as spurce, fir and Scotch pine. The upper watershed areas of the Çoruh river basin were occupied by oak, juniper, and shrub formations. The northern slopes and upper part of the continental sector of Eastern Ana­ tolia were occupied by scotch pine. Natural steppe vegetation was common on the tectonic corridor of the Aras valley, the Oltu basin, and the Kağızman-Tuzluca basin. Destroyed forest areas were covered by the mountain steppe which belong to the irano-Turanian ele­ ments. Tall prairie-like grass was seen between the Erzurum-Kars plateau. Alpine and subalpine grasses were widespread on the upper part of mountains. The aim of this short article is to explain the distribution of vegetation-for- mation and the evolution of vegetation and floristic composition in this region.
    [Show full text]
  • A Contribution to the Knowledge of the Tenthredinidae (Symphyta, Hymenoptera)
    TurkJZool 28(2004)37-54 ©TÜB‹TAK AContributiontotheKnowledgeoftheTenthredinidae (Symphyta,Hymenoptera)FaunaofTurkey PartI:TheSubfamilyTenthredininae* ÖnderÇALMAfiUR,HikmetÖZBEK AtatürkUniversity,FacultyofAgriculture,DepartmentofPlantProtection, 25240Erzurum-TURKEY Received:07.02.2003 Abstract: ThesubfamilyTenthredininaeinthefamilyTenthredinidaewastreatedinthispartofthestudyregardingthesawfly (Symphyta,Hymenoptera)faunaofTurkey.Thematerialswerecollectedfromvariouslocalitiesaroundthecountry,though examplesfromeasternTurkeyarepredominant.Afterexaminingmorethan2500specimens,57speciesin8generawererecorded. ElevenspecieswerenewforTurkishfauna;ofthese3specieswererecordedforthefirsttimeasAsianfauna.Furthermore,3 specieswereendemicforTurkey.ThedistributionandnewareasaswellasthehostplantsofsomespeciesaroundTurkeyandth e worldweregiven.Foreachspeciesitschorotypewasreported. KeyWords: Hymenoptera,Tenthredinidae,Tenthredininae,Fauna,Turkey Türkiye’ninTenthredinidae(Symphyta,Hymenoptera)Faunas›naKatk›lar Bölüm:ITenthredininaeAltfamilyas› Özet: Türkiye’nintestereliar›(Symphyta,Hymenoptera)faunas›n›ntespitineyönelikçal›flmalar›nbubölümünde;Tenthredininae (Tenthredinidae)altfamilyas›eleal›nm›fl;incelenen2500’denfazlaörneksonucu,sekizcinseba¤l›toplam57türsaptanm›flt›r. Türkiyefaunas›içinyeniolduklar›saptanan11türdenüçününAsyafaunas›içindeyenikay›tolduklar›belirlenmifltir.ÜçtürünTürkiye içinendemikolduklar›saptanm›flt›r.Tespitedilentürlerinhementamam›içinyeniyay›lmaalanlar›belirlenmifl,birço¤unun konukçular›bulunmufltur.Türkiyevedünyadakida¤›l›fllar›chorotype’leriilebirlikteverilmifltir.
    [Show full text]
  • Doğu Anadolu Yiğişim Karmaşiği (Tortum-Narman-Oltu-Pasinler- Horasan-Erzurum Kd Türkiye ) Kuzey Kesimi Metalojenik Kuşak Mi Dir ?
    DOĞU ANADOLU YIĞIŞIM KARMAŞIĞI (TORTUM-NARMAN-OLTU-PASİNLER- HORASAN-ERZURUM KD TÜRKİYE ) KUZEY KESİMİ METALOJENİK KUŞAK MI DIR ? İsmet Cengiz1, Mehmet Aslan2, Serkan Özkümüş3 ve Neşat Konak4 1 Demir Export A.Ş., Ankara, Türkiye, 2 MTA Orta Anadolu IV. Bölge Müdürlüğü, Malatya, Türkiye, 3 MTA Genel Müdürlüğü, Maden Etüt ve Arama Dairesi, 06800, Ankara, Türkiye, 4 MTA Genel Müdürlüğü, Jeoloji Etütleri Dairesi, 06800, Ankara, Türkiye. İnceleme alanı, Erzurum kuzeyinde, Tortum-Narman-Oltu-Şenkaya-Pasinler ve Horasan ilçeleri arasında yer almakta olup “Doğu Anadolu Yığışım Karmaşığı” olarak tanımlanan bölgenin kuzey kenarını oluşturmaktadır. Yığışım karmaşığının en yaşlı kaya birimleri temeli oluşturan Erzurum Kars Ofiyolit Zonuna ait ofiyolitik kayaçlardır. Tipik bir yığışım pirizması özelliğinde ve melanj karekteri sunan bu birim üzerine, Eosenden Pliyo-Kuvaternere kadar devam eden volkano sedimanter bir istif gelmektedir. MTA tarafından son yıllarda bu bölgede yapılan çalışmalarda farklı tip alterasyon ve cevherleşmeler tespit edilmiştir. Ofiyolitik kayaçlarda krom cevherleşmelerinin yanında Kıbrıs Tip Masif Sülfit ile Lisvenitlere bağlı epitermal sistemde gelişmiş civa ve altın; Tersiyer havzada ise damar tip Cu-Pb-Zn ve epitermal As-Au cevherleşmeleri izlenir. Belirli bir dizilim ve farklı litolojiler içinde yer alan bu alterasyon ve cevherleşmeler, Doğu Anadolu Yığışım Karmaşığı olarak adlandırılan bölgenin kuzey kesimini önemli bir metalojenik kuşak haline getirmektedir. Anahtar Kelimeler: Metalojenik Kuşak, Erzurum Kars Ofiyolit Zonu, Doğu Anadolu Yığışım. IS THE NORTHERN SECTION OF THE EASTERN ANATOLIAN ACCERETIONARY PRISM (TORTUM-NARMAN-OLTU-PASİNLER- HORASAN-ERZURUM NE TURKEY ) A METALLOGENIC BELT ? İsmet Cengiz1, Mehmet Aslan2, Serkan Özkümüş3 and Neşat Konak4 1 Demir Export A.Ş., Ankara, Turkey, 2 MTA Orta Anadolu IV. Bölge Müdürlüğü, Malatya, Turkey, 3 MTA Genel Müdürlüğü, Maden Etüt ve Arama Dairesi, 06800, Ankara, Turkey, 4 MTA Genel Müdürlüğü, Jeoloji Etütleri Dairesi, 06800, Ankara, Turkey.
    [Show full text]
  • 10160542 Syzleymely Kesy
    ERZURUM İL MİLLİ EĞİTİM MÜDÜRLÜĞÜ 2017-2018 EĞİTİM-ÖĞRETİM YILI NORM KADRO FAZLASI SÖZLEŞMELİ ÖĞRETMENLERİN KESİN SONUÇ LİSTESİ KADROSUNUN HİZMET S.NO İLÇESİ ADI-SOYADI BRANŞI ATANDIĞI OKUL BULUNDUĞU OKUL PUANI 1 AŞKALE PINAR ÖZER DİN KÜLTÜRÜ VE AHLAK BİLGİSİ İBRAHİM POLAT İLKOKULU 95.34 AŞKALE İNKILAP ORTAOKULU 2 AŞKALE SÜMEYYE ÖZEKİN DİN KÜLTÜRÜ VE AHLAK BİLGİSİ ATATÜRK İMKB YATILI BÖLGE ORTAOKULU 93.66 AŞKALE ERZURUM AŞKALE İMKB ANADOLU LİSESİ 3 AŞKALE MERVE GÜRSEL DİN KÜLTÜRÜ VE AHLAK BİLGİSİ ATATÜRK İMKB YATILI BÖLGE ORTAOKULU 82.00 AŞKALE KARAFATMA ORTAOKULU 4 AŞKALE EMİRSULTAN DEMİREŞİK DİN KÜLTÜRÜ VE AHLAK BİLGİSİ AŞKALE ANADOLU İMAM HATİP LİSESİ 80.33 AŞKALE MESLEKİ VE TEKNİK ANADOLU LİSESİ (RESEN) 5 AŞKALE MELDA ŞİMŞEK İNGİLİZCE ORTABAHÇE ORTAOKULU 80.10 AŞKALE KANDİLLİ İMKB ANADOLU LİSESİ 6 AŞKALE CELAL GÜLTEKİN MATEMATİK AŞKALE MESLEKİ VE TEKNİK ANADOLU LİSESİ 92.33 AŞKALE ANADOLU İMAM HATİP LİSESİ 7 AŞKALE EMRAH KURT SINIF ÖĞRETMENLİĞİ GÜLLÜDERE İLKOKULU 95.67 AŞKALE İNKILAP İLKOKULU 8 AŞKALE MERVE ÖKSÜZ SINIF ÖĞRETMENLİĞİ TOPALÇAVUŞ İLKOKULU 95.33 AŞKALE KOÇAK İLKOKULU 9 AŞKALE DOĞANAY DENK SINIF ÖĞRETMENLİĞİ NAHİYE GÖLÖREN İLKOKULU 81.33 AŞKALE KOÇAK İLKOKULU 10 AZİZİYE SELİM KURTARAN FİZİK AZİZİYE ILICA ANADOLU İMAM HATİP LİSESİ 94.33 PALANDÖKEN YILDIZKENT HÜSEYİN AVNİ ULAŞ ANADOLU LİSESİ 11 ÇAT İSHAK AKTAŞ DİN KÜLTÜRÜ VE AHLAK BİLGİSİ MERKEZ İLKOKULU 88.00 ÇAT ŞEHİT OSMAN GÜLMEZ ORTAOKULU 12 ÇAT BORA ZENGİN MATEMATİK YAVİ ANADOLU LİSESİ 78.33 ÇAT ANADOLU İMAM HATİP LİSESİ 13 ÇAT SİBEL ÇELİK MUHASEBE VE FİNASMAN ÇAT ÇOK
    [Show full text]