Banana Weevil (Cosmopolites Sordidus) Reduces
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Integrated Pest Management of the Banana Weevil, Cosmopolites Sordidus (Germar), in South Africa
Integrated pest management of the banana weevil, Cosmopolites sordidus (Germar), in South Africa by Johan de Graaf Submitted in partial fulfilment of the requirements for the degree Philosophiae Doctor (Entomology), in the Faculty of Natural & Agricultural Science University of Pretoria Pretoria May 2006 CONTENTS Page Summary viii List of tables xii List of figures xiv Aims xxi Hypothesis xxi Statistical analysis xxii Chapter 1: Biology, ecology and integrated pest management of the banana weevil, Cosmopolites sordidus (Germar) (Coleoptera: Curculionidae), on Musa (Zingiberales: Musaceae): an evaluation of literature 1 1.1 Introduction 2 1.2 Musa 2 1.2.1 Classification 2 1.2.2 Morphology and growth 4 1.2.3 Cultivation 5 1.2.3.1 Cultivation areas 5 1.2.3.2 Food production systems 5 1.2.4 Crop importance 7 1.3 Cosmopolites sordidus 8 1.3.1 Classification 8 1.3.2 Distribution 10 1.3.3 Biology and behaviour 10 1.3.4 Population dynamics 12 1.3.5 Pest status 15 1.4 Integrated management 17 1.4.1 Monitoring (sampling) 17 1.4.1.1 Adult trapping 17 1.4.1.2 Damage assessments 19 1.4.1.3 Economic thresholds 21 1.4.2 Host resistance 22 1.4.3 Cultural control 24 1.4.3.1 Crop establishment 24 ii 1.4.3.2 Crop management 26 1.4.3.3 Mass trapping 28 1.4.4 Biological control 29 1.4.4.1 Classical biological control 29 1.4.4.2 Arthropod natural enemies 30 1.4.4.3 Microbial control 31 1.4.5 Chemical control 32 1.5 Conclusions 35 1.6 References 38 Tables 64 Chapter 2: Genetic relationships among populations of Cosmopolites sordidus based on AFLP analysis 65 -
Endophytic Control of Cosmopolites Sordidus and Radopholus Similis Using Fusarium Oxysporum V5w2 in Tissue Culture Banana
Endophytic control of Cosmopolites sordidus and Radopholus similis using Fusarium oxysporum V5w2 in tissue culture banana Dennis M.W. Ochieno Thesis committee Thesis supervisors Prof. dr. Marcel Dicke Professor of Entomology Wageningen University Prof. dr. ir. Arnold van Huis Personal Chair at the Laboratory of Entomology Wageningen University Thesis co-supervisor Dr. Thomas Dubois Biocontrol Specialist International Institute of Tropical Agriculture Other members Prof. dr. TWM Kuijper, Wageningen University Prof. dr. RA Sikora, University of Bonn, Germany Dr. JM Raaijmakers, Wageningen University Dr. MNEJ Smit, IPM specialist, (private consultant) This research was conducted under the auspices of the C. T. de Wit Graduate School of Production Ecology and Resource Conservation Endophytic control of Cosmopolites sordidus and Radopholus similis using Fusarium oxysporum V5w2 in tissue culture banana Dennis M.W. Ochieno Thesis submitted in partial fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Monday 1 November 2010 at 11 a.m. in the Aula Dennis M.W. Ochieno Endophytic control of Cosmopolites sordidus and Radopholus similis using Fusarium oxysporum V5w2 in tissue culture banana Thesis, Wageningen University, Wageningen, NL (2010) With references, with summaries in Dutch and English ISBN 978-90-8585-637-5 Table of contents Acknowledgements vii Abstract -
RHYNCHOPHORINAE of SOUTHEASTERN POLYNESIA1 2 (Coleoptera : Curculionidae)
Pacific Insects 10 (1): 47-77 10 May 1968 RHYNCHOPHORINAE OF SOUTHEASTERN POLYNESIA1 2 (Coleoptera : Curculionidae) By Elwood C. Zimmerman BISHOP MUSEUM, HONOLULU Abstract: Ten species of Rhynchophorinae are recorded from southeastern Polynesia, including two new species of Dryophthorus from Rapa. Excepting the latter, all the spe cies have been introduced into the area and most are of economic importance. Keys to adults and larvae, notes on biologies, new distributional data and illustrations are pre sented. This is a combined Pacific Entomological Survey (1928-1933) and Mangarevan Expedi tion (1934) report. I had hoped to publish the account soon after my return from the 1934 expedition to southeastern Polynesia, but its preparation has been long delayed be cause of my pre-occupation with other duties. With the exception of two new endemic species of Dryophthorus, described herein, all of the Rhynchophorinae found in southeastern Polynesia (Polynesia south of Hawaii and east of Samoa; see fig. 1) have been introduced through the agencies of man. The most easterly locality where endemic typical rhynchophorids are known to occur in the mid- Pacific is Samoa where there are endemic species of Diathetes. (I consider the Dryoph- thorini and certain other groups to be atypical Rhynchophorinae). West of Samoa the subfamily becomes increasingly rich and diversified. There are multitudes of genera and species from Papua to India, and it is in the Indo-Pacific where the subfamily is most abundant. Figure 2 demonstrates the comparative faunistic developments of the typical rhynchophorids. I am indebted to the British Museum (Natural History) for allowing me extensive use of the unsurpassed facilities of the Entomology Department and libraries and to the Mu seum of Comparative Zoology, Harvard University, for use of the library. -
Weevil Borers Affect the Spatio-Temporal Dynamics of Banana Fusarium Wilt
Journal of Fungi Article Weevil Borers Affect the Spatio-Temporal Dynamics of Banana Fusarium Wilt Daniel W. Heck , Gabriel Alves and Eduardo S. G. Mizubuti * Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; [email protected] (D.W.H.); [email protected] (G.A.) * Correspondence: [email protected] Abstract: Dispersal of propagules of a pathogen has remarkable effects on the development of epidemics. Previous studies suggested that insect pests play a role in the development of Fusarium wilt (FW) epidemics in banana fields. We provided complementary evidence for the involvement of two insect pests of banana, the weevil borer (Cosmopolites sordidus L., WB) and the false weevil borer (Metamasius hemipterus L., FWB), in the dispersal of Fusarium oxysporum f. sp. cubense (Foc) using a comparative epidemiology approach under field conditions. Two banana plots located in a field with historical records of FW epidemics were used; one was managed with Beauveria bassiana to reduce the population of weevils, and the other was left without B. bassiana applications. The number of WB and FWB was monitored biweekly and the FW incidence was quantified bimonthly during two years. The population of WB and the incidence (6.7%) of FW in the plot managed with B. bassiana were lower than in the plot left unmanaged (13%). The monomolecular model best fitted the FW disease progress data, and as expected, the average estimated disease progress rate was lower in the plot managed with the entomopathogenic fungus (r = 0.002) compared to the unmanaged plot (r = 0.006). Aggregation of FW was higher in the field with WB management. -
Functional Diversity of Soil Nematodes in Relation to the Impact of Agriculture—A Review
diversity Review Functional Diversity of Soil Nematodes in Relation to the Impact of Agriculture—A Review Stela Lazarova 1,* , Danny Coyne 2 , Mayra G. Rodríguez 3 , Belkis Peteira 3 and Aurelio Ciancio 4,* 1 Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Y. Gagarin Str., 1113 Sofia, Bulgaria 2 International Institute of Tropical Agriculture (IITA), Kasarani, Nairobi 30772-00100, Kenya; [email protected] 3 National Center for Plant and Animal Health (CENSA), P.O. Box 10, Mayabeque Province, San José de las Lajas 32700, Cuba; [email protected] (M.G.R.); [email protected] (B.P.) 4 Consiglio Nazionale delle Ricerche, Istituto per la Protezione Sostenibile delle Piante, 70126 Bari, Italy * Correspondence: [email protected] (S.L.); [email protected] (A.C.); Tel.: +359-8865-32-609 (S.L.); +39-080-5929-221 (A.C.) Abstract: The analysis of the functional diversity of soil nematodes requires detailed knowledge on theoretical aspects of the biodiversity–ecosystem functioning relationship in natural and managed terrestrial ecosystems. Basic approaches applied are reviewed, focusing on the impact and value of soil nematode diversity in crop production and on the most consistent external drivers affecting their stability. The role of nematode trophic guilds in two intensively cultivated crops are examined in more detail, as representative of agriculture from tropical/subtropical (banana) and temperate (apple) climates. The multiple facets of nematode network analysis, for management of multitrophic interactions and restoration purposes, represent complex tasks that require the integration of different interdisciplinary expertise. Understanding the evolutionary basis of nematode diversity at the field Citation: Lazarova, S.; Coyne, D.; level, and its response to current changes, will help to explain the observed community shifts. -
The Challenge of Biological Control of Cosmopolites Sordidus Germar (Col
Received: 30 October 2020 | Revised: 26 December 2020 | Accepted: 19 January 2021 DOI: 10.1111/jen.12868 REVIEW ARTICLE The challenge of biological control of Cosmopolites sordidus Germar (Col. Curculionidae): A review Paul Tresson1,2,3,4 | Philippe Tixier1,2 | William Puech4 | Dominique Carval1,2,3 1CIRAD, UPR GECO, Montpellier, France Abstract 2GECO, Univ Montpellier, CIRAD, Montpellier, France The banana weevil (also known as banana root borer) Cosmopolites sordidus Germar 3CIRAD, UPR GECO, Saint- Pierre, France (Coleoptera Curculionidae) is the major pest of banana and plantain. Because ba- 4 LIRMM, CNRS, Montpellier, France nana ranks 2nd in fruit production worldwide, this pest has substantial social and Correspondence economic importance. The biological control of the C. sordidus remains challenging Dominique Carval, GECO, Univ Montpellier, because of its behaviour and resistance to parasitism and predation. The last review CIRAD, Montpellier, France. Email: [email protected] concerning the biological control of C. sordidus was published two decades ago, and relevant knowledge and methods have developed in the interim. The present paper Funding information European Community (ERDF); French provides an update of that knowledge and summarizes past and current challenges National Research Agency under the as well as providing perspectives on achieving sustainable control of C. sordidus. We Investments for the Future Program, Grant/ Award Number: ANR- 16- CONV- 0004 first discuss studies on the classical biological control of C. sordidus, underlining the limits of classical biological control methods such as the importation of predators, parasitoids or pathogens. Next, we consider conservation biological control of C. sor- didus, with a focus on ants. -
Molecular Characterization and Genetic Diversity Of
Molecular Characterization and Genetic Diversity of Entomopathogenic Nematodes, Rhabditida: (Steinernematidae and Heterorhabditidae), in Valle del Cauca as a Source for Biological Control Jorge Mario Londoño Caicedo Universidad Nacional de Colombia Facultad de Ciencias Agropecuarias Sede Palmira Palmira Valle del Cauca, Colombia 2017 Molecular Characterization and Genetic Diversity of Entomopathogenic Nematodes, Rhabditida: (Steinernematidae and Heterorhabditidae), in Valle del Cauca as a Source for Biological Control Jorge Mario Londoño Caicedo Tesis de grado presentada como requisito parcial para optar al título de: Magister en Ciencias Biológicas Director: PhD. Jaime Eduardo Muñoz Flórez Línea de Investigación: Biotecnología vegetal Grupo de Investigación: Diversidad Biológica Universidad Nacional de Colombia Facultad de Ciencias Agropecuarias Sede Palmira Palmira Valle del Cauca, Colombia 2017 2 Acknowledgements My sincere thanks to my parents for their daily support and to encourage me keep going forward in my career. Angélica Buitrago for her invaluable help in different fields; for some of the good friends from Diversidad Biológica research team for their company and support in our daily activities. Also special thanks to Fondo de Ciencia, Tecnología e investigación del Sistema General de Regalías FCTelSGR through the project “Desarrollo de Tecnologías Innovadoras para el Manejo Integrado de Plagas y Enfermedades Limitantes de Plátano y Banano en el Valle del Cauca” directed by Universidad Nacional de Colombia Sede Palmira. To professor Jaime Eduardo Muñoz for the opportunity to be part of the research group Diversidad Biológica. 3 Abstract and Resumen Abstract Banana and plantain are edible fruit crops widespread in tropical and subtropical regions, with high importance as a source of energy, nutrients and incomes for lots of families in developing countries. -
Advancing Banana and Plantain R & D in Asia and the Pacific
AdvancingAdvancing bananabanana andand plantainplantain RR && DD inin AsiaAsia andand thethe PacificPacific -- VVol.ol. 1010 Proceedings of the 10th INIBAP-ASPNET Regional Advisory Committee meeting held at Bangkok, Thailand -- 10-11 November 2000 A.B. Molina, V.N. Roa and M.A.G. Maghuyop, editors The mission of the International Network for the Improvement of Banana and Plantain (INIBAP) is to sustainably increase the productivity of banana and plantain grown on smallholdings for domestic consumption and for local and export markets. The Programme has four specific objectives: • To organize and coordinate a global research effort on banana and plantain, aimed at the development, evaluation and dissemination of improved banana cultivars and at the conservation and use of Musa diversity. • To promote and strengthen collaboration and partnerships in banana-related activities at the national, regional and global levels. • To strengthen the ability of NARS to conduct research and development activities on bananas and plantains. • To coordinate, facilitate and support the production, collection and exchange of information and documentation related to banana and plantain. Since May 1994, INIBAP is a programme of the International Plant Genetic Resources Institute (IPGRI), a Future Harvest Centre. The International Plant Genetic Resources Institute (IPGRI) is an autonomous international scientific organization, supported by the Consultative Group on International Agricultural Research (CGIAR). IPGRI’s mandate is to advocate the conservation and use of plant genetic resources for the benefit of present and future generations. IPGRI’s headquarters is based in Rome, Italy, with offices in another 14 countries worldwide. It operates through three programmes: (1) the Plant Genetic Resources Programme, (2) the CGIAR Genetic Resources Support Programme, and (3) the International Network for the Improvement of Banana and Plantain (INIBAP). -
Zootaxa, Annotated Checklist of Weevils from the Papuan Region
ZOOTAXA 1536 Annotated checklist of weevils from the Papuan region (Coleoptera, Curculionoidea) GREGORY P. SETLIFF Magnolia Press Auckland, New Zealand Zootaxa 1536 © 2007 Magnolia Press · 1 Gregory P. Setliff Annotated checklist of weevils from the Papuan region (Coleoptera, Curculionoidea) (Zootaxa 1536) 296 pp.; 30 cm. 30 July 2007 ISBN 978-1-86977-139-3 (paperback) ISBN 978-1-86977-140-9 (Online edition) FIRST PUBLISHED IN 2007 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2007 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 1536 © 2007 Magnolia Press SETLIFF Zootaxa 1536: 1–296 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Annotated checklist of weevils from the Papuan region (Coleoptera, Curculionoidea) GREGORY P. SETLIFF Department of Entomology, University of Minnesota, 219 Hodson, 1980 Folwell Avenue, St. Paul, Minnesota 55108 U.S.A. & The New Guinea Binatang Research Center, P. O. Box 604, Madang, Papua New Guinea. -
Weevils As Targets for Biological Control, and the Importance of Taxonomy and Phylogeny for Efficacy and Biosafety
diversity Article Weevils as Targets for Biological Control, and the Importance of Taxonomy and Phylogeny for Efficacy and Biosafety Barbara I. P. Barratt 1,2,* ID , Matthew J. W. Cock 3 ID and Rolf G. Oberprieler 4 1 AgResearch Invermay, Mosgiel PB 50034, New Zealand 2 Better Border Biosecurity (B3), Lincoln 7608, New Zealand 3 CAB International, Bakeham Lane, Egham, Surrey TW20 9TY, UK; [email protected] 4 Commonwealth Scientific and Industrial Research Organisation, Australian National Insect Collection, G.P.O. Box 1700, Canberra A.C.T. 2601, Australia; [email protected] * Correspondence: [email protected]; Tel.: +64-3-489-9059 Received: 3 July 2018; Accepted: 21 July 2018; Published: 25 July 2018 Abstract: Curculionidae are a large mainly herbivorous family of beetles, some of which have become crop pests. Classical biological control has been attempted for about 38 species in 19 genera, and at least moderate success has been achieved in 31 % of cases. Only two weevil species have been considered to be completely controlled by a biological control agent. Success depends upon accurately matching natural enemies with their hosts, and hence taxonomy and phylogeny play a critical role. These factors are discussed and illustrated with two case studies: the introduction of the braconid parasitoid Mictroctonus aethiopoides into New Zealand for biological control of the lucerne pest Sitona discoideus, a case of complex phylogenetic relationships that challenged the prediction of potential non-target hosts, and the use of a mymarid egg parasitoid, Anaphes nitens, to control species of the eucalypt weevil genus Gonipterus, which involves failure to match up parasitoids with the right target amongst a complex of very closely related species. -
(Panama Disease) of Banana Caused by Fusarium Oxysporum F. Sp
Technical Manual Prevention and diagnostic of Fusarium Wilt (Panama disease) of banana caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (TR4) Luis Pérez-Vicente PhD. Senior Plant Pathologist, INISAV, Ministry of Agriculture, Cuba. Expert Consultant on Fusarium wilt disease of banana Miguel A. Dita, PhD. Research Scientist on Plant Pathology, Brazilian Research Agricultural Corporation – EMBRAPA, Brazil. Expert Consultant on Fusarium wilt disease of banana Einar Martínez- de la Parte, MSc Plant Pathologist, INISAV, Ministry of Agriculture, Cuba. Expert Consultant on Fusarium wilt disease of banana Prepared for the Regional Workshop on the Diagnosis of Fusarium Wilt (Panama disease) caused by Fusarium oxysporum f. sp. cubense Tropical Race 4: Mitigating the Threat and Preventing its Spread in the Caribbean FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS May 2014 1 Technical Manual Prevention and diagnostic of Fusarium Wilt (Panama disease) of banana caused by Fusarium oxysporum f. sp. cubense Tropical Race 4 (TR4) Luis Pérez-Vicente PhD. Senior Plant Pathologist, INISAV, Ministry of Agriculture, Cuba. Expert Consultant on Fusarium wilt disease of banana Miguel A. Dita, PhD. Research Scientist on Plant Pathology, Brazilian Research Agricultural Corporation – EMBRAPA, Brazil. Expert Consultant on Fusarium wilt disease of banana Einar Martínez- de la Parte, MSc Plant Pathologist, INISAV, Ministry of Agriculture, Cuba. Expert Consultant on Fusarium wilt disease of banana Prepared for the Regional Workshop on the Diagnosis of Fusarium Wilt (Panama disease) caused by Fusarium oxysporum f. sp. cubense Tropical Race 4: Mitigating the Threat and Preventing its Spread in the Caribbean FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS May 2014 2 INDEX Introduction:……………………………………………………………………………………………………………………………………4 Fusarium wilt of banana or panama disease by Fusarium oxysporum f. -
A Catalog of the Coleóptera of America North of Mexico
^ Í/^Á. A CATALOG OF THE COLEÓPTERA OF AMERICA NORTH OF MEXICO FAMILY: CURCULIONIDAE SUBFAMILY: RHYNCHOPHORINAE . <>*> ^■■^ TT-"» ■ —, r »"i ! 1 C^} ,,i ;•. >c.> € i.^> ^"*> Í Sï '^m NAL DigitizingI Project ah529143a AGRICULTURE PREPARED BY /^îv UNITED STATES AGRICULTURAL í/á AiW DEPARTMENT OF HANDBOOK RESEARCH AGRICULTURE NUMBER 529-143a SERVICE FAMILIES OF COLEóPTERA IN AMERICA NORTH OF MEXICO Fasci cle ' Family Year issued Fascicle ' Family Year issued Fascicle ' Family Year issued 1_._ _ -Cupedidae 1979 45.- -.Chelonariidae ... 98... .-Endomychidae __ 2 ..-Micromalthidae _ .1982 46.. Callirhipidae ... 100... .-Lathridiidae 3_.-.-Carabidae 47-_ —Hetcroceridae -. 1978 102-. .-Biphyllidae 4-. Rhysodidae 48.. ..Limnichidae 103... .-Byturidae 5_..__Amphizoidae — - 49_. ..Dryopidae 1983 104__._ _ M ycetophagidae 6 . Haliplidae 50__ --Elmidae 1983 105—..-Ciidae 1982 8_....Noteridae 51 — ..Buprestidae 107—...Prostomidae 9_..__Dytiscidae 52— .Cebrionidae 109__ 10_..__Gyrinidae 53— Elateridae Colydiidae . 13-..--Sphaeriidae 54- ..Throscidae 110- —Monommatidae 14...--Hydroscaphidae 55- .-Cerophytidae ... 111—.-.Cephaloidae 15-..--Hydraenidae 56.. -.Perothopidae ... 112—._.Zopheridae 16-..--Hydrophilidae -. 57.. -.Eucnemidae __. 115—...Tenebrionidae ._ 17... Georyssidae 58 « --Telegeusidae __. 116- ..Alleculidae 18-..--Sphaeritidae 61- ..Phengodidae ... 117-...Lagriidae 20-..--Histeridae 62- Lampyridae 118--...Salpingidae 21-.---Ptiliidae 63.. --Cantharidae 119-...Mycteridae 22_...-Limulodidae 64.. --Lycidae 120— .-Pyrochroidae 1983 23-..--Dasyceridae