BEHAVIORS MEDIATE APHID INTERACTIONS with NATURAL ENEMIES and the ENVIRONMENT a Dissertation Submitted to the Graduate Faculty O

Total Page:16

File Type:pdf, Size:1020Kb

BEHAVIORS MEDIATE APHID INTERACTIONS with NATURAL ENEMIES and the ENVIRONMENT a Dissertation Submitted to the Graduate Faculty O BEHAVIORS MEDIATE APHID INTERACTIONS WITH NATURAL ENEMIES AND THE ENVIRONMENT A Dissertation Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By James Kopco In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY Major Department: Entomology November 2016 Fargo, North Dakota North Dakota State University Graduate School Title Behaviors mediate aphid interactions with natural enemies and the environment By James Kopco The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of DOCTOR OF PHILOSOPHY SUPERVISORY COMMITTEE: Jason Harmon Chair Marion Harris Erin Gillam Ned Dochtermann Approved: November 2, 2017 Frank Casey Date Department Chair ABSTRACT Behavior is a crucial component of ecology that mediates how animals interact with one another and with the environment. Behaviors can allow animals to avoid the harmful effects of things like competition, predation, and extreme abiotic conditions. However, animals often have constraints that limit the potential benefits of their behaviors, so we addressed what factors contribute to these constraints in plant-aphid-wasp systems. Parasitoids of aphids are tiny wasps that lay their eggs in aphids, where the larva feeds and develops. Each aphid can only sustain a single parasitoid, so parasitoids mark aphids when they lay an egg to discourage others from laying additional eggs. Not all parasitoids mark aphids the same way, and whether species with different marks can recognize one another’s mark was unclear. We found that parasitoids with different marks fail to respond to one another’s marks. Because these parasitoids laid eggs in aphids that were already parasitized, competition between them will occur through mortal combat between the larvae rather than egg-laying restraint in the adults. Parasitoid attack induces aphid behaviors such as fighting, running away, or dropping off the host plant. These behaviors can deter or evade the attacker, but they cost the aphid an opportunity to feed. This feeding interruption decreases the number of offspring the aphids produce. When aphids run from a threat, they usually resettle on the newest leaves of a plant, where their reproduction is enhanced. However, when they drop from a plant to escape, they resettle randomly and do not benefit from the better location, indicating that more vigorous responses can lose benefits. We also showed that aphids exhibit similar movement and resettling behaviors when disturbed by heat shocks. However, this behavior did not affect aphid reproduction or survival when induced by a heat shock. While movement to new leaves appears to be a general response to several disturbances, its benefits to aphids only occur in specific situations. We have shown that behaviors can be constrained by unfamiliar stimuli and the general context in which they are invoked. These constraints can dictate how insects interact with each other and the environment. iii ACKNOWLEDGEMENTS I would like to express gratitude to the many people who helped me survive graduate school and finish this dissertation. My adviser, Dr. Jason Harmon, offered tremendous help, both with the nuts-and- bolts science and with staying sane as I worked. Dr. Deirdre Prischman-Voldseth was also an invaluable mentor, offering advice, encouragement, and professional development opportunities every step of the way. I also benefitted tremendously from the camaraderie and collaboration of the lab team, especially Aleix Valls, Jackie Nelson, Erin McClain, Tyler Follman, Joe Alfonso, and Jamin Dreyer, who all contributed insights and encouragement. Of course, I had support from outside the entomological community as well that helped push me through to complete this dissertation. The unwavering support of my family, especially during the most stressful parts of graduate school, kept me sane and optimistic. Nick, Mom, and Dad, your non-stop support was fantastic. Liz really pushed me in the final stretches of writing this dissertation, and her support made all the difference in the world. The colorful cards from Aunt Kathy, smothered in stickers and full of corny jokes were always a welcome pick-me-up. Aunt Andi and Uncle Ray plus long-term friends like Ken and Alex were always encouraging and game to commiserate. And of course, the huge Kopco family gatherings every Christmas offered a valuable mid-winter boost of encouragement, even if I had to do some Facebook creeping to make sure I know everyone’s kids’ names. iv TABLE OF CONTENTS ABSTRACT……...……………………………………………………………………………………………………iii ACKNOWLEDGMENTS……...……………………………………………………………………………………..iv LIST OF TABLES …..……..…………………………..……………………………………………………………viii LIST OF FIGURES ….……………………………………………………………………………………………….ix INTRODUCTION ……………………………………………………………………………………………………..1 References ………………………………………………………………………………………………………3 TO STING OR NOT TO STING: THE ROLE OF HOST MARKING MECHANISMS IN INTER-SPECIFIC MARK RECOGNITION BY PARASITOIDS ……………………………………………………………………….4 Abstract ………………………………………………………………………………………………………….4 Introduction ………………………………………………………………………………………………………5 Methods …………………………………………………………………………………………………………..8 Study System ……………………………………………………………………………………………….8 Rearing of Study Insects …………………………………………………………………………………..9 Sequential Exposure of Aphid Groups to Parasitoids ……..………………………………………….11 Parasitoid Response to Parasitized or Non-parasitized Aphids…………………………………12 Aphid Defensive Behaviors ………………………………………………………………..………..14 Exposure of Stung or Bystander Aphids to L. testaceipes ……………………………………………16 Results ……………………………………………………………………………………………………...…..18 Sequential Exposure of Aphid Groups to Parasitoids ……………...…………………………………18 Parasitoid Response to Parasitized or Non-parasitized Aphids ……...…………………………18 Aphid Defensive Behaviors………………………………………………………………………….20 Exposure of Stung or Bystander Aphids to L. testaceipes …………………………………………...20 Discussion ………………………………………………………………………………………………………22 Acknowledgments ……………………………………………………………………………………………..31 References ……………………………………………………………………………………………………..31 DISTURBANCES ALTER WITHIN-PLANT DISTRIBUTION TO THE POTENTIAL BENEFIT OF HERBIVOROUS INSECTS………...………………………………………………………………………………37 v Abstract …………………………………………………………………………………………………………37 Introduction ……………………………………………………………………………………………………..37 Methods …………………………………………………………………………………………………………41 Study System ……………………………………………………………………………………………..41 Aphids …………………………………………………………………………………………………41 Plants ………………………………………………………………………………………………….41 Experiments ……………………………………………………………………………………………….42 Time to Resettlement After Disturbance ………………………….…………………………….…42 Fitness of Aphids on Actively Growing Leaves vs. Old Leaves …………………………………44 Disturbance Frequency Experiments ..............................……………………..…………………45 Disturbance Frequency Experiment Analysis ………………………………………………….....46 Results….……………………………………………………………………………………………………….48 Time to Resettlement After Disturbance ...…………………………………….…………………..48 Fitness of Aphids on Actively Growing Leaves vs. Older Leaves ………………………………48 Disturbance Frequency ………………………………………………………..…………………….49 Discussion ………………………………………………………………………………………………………51 Acknowledgements ……………………………………………………………………………………………55 References ……………………………………………………………………………………………………..55 APHID BEHAVIORAL RESPONSES TO HEAT SHOCKS DO NOT AFFECT SHORT-TERM APHID FITNESS …………………………………………………………………………………………………………….61 Abstract …………………………………………………………………………………………………………61 Introduction ……………………………………………………………………………………………………..61 Methods …………………………………………………………………………………………………………64 Study System …………..………………………………………………………………………………….64 Behavioral Responses to Heat Shocks ……………..………………………………………………….66 Analysis of Behavioral Responses to Heat Shocks .............………………………………………….68 Fitness Effects………………………………………..……………………………………………………70 Analysis of Fitness Effects ……………………….………………………………………………………71 vi Results …………………………………….……………………………………………………………………72 Behavioral Responses to Heat Shocks ………………………………………………………………...72 Fitness Effects …………………………………………………………………………………………….74 Discussion ………………………………………………………………………………………………………77 Acknowledgements ……………………………………………………………………………………………83 References ……………………………………………………………………………………………………..83 CONCLUSIONS AND FUTURE DIRECTIONS …………………………………………………………………88 References ……………………………………………………………………………………………………..91 vii LIST OF TABLES Table Page 1. Treatments in the sequential exposure of whole aphid colonies experiment……...….....….…………….12 2. Variables analyzed in the sequential exposure of whole aphid colonies experiment ……...…...………..14 3. Specific timeline of disturbances …...……….…………………..………………………………..……………47 4. Coefficient estimates for effects of disturbance on actively growing leaves colonization ….…..…......…51 5. Temperatures at each height in behavioral responses to heat shocks experiment …....………..……….68 6. Treatments and sample sizes from the fitness effects experiment …....…………………………..……….71 7. Results of MANOVA analysis of the change in aphids in each fourth of the plants…..………..……..….74 8. Results of the ANOVAs testing changes in the number of aphids in each quarter of the plant .……..…75 viii LIST OF FIGURES Figure Page 1. Comparisons between characteristics of foraging behaviors (± SEM) for L. testaceipes (A, C, E, and G, open bars) and B. communis (B, D, F, H, shaded bars) …..……………………...…….19 2. Aphid defensive response to wasps …………...……………………………………………………………...21 3. The proportion of defensive or non-defensive
Recommended publications
  • Insecticides - Development of Safer and More Effective Technologies
    INSECTICIDES - DEVELOPMENT OF SAFER AND MORE EFFECTIVE TECHNOLOGIES Edited by Stanislav Trdan Insecticides - Development of Safer and More Effective Technologies http://dx.doi.org/10.5772/3356 Edited by Stanislav Trdan Contributors Mahdi Banaee, Philip Koehler, Alexa Alexander, Francisco Sánchez-Bayo, Juliana Cristina Dos Santos, Ronald Zanetti Bonetti Filho, Denilson Ferrreira De Oliveira, Giovanna Gajo, Dejane Santos Alves, Stuart Reitz, Yulin Gao, Zhongren Lei, Christopher Fettig, Donald Grosman, A. Steven Munson, Nabil El-Wakeil, Nawal Gaafar, Ahmed Ahmed Sallam, Christa Volkmar, Elias Papadopoulos, Mauro Prato, Giuliana Giribaldi, Manuela Polimeni, Žiga Laznik, Stanislav Trdan, Shehata E. M. Shalaby, Gehan Abdou, Andreia Almeida, Francisco Amaral Villela, João Carlos Nunes, Geri Eduardo Meneghello, Adilson Jauer, Moacir Rossi Forim, Bruno Perlatti, Patrícia Luísa Bergo, Maria Fátima Da Silva, João Fernandes, Christian Nansen, Solange Maria De França, Mariana Breda, César Badji, José Vargas Oliveira, Gleberson Guillen Piccinin, Alan Augusto Donel, Alessandro Braccini, Gabriel Loli Bazo, Keila Regina Hossa Regina Hossa, Fernanda Brunetta Godinho Brunetta Godinho, Lilian Gomes De Moraes Dan, Maria Lourdes Aldana Madrid, Maria Isabel Silveira, Fabiola-Gabriela Zuno-Floriano, Guillermo Rodríguez-Olibarría, Patrick Kareru, Zachaeus Kipkorir Rotich, Esther Wamaitha Maina, Taema Imo Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2013 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work.
    [Show full text]
  • (Aphelinidae, Hymenoptera) Parasitizing Myzus Persicae (Sulzer) Under Protected Cultivation
    Journal of Biological Control, 26 (3): 283–284, 2012 Research Note Occurrence of Aphelinus asychis Walker (Aphelinidae, Hymenoptera) parasitizing Myzus persicae (Sulzer) under protected cultivation GAVKARE OMKAR* and KUMAR SURJEET Department of Entomology, CSK HPKV, Palampur 176 062, Himachal Pradesh, India * Corresponding author: E-mail: [email protected] ABSTRACT: Aphelinus asychis Walker (Aphelinidae: Hymenoptera), a solitary endoparasitoid was recorded from Myzus persicae (Sulzer) infesting bell pepper Capsicum annuum L. under protected cultivation in India during December 2011. The per cent parasitisation ranged from 35 to 40% of population of M. persicae. KEY WORDS: Aphelinus asychis, Myzus persicae, endoparasitoid, protected cultivation (Article chronicle: Received: 31-5-2012 Revised: 23-8-2012 Accepted: 10-9-2012) Aphelinus asychis Walker (Hymenoptera: Aphelinidae) morphological studies, the parasitoids were mounted in is a solitary endoparasitoid of aphids and native to Old DPX and permanent slides were prepared which were World (Europe, Asia and Africa). It was introduced into observed under stereozoom microscope (SMZ 16, the United States from Asia, Europe and Africa for classical Olympus, Japan) equipped with a photo-micrograph biological control of the Russian wheat aphid, Diuraphis camera. Morphometric observations of the parasitoid noxia Mordivilko and the species is cosmopolitan now were also carried out using an ocular micrometer calibrated as a result of previous introductions (Hayat 1998; Elliott with a stage micrometer. The adult parasitoid was a et al., 1999). This species parasitizes different hosts at tiny black wasp with an average length and breadth of different geographical locations. At least 42 species of 1.50 mm and 0.54 mm respectively.
    [Show full text]
  • Hymenoptera: Chalcidoidea) from Morocco and Comparison with North Africa Region Fauna 55 Khadija Kissayi, Souâd Benhalima and Moulay Chrif Smaili
    Journal of Entomology and Nematology Volume 9 Number 7, December 2017 ISSN 2006-9855 ABOUT JEN The Journal of Entomology and Nematology (JEN) (ISSN: 2006-9855) is published monthly (one volume per year) by Academic Journals. Journal of Entomology and Nematology (JEN) is an open access journal that provides rapid publication (monthly) of articles in all areas of the subject such as applications of entomology in solving crimes, taxonomy and control of insects and arachnids, changes in the spectrum of mosquito-borne diseases etc. The Journal welcomes the submission of manuscripts that meet the general criteria of significance and scientific excellence. Papers will be published shortly after acceptance. All articles published in JEN are peer-reviewed. Contact Us Editorial Office: [email protected] Help Desk: [email protected] Website: http://www.academicjournals.org/journal/JEN Submit manuscript online http://ms.academicjournals.me/ Associate Editors Editor Dr. Sam Manohar Das Dept. of PG studies and Research Centre in Zoology, Scott Christian College (Autonomous), Prof. Mukesh K. Dhillon Nagercoil – 629 003, ICRISAT Kanyakumari District,India GT-Biotechnology, ICRISAT, Patancheru 502 324, Andhra Pradesh, Dr. Leonardo Gomes India UNESP Av. 24A, n 1515, Depto de Biologia, IB, Zip Code: Dr. Lotfalizadeh Hosseinali 13506-900, Department of Insect Taxonomy Rio Claro, SP, Iranian Research Institute of Plant Protection Brazil. Tehran, P. O. B. 19395-1454, Iran Dr. J. Stanley Vivekananda Institute of Hill Agriculture Prof. Liande Wang Indian Council of Agricultural Research, Almora– Faculty of Plant Protection, 263601, Uttarakhand, Fujian Agriculture and Forestry University India Fuzhou, 350002, P.R. China Dr. Ramesh Kumar Jain Indian Council of Agricultural Research, Dr.
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting Template
    EFFECTS OF INTERCROPPING AND BIOLOGICAL INSECTICIDES ON SUGARCANE APHID (HEMIPTERA: APHIDIDAE) INFESTATIONS ON SORGHUM, AND IDENTIFICATION OF NATURAL ENEMIES AND ALTERNATE HOSTS IN HAITI By WILFRID CALVIN A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2019 © 2019 Wilfrid Calvin To Jehovah, Issa, Calissa, Amelise, and Mercilhome ACKNOWLEDGMENTS I thank God for always holding my hand through every step in my life. I am also grateful to my family for their unfailing support throughout my life. I would like to thank my lovely wife for her undying assistance and constant encouragement during my study period. Special thanks to my adorable daughter who endured with love such a long period of time away from daddy to make this achievement possible. I thank Dr. Julien Beuzelin, my committee chair, for all his guidance and support during my master’s study. My committee members, Drs. Oscar Liburd and Marc Branham, have also provided useful advice and support for which I am so thankful. I am also thankful to Mr. Ludger Jean Simon for his support toward the success of the experiments conducted in Haiti. I would like to thank Dr. Elijah Talamas for his help identifying insect samples from Haiti. I thank Donna Larsen for providing technical assistance in all experiments conducted at the UF/IFAS Everglades Research and Education Center (EREC) and for all the help to make my stay in Belle Glade successful. I am also thankful to Erik Roldán for all his help during my master’s program.
    [Show full text]
  • Aphid-Parasitoid (Insecta) Diversity and Trophic Interactions in South Dakota
    Proceedings of the South Dakota Academy of Science, Vol. 97 (2018) 83 APHID-PARASITOID (INSECTA) DIVERSITY AND TROPHIC INTERACTIONS IN SOUTH DAKOTA Abigail P. Martens* and Paul J. Johnson Insect Biodiversity Lab South Dakota State University Brookings, SD 57007 *Corresponding author email: [email protected] ABSTRACT Parasitoid wasps of the subfamily Aphidiinae (Hymenoptera: Braconidae) specialize on aphids (Hemiptera: Aphididae) as hosts. The diversity of known and probable aphidiine wasps from South Dakota is itemized, with represen- tation by 13 genera and 42 species, 43% of which are probably adventitious. The wasps and aphids are central to various combinations of multitrophic relationships involving host plants and secondary parasitoids. Selected native and introduced aphid host taxa were quantitatively and qualitatively collected from diverse native and crop host plants in eastern South Dakota and western Iowa. Wasps were reared to confirm plant association, host aphid association, taxonomic diversity, and native or introduced status of the wasps. Acanthocaudus tissoti (Smith) and Aphidius (Aphidius) ohioensis (Smith) were found together on the native aphid Uroleucon (Uroleucon) nigrotuberculatum (Olive), a new host aphid species for both wasps on Solidago canadensis L. (Asterales: Asteraceae). The native waspLysiphlebus testaceipes (Cresson) was repeatedly reared in mas- sive numbers from mummies of invasive Aphis glycines Matsumura on soybean, Glycine max (L.) Merr. This wasp was also reared from the non-nativeAphis nerii Boyer de Fonscolombe and the native Aphis asclepiadis Fitch, both on Asclepias syriaca L. The introduced wasp Binodoxys communis (Gahan) was not recovered from any Aphis glycines population. Hyperparasitoids from the genus Dendrocerus Ratzeburg (Hymenoptera: Megaspilidae), and the pteromalid (Hymenoptera: Pteromalidae) genera Asaphes Walker, and Pachyneuron Walker were reared from mummies of Uroleucon (Uroleucon) nigrotuberculatum parasitized by either Acanthocaudus tissoti or Aphidius (Aphidius) ohioensis.
    [Show full text]
  • E0020 Common Beneficial Arthropods Found in Field Crops
    Common Beneficial Arthropods Found in Field Crops There are hundreds of species of insects and spi- mon in fields that have not been sprayed for ders that attack arthropod pests found in cotton, pests. When scouting, be aware that assassin bugs corn, soybeans, and other field crops. This publi- can deliver a painful bite. cation presents a few common and representative examples. With few exceptions, these beneficial Description and Biology arthropods are native and common in the south- The most common species of assassin bugs ern United States. The cumulative value of insect found in row crops (e.g., Zelus species) are one- predators and parasitoids should not be underes- half to three-fourths of an inch long and have an timated, and this publication does not address elongate head that is often cocked slightly important diseases that also attack insect and upward. A long beak originates from the front of mite pests. Without biological control, many pest the head and curves under the body. Most range populations would routinely reach epidemic lev- in color from light brownish-green to dark els in field crops. Insecticide applications typical- brown. Periodically, the adult female lays cylin- ly reduce populations of beneficial insects, often drical brown eggs in clusters. Nymphs are wing- resulting in secondary pest outbreaks. For this less and smaller than adults but otherwise simi- reason, you should use insecticides only when lar in appearance. Assassin bugs can easily be pest populations cannot be controlled with natu- confused with damsel bugs, but damsel bugs are ral and biological control agents.
    [Show full text]
  • Performance of the Parasitoid Species Aphelinus Asychis Walker (Hymenoptera: Aphelinidae), Aphidius Ervi (Haliday) (Hymenoptera
    Kumar et al. Egyptian Journal of Biological Pest Control (2020) 30:110 Egyptian Journal of https://doi.org/10.1186/s41938-020-00309-x Biological Pest Control RESEARCH Open Access Performance of the parasitoid species Aphelinus asychis Walker (Hymenoptera: Aphelinidae), Aphidius ervi (Haliday) (Hymenoptera: Braconidae) and Diaeretiella rapae (McIntosh) (Hymenoptera: Braconidae), using Myzus persicae (Sulzer) (Hemiptera: Aphididae) as host Surjeet Kumar, Shruti Kashyap and Saurbh Soni* Abstract Three parasitoid species viz. Aphelinus asychis Walker (Hymenoptera: Aphelinidae), Aphidius ervi (Haliday) (Hymenoptera: Braconidae) and Diaeretiella rapae (McIntosh) (Hymenoptera: Braconidae) parasitizing the aphid species Myzus persicae (Sulzer) (Hemiptera: Aphididae) in mid-hills of north India were studied. At different locations and times of the year, the parasitization by A. asychis, A. ervi, and D. rapae ranged from 7.53 to 37.58, 4.26 to 80.45, and 74.25 to 80.48%, respectively. All the 3 parasitoids successfully completed their development on different nymphal instars of the aphid host and the total developmental duration of A. asychis, A. ervi, and D. rapae ranged 10.4–14.6, 24.2–29.6, and 10.2–15.2 days, respectively. It was significantly longer on the 1st nymphal instar of the host. The longevity of the female parasitoids was significantly longer than their counterparts. Differences in host age significantly influenced the longevity of female parasitoids and it was more on 1 to 2-day-old nymphs than that on 4 to 5-day-old nymphs. Fecundity and ovipositional periods of the parasitoids on younger (1–2 days old) host age group were considerably prolonged than on the older ages of the aphid.
    [Show full text]
  • Wcc 66 Minutes of the Annual Meeting 2004
    WESTERN COORDINATING COMMITTEE – 066 Integrated Management of Russian Wheat Aphid and Other Cereal Aphids MINUTES OF THE ANNUAL MEETING SEPTEMBER 26-28, 2004 MANHATTAN, KANSAS Report Submitted by KA Shufran Minutes recorded at meeting by D Mornhinweg List of participants 1. Tom Holtzer, Administrative Co-advisor, Colorado St. Univ. 2. Sue Blodgett, Montana St. Univ. 3. Louis Hesler, Chair, USDA-ARS, Brookings, SD 4. Frank Peairs, Colorado St. Univ. 5. Keith Pike, Washington St. Univ. 6. David Porter, USDA-ARS, Stillwater, OK 7. Sean Keenan, Oklahoma St. Univ. 8. J.P. Michaud, Kansas St. Univ. 9. Do Mornhinweg, USDA-ARS, Stillwater, OK 10. Cheryl Baker, USDA-ARS, Stillwater, OK 11. John Reese, Kansas St. Univ. 12. Marion Harris, North Dakota St. Univ. 13. Juan Manuel Alvarez, University of Idaho 14. Norman Elliott, USDA-ARS, Stillwater, OK 15. Allan Fritz, Kansas St. Univ. 16. John Burd, USDA-ARS, Stillwater, OK 17. Michael Roberts, Kansas St. Univ. 18. Amanda Schroeder, Kansas St. Univ. 19. Gerald Wilde, Kansas St. Univ. 20. Gary Hein, University of Nebraska 21. Yiqun Weng, Texas Ag. Exper. Station-Amarillo 22. Kris Giles, Oklahoma St. Univ. 23. Tom Royer, Oklahoma St. Univ. 24. Mpho Phoofolo, Oklahoma St. Univ. 25. Mike Smith, Kansas St. Univ. Minutes Sept. 27. 8:30 AM - Louis Hesler, WCC-66 chair, opened the meeting. Kevin Shufran (secretary/chair elect) was not in attendance due to an injury. Do Mornhinweg 1 acted as secretary for the meeting. Dr. Hesler thanked Mike Smith, John Reese, and Gerald Wilde for the local arrangements and welcomed participants to the meeting.
    [Show full text]
  • Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea
    Biodiversity Data Journal 4: e8013 doi: 10.3897/BDJ.4.e8013 Taxonomic Paper Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea Natalie Dale-Skey‡, Richard R. Askew§‡, John S. Noyes , Laurence Livermore‡, Gavin R. Broad | ‡ The Natural History Museum, London, United Kingdom § private address, France, France | The Natural History Museum, London, London, United Kingdom Corresponding author: Gavin R. Broad ([email protected]) Academic editor: Pavel Stoev Received: 02 Feb 2016 | Accepted: 05 May 2016 | Published: 06 Jun 2016 Citation: Dale-Skey N, Askew R, Noyes J, Livermore L, Broad G (2016) Checklist of British and Irish Hymenoptera - Chalcidoidea and Mymarommatoidea. Biodiversity Data Journal 4: e8013. doi: 10.3897/ BDJ.4.e8013 Abstract Background A revised checklist of the British and Irish Chalcidoidea and Mymarommatoidea substantially updates the previous comprehensive checklist, dating from 1978. Country level data (i.e. occurrence in England, Scotland, Wales, Ireland and the Isle of Man) is reported where known. New information A total of 1754 British and Irish Chalcidoidea species represents a 22% increase on the number of British species known in 1978. Keywords Chalcidoidea, Mymarommatoidea, fauna. © Dale-Skey N et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. 2 Dale-Skey N et al. Introduction This paper continues the series of checklists of the Hymenoptera of Britain and Ireland, starting with Broad and Livermore (2014a), Broad and Livermore (2014b) and Liston et al.
    [Show full text]
  • Species Composition and Dynamics of Aphids and Parasitoid Wasps in Maize Fields in Northeastern China
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.19.345215; this version posted October 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Species composition and dynamics of aphids and parasitoid wasps in maize fields in Northeastern China Ying Zhang1, Min-chi Zhao1, Jia Cheng1, Shuo Liu1, Hai-bin Yuan1 * 1 Jilin Agricultural University, Department of Plant Protection, Changchun,130118, China. *Corresponding author; [email protected] Abstract Maize, Zea mays L., is the most abundant field crop in China. Aphids are the most economically damaging pest on maize, particularly in the cotton agri-ecosystems of Jilin Province, northern China. Parasitic wasps are important natural enemies of aphids, but limited information exists about their species composition, richness and seasonal dynamics in northern China. In this study, the population dynamics of maize aphids and parasitoid wasps were assessed in relation to each other during the summer seasons of two consecutive years, 2018 and 2019. We selected maize fields in the Changchun, Songyuan, Huinan and Gongzhuling areas of Jilin Province. Four species of aphids were recorded from these maize fields: Rhopalosiphum padi (L), Rhopalosiphum maidis (Fitch), Aphis gossypii Glover and Macrosiphum miscanthi (Takahashi). The dominant species in each of the four areas were R. maids (Filch) and R. padi in Changchun, R .padi in Songyuan, A. gossypii and R. padi in Huinan, and A.gossypii and R.
    [Show full text]
  • APP203853 Application.Pdf(PDF, 1.7
    APPLICATION FORM Release To obtain approval to release new organisms (Through importing for release or releasing from containment) Send to Environmental Protection Authority preferably by email ([email protected]) or alternatively by post (Private Bag 63002, Wellington 6140) Payment must accompany final application; see our fees and charges schedule for details. Application Number APP203853 Date 28 June 2019 www.epa.govt.nz 2 Application Form Approval to release a new organism Completing this application form 1. This form has been approved under section 34 of the Hazardous Substances and New Organisms (HSNO) Act 1996. It covers the release without controls of any new organism (including genetically modified organisms (GMOs)) that is to be imported for release or released from containment. It also covers the release with or without controls of low risk new organisms (qualifying organisms) in human and veterinary medicines. If you wish to make an application for another type of approval or for another use (such as an emergency, special emergency, conditional release or containment), a different form will have to be used. All forms are available on our website. 2. It is recommended that you contact an Advisor at the Environmental Protection Authority (EPA) as early in the application process as possible. An Advisor can assist you with any questions you have during the preparation of your application including providing advice on any consultation requirements. 3. Unless otherwise indicated, all sections of this form must be completed for the application to be formally received and assessed. If a section is not relevant to your application, please provide a comprehensive explanation why this does not apply.
    [Show full text]
  • Population Ecology of Aphelinus Certus, an Adventive Parasitoid of Soybean Aphid in North America, with Implications for Biological Control
    Population ecology of Aphelinus certus, an adventive parasitoid of soybean aphid in North America, with implications for biological control A DISSERTATION SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY James Rudolph Miksanek IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY George E. Heimpel, Adviser May 2020 © 2020 James Rudolph Miksanek All rights reserved. Chapter 1 has been published in PLoS One. Permission for use is granted by the primary author, James Rudolph Miksanek. Chapter 3 has been published in Biological Control. Permission for use is granted by the primary author, James Rudolph Miksanek. Acknowledgements First and foremost, I would like to thank my advisor, George Heimpel, for his unwavering support throughout my graduate career. He has provided me with an in-depth introduction into the world of parasitoids, challenged me with a variety of research projects, and has encouraged my participation in an array of academic and professional meetings. I have also been extremely fortunate to share with George my personal interests in birding and jazz guitar. I thank my committee members—Dave Andow, Robert Koch, and Robert Venette—for their invaluable advice along the way. I would also like to thank Anthony Ives and Mary Marek-Spartz for fruitful discussions on mathematical modeling, as well as Kelton Welch, who has shared with me fascinating insights into ecological theory. Jonathan Dregni, too, has been helpful in contributing his knowledge of Aphelinus and the soybean aphid system, as well as in his hard work maintaining laboratory colonies of the study system. I also thank Henry Davis, who was not only a great help in conducting field research, but whose work ethic and positive attitude is something that I will always aspire towards.
    [Show full text]