Notes on Identification Works and Difficult and Under-Recorded Taxa
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Complete Chloroplast Genome of Rhipsalis Baccifera, The
plants Article Complete Chloroplast Genome of Rhipsalis baccifera, the only Cactus with Natural Distribution in the Old World: Genome Rearrangement, Intron Gain and Loss, and Implications for Phylogenetic Studies 1,2,3, 1,2,3, 1,2,3, 1,2,3 Millicent Akinyi Oulo y, Jia-Xin Yang y, Xiang Dong y, Vincent Okelo Wanga , Elijah Mbandi Mkala 1,2,3 , Jacinta Ndunge Munyao 1,2,3, Victor Omondi Onjolo 1,2,3, Peninah Cheptoo Rono 1,2,3, Guang-Wan Hu 1,2,* and Qing-Feng Wang 1,2 1 CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; [email protected] (M.A.O.); [email protected] (J.-X.Y.); [email protected] (X.D.); [email protected] (V.O.W.); [email protected] (E.M.M.); [email protected] (J.N.M.); [email protected] (V.O.O.); [email protected] (P.C.R.); [email protected] (Q.-F.W.) 2 Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China 3 University of Chinese Academy of Sciences, Beijing 100049, China * Correspondence: [email protected] or [email protected] These authors contributed equally to this work. y Received: 1 July 2020; Accepted: 29 July 2020; Published: 31 July 2020 Abstract: Rhipsalis baccifera is the only cactus that naturally occurs in both the New World and the Old World, and has thus drawn the attention of most researchers. The complete chloroplast (cp) genome of R. baccifera is reported here for the first time. The cp genome of R. -
Yellow Rattle Rhinanthus Minor
Yellow Rattle Rhinanthus minor Yellow rattle is part of the figwort family (Scrophulariaceae) and is an annual plant associated with species-rich meadows. It can grow up to 50 cm tall and the stem can have black spots. Pairs of triangular serrated leaves are arranged in opposite pairs up the stem and the stem may have several branches. Flowers are arranged in leafy spikes at the top of the stem and the green calyx tube at the bottom of each flower is flattened, slightly inflated and bladder-like. The yellow flowers are also flattened and bilaterally symmetrical. The upper lip has two short 1 mm violet teeth and the lower lip has three lobes. The flattened seeds rattle inside the calyx when ripe. Lifecycle Yellow rattle is an annual plant germinating early in the year, usually February – April, flowering in May – August and setting seed from July – September before the plant dies. The seeds are large and may not survive long in the soil seed bank. Seed germination trials have found that viability quickly reduces within six months, and spring sown seed has a much lower germination rate. Yellow rattle seed often requires a period of cold, termed vernalisation, to trigger germination. It is a hemi-parasite on grasses and legumes. This means that it is partially parasitic, gaining energy through the roots of plants and also using photosynthesis. This ability of yellow rattle makes it extremely useful in the restoration of wildflower meadows as it reduces vegetation cover enabling perennial wildflowers to grow. However, some grasses, such as fescues, are resistant to parasitism by yellow rattle and in high nutrient soils, Yellow rattle distribution across Britain and Ireland grasses such as perennial rye-grass, may grow The data used to create these maps has been provided under very quickly shading out yellow rattle plants licence from the Botanical Society which are not tolerant of shady conditions. -
Condition of Designated Sites
Scottish Natural Heritage Condition of Designated Sites Contents Chapter Page Summary ii Condition of Designated Sites (Progress to March 2010) Site Condition Monitoring 1 Purpose of SCM 1 Sites covered by SCM 1 How is SCM implemented? 2 Assessment of condition 2 Activities and management measures in place 3 Summary results of the first cycle of SCM 3 Action taken following a finding of unfavourable status in the assessment 3 Natural features in Unfavourable condition – Scottish Government Targets 4 The 2010 Condition Target Achievement 4 Amphibians and Reptiles 6 Birds 10 Freshwater Fauna 18 Invertebrates 24 Mammals 30 Non-vascular Plants 36 Vascular Plants 42 Marine Habitats 48 Coastal 54 Machair 60 Fen, Marsh and Swamp 66 Lowland Grassland 72 Lowland Heath 78 Lowland Raised Bog 82 Standing Waters 86 Rivers and Streams 92 Woodlands 96 Upland Bogs 102 Upland Fen, Marsh and Swamp 106 Upland Grassland 112 Upland Heathland 118 Upland Inland Rock 124 Montane Habitats 128 Earth Science 134 www.snh.gov.uk i Scottish Natural Heritage Summary Background Scotland has a rich and important diversity of biological and geological features. Many of these species populations, habitats or earth science features are nationally and/ or internationally important and there is a series of nature conservation designations at national (Sites of Special Scientific Interest (SSSI)), European (Special Area of Conservation (SAC) and Special Protection Area (SPA)) and international (Ramsar) levels which seek to protect the best examples. There are a total of 1881 designated sites in Scotland, although their boundaries sometimes overlap, which host a total of 5437 designated natural features. -
Foliar Anatomy of the Genus Silene L. (Caryophyllaceae) at Sectional Level in Iran
DOI: http://dx.doi.org/10.22092/ijb.2016.107954 FOLIAR ANATOMY OF THE GENUS SILENE L. (CARYOPHYLLACEAE) AT SECTIONAL LEVEL IN IRAN M. Nejati Edalatian, F. Ghahremaninejad & F. Attar Received 2015. 06. 08; accepted for publication 2016. 11. 02 Nejati Edalatian, M., Ghahremaninejad, F. & Attar, F. 2016. 12. 30: Foliar anatomy of the genus Silene L. (Caryophyllaceae) at sectional level in Iran. -Iran. J. Bot. 22 (2): 138-158. Tehran. In this research, Iranian species of 20 sections of the genus Silene L. have been anatomically studied for the first time. Some of the most important anatomical characters of leaf in this genus are listed here: general shape of leaves in transverse section, type of stomata cells, form of trichome, type of mesophyll (dorsiventral or isobilateral), presence or absence and type of collenchyma, thickness of sclerenchyma, existence or lack of water-storage, shape of vascular bundles, number of parenchyma layers in midrib, form and number of spongy and palisade parenchyma, presence or absence of parenchyma bundle sheath, number of vascular bundles in midrib. Based on our results we are able to identify and classify sections of this genus (tables 2, 3). In addition, we selected the most important characters related to midrib and lamina. All of these results confirm anatomical characters have taxonomic value for separating sections in the genus Silene. Maliheh Nejati Edalatian & Farrokh Ghahremaninejad (correspondence<[email protected]>) Department of Plant Sciences, Faculty of Biological Sciences, Kharazmi University, 43 Dr. Mofatteh Avenue, Postal code 15719-14911, Tehran, Iran. -Farideh Attar, Tehran University, College of Sciences, School of Biology, Department of Botany, Central Herbarium, Tehran, Iran. -
List of UK BAP Priority Vascular Plant Species (2007)
UK Biodiversity Action Plan List of UK BAP Priority Vascular Plant Species (2007) For more information about the UK Biodiversity Action Plan (UK BAP) visit https://jncc.gov.uk/our-work/uk-bap/ List of UK BAP Priority Vascular Plant Species A list of UK BAP priority vascular plant species, created between 1995 and 1999, and subsequently updated in response to the Species and Habitats Review Report, published in 2007, is provided in the table below. The table also provides details of the species' occurrences in the four UK countries, and describes whether the species was an 'original' species (on the original list created between 1995 and 1999), or was added following the 2007 review. All original species were provided with Species Action Plans (SAPs), species statements, or are included within grouped plans or statements, whereas there are no published plans for the species added in 2007. Scientific names and commonly used synonyms derive from the Nameserver facility of the UK Species Dictionary, which is managed by the Natural History Museum. Scientific name Common Taxon England Scotland Wales Northern Original UK name Ireland BAP species? Aceras Man Orchid vascular Y N N N anthropophorum plant Adonis annua Pheasant's- vascular Y U N N eye plant Ajuga chamaepitys Ground-pine vascular Y N N N plant Ajuga pyramidalis Pyramidal vascular Y Y N Y Bugle plant Alchemilla acutiloba a Lady's- vascular Y Y N N mantle plant Alchemilla micans vascular Y Y N N plant Alchemilla minima Alchemilla vascular Y N N N Yes – SAP plant Alchemilla monticola vascular Y N N N plant Alchemilla vascular Y N N N subcrenata plant Alisma gramineum Ribbon- vascular Y N N N Yes – SAP leaved Water- plant plantain Apium repens Creeping vascular Y N N N Yes – SAP Marshwort plant Arabis glabra Tower vascular Y N N N Yes – SAP Mustard plant Arenaria norvegica Arctic vascular N Y N N subsp. -
Autographa Gamma
1 Table of Contents Table of Contents Authors, Reviewers, Draft Log 4 Introduction to the Reference 6 Soybean Background 11 Arthropods 14 Primary Pests of Soybean (Full Pest Datasheet) 14 Adoretus sinicus ............................................................................................................. 14 Autographa gamma ....................................................................................................... 26 Chrysodeixis chalcites ................................................................................................... 36 Cydia fabivora ................................................................................................................. 49 Diabrotica speciosa ........................................................................................................ 55 Helicoverpa armigera..................................................................................................... 65 Leguminivora glycinivorella .......................................................................................... 80 Mamestra brassicae....................................................................................................... 85 Spodoptera littoralis ....................................................................................................... 94 Spodoptera litura .......................................................................................................... 106 Secondary Pests of Soybean (Truncated Pest Datasheet) 118 Adoxophyes orana ...................................................................................................... -
Conserving Europe's Threatened Plants
Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation Conserving Europe’s threatened plants Progress towards Target 8 of the Global Strategy for Plant Conservation By Suzanne Sharrock and Meirion Jones May 2009 Recommended citation: Sharrock, S. and Jones, M., 2009. Conserving Europe’s threatened plants: Progress towards Target 8 of the Global Strategy for Plant Conservation Botanic Gardens Conservation International, Richmond, UK ISBN 978-1-905164-30-1 Published by Botanic Gardens Conservation International Descanso House, 199 Kew Road, Richmond, Surrey, TW9 3BW, UK Design: John Morgan, [email protected] Acknowledgements The work of establishing a consolidated list of threatened Photo credits European plants was first initiated by Hugh Synge who developed the original database on which this report is based. All images are credited to BGCI with the exceptions of: We are most grateful to Hugh for providing this database to page 5, Nikos Krigas; page 8. Christophe Libert; page 10, BGCI and advising on further development of the list. The Pawel Kos; page 12 (upper), Nikos Krigas; page 14: James exacting task of inputting data from national Red Lists was Hitchmough; page 16 (lower), Jože Bavcon; page 17 (upper), carried out by Chris Cockel and without his dedicated work, the Nkos Krigas; page 20 (upper), Anca Sarbu; page 21, Nikos list would not have been completed. Thank you for your efforts Krigas; page 22 (upper) Simon Williams; page 22 (lower), RBG Chris. We are grateful to all the members of the European Kew; page 23 (upper), Jo Packet; page 23 (lower), Sandrine Botanic Gardens Consortium and other colleagues from Europe Godefroid; page 24 (upper) Jože Bavcon; page 24 (lower), Frank who provided essential advice, guidance and supplementary Scumacher; page 25 (upper) Michael Burkart; page 25, (lower) information on the species included in the database. -
The Alien Vascular Flora of Tuscany (Italy)
Quad. Mus. St. Nat. Livorno, 26: 43-78 (2015-2016) 43 The alien vascular fora of Tuscany (Italy): update and analysis VaLerio LaZZeri1 SUMMARY. Here it is provided the updated checklist of the alien vascular fora of Tuscany. Together with those taxa that are considered alien to the Tuscan vascular fora amounting to 510 units, also locally alien taxa and doubtfully aliens are reported in three additional checklists. The analysis of invasiveness shows that 241 taxa are casual, 219 naturalized and 50 invasive. Moreover, 13 taxa are new for the vascular fora of Tuscany, of which one is also new for the Euromediterranean area and two are new for the Mediterranean basin. Keywords: Vascular plants, Xenophytes, New records, Invasive species, Mediterranean. RIASSUNTO. Si fornisce la checklist aggiornata della fora vascolare aliena della regione Toscana. Insieme alla lista dei taxa che si considerano alieni per la Toscana che ammontano a 510 unità, si segnalano in tre ulteriori liste anche i taxa che si ritengono essere presenti nell’area di studio anche con popolazioni non autoctone o per i quali sussistono dubbi sull’effettiva autoctonicità. L’analisi dello status di invasività mostra che 241 taxa sono casuali, 219 naturalizzati e 50 invasivi. Inoltre, 13 taxa rappresentano una novità per la fora vascolare di Toscana, dei quali uno è nuovo anche per l’area Euromediterranea e altri due sono nuovi per il bacino del Mediterraneo. Parole chiave: Piante vascolari, Xenofte, Nuovi ritrovamenti, Specie invasive, Mediterraneo. Introduction establishment of long-lasting economic exchan- ges between close or distant countries. As a result The Mediterranean basin is considered as one of this context, non-native plant species have of the world most biodiverse areas, especially become an important component of the various as far as its vascular fora is concerned. -
Checklist of the Vascular Alien Flora of Catalonia (Northeastern Iberian Peninsula, Spain) Pere Aymerich1 & Llorenç Sáez2,3
BOTANICAL CHECKLISTS Mediterranean Botany ISSNe 2603-9109 https://dx.doi.org/10.5209/mbot.63608 Checklist of the vascular alien flora of Catalonia (northeastern Iberian Peninsula, Spain) Pere Aymerich1 & Llorenç Sáez2,3 Received: 7 March 2019 / Accepted: 28 June 2019 / Published online: 7 November 2019 Abstract. This is an inventory of the vascular alien flora of Catalonia (northeastern Iberian Peninsula, Spain) updated to 2018, representing 1068 alien taxa in total. 554 (52.0%) out of them are casual and 514 (48.0%) are established. 87 taxa (8.1% of the total number and 16.8 % of those established) show an invasive behaviour. The geographic zone with more alien plants is the most anthropogenic maritime area. However, the differences among regions decrease when the degree of naturalization of taxa increases and the number of invaders is very similar in all sectors. Only 26.2% of the taxa are more or less abundant, while the rest are rare or they have vanished. The alien flora is represented by 115 families, 87 out of them include naturalised species. The most diverse genera are Opuntia (20 taxa), Amaranthus (18 taxa) and Solanum (15 taxa). Most of the alien plants have been introduced since the beginning of the twentieth century (70.7%), with a strong increase since 1970 (50.3% of the total number). Almost two thirds of alien taxa have their origin in Euro-Mediterranean area and America, while 24.6% come from other geographical areas. The taxa originated in cultivation represent 9.5%, whereas spontaneous hybrids only 1.2%. From the temporal point of view, the rate of Euro-Mediterranean taxa shows a progressive reduction parallel to an increase of those of other origins, which have reached 73.2% of introductions during the last 50 years. -
ISTA List of Stabilized Plant Names 7Th Edition
ISTA List of Stabilized Plant Names th 7 Edition ISTA Nomenclature Committee Chair: Dr. M. Schori Published by All rights reserved. No part of this publication may be The Internation Seed Testing Association (ISTA) reproduced, stored in any retrieval system or transmitted Zürichstr. 50, CH-8303 Bassersdorf, Switzerland in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior ©2020 International Seed Testing Association (ISTA) permission in writing from ISTA. ISBN 978-3-906549-77-4 ISTA List of Stabilized Plant Names 1st Edition 1966 ISTA Nomenclature Committee Chair: Prof P. A. Linehan 2nd Edition 1983 ISTA Nomenclature Committee Chair: Dr. H. Pirson 3rd Edition 1988 ISTA Nomenclature Committee Chair: Dr. W. A. Brandenburg 4th Edition 2001 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 5th Edition 2007 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 6th Edition 2013 ISTA Nomenclature Committee Chair: Dr. J. H. Wiersema 7th Edition 2019 ISTA Nomenclature Committee Chair: Dr. M. Schori 2 7th Edition ISTA List of Stabilized Plant Names Content Preface .......................................................................................................................................................... 4 Acknowledgements ....................................................................................................................................... 6 Symbols and Abbreviations .......................................................................................................................... -
European Glacial Relict Snails and Plants: Environmental Context of Their Modern Refugial Occurrence in Southern Siberia
bs_bs_banner European glacial relict snails and plants: environmental context of their modern refugial occurrence in southern Siberia MICHAL HORSAK, MILAN CHYTRY, PETRA HAJKOV A, MICHAL HAJEK, JIRI DANIHELKA, VERONIKA HORSAKOV A, NIKOLAI ERMAKOV, DMITRY A. GERMAN, MARTIN KOCI, PAVEL LUSTYK, JEFFREY C. NEKOLA, ZDENKA PREISLEROVA AND MILAN VALACHOVIC Horsak, M., Chytry, M., Hajkov a, P., Hajek, M., Danihelka, J., Horsakov a,V.,Ermakov,N.,German,D.A.,Ko cı, M., Lustyk, P., Nekola, J. C., Preislerova, Z. & Valachovic, M. 2015 (October): European glacial relict snails and plants: environmental context of their modern refugial occurrence in southern Siberia. Boreas, Vol. 44, pp. 638–657. 10.1111/bor.12133. ISSN 0300-9483. Knowledge of present-day communities and ecosystems resembling those reconstructed from the fossil record can help improve our understanding of historical distribution patterns and species composition of past communities. Here, we use a unique data set of 570 plots explored for vascular plant and 315 for land-snail assemblages located along a 650-km-long transect running across a steep climatic gradient in the Russian Altai Mountains and their foothills in southern Siberia. We analysed climatic and habitat requirements of modern populations for eight land-snail and 16 vascular plant species that are considered characteristic of the full-glacial environment of central Europe based on (i) fossil evidence from loess deposits (snails) or (ii) refugial patterns of their modern distribu- tions (plants). The analysis yielded consistent predictions of the full-glacial central European climate derived from both snail and plant populations. We found that the distribution of these 24 species was limited to the areas with mean annual temperature varying from À6.7 to 3.4 °C (median À2.5 °C) and with total annual precipitation vary- ing from 137 to 593 mm (median 283 mm). -
Effects of Endophyte Infection on the Performance of Fall Armyworm Feeding on Meadow Fescue Under a Range of Water Stress Levels Siow Yan Jennifer Angoh
Effects of Endophyte Infection on the Performance of Fall Armyworm Feeding on Meadow Fescue under a Range of Water Stress Levels Siow Yan Jennifer Angoh A thesis submitted to the Faculty of Science and Engineering in partial fulfillment of the requirements for the Degree of Bachelor of Science Undergraduate Program in Biology York University Toronto, Ontario April 2013 © Siow yan Jennifer Angoh, 2013 Abstract Endophytes have been shown to provide protection against herbivory to their host via the synthesis of alkaloids. Under drought stress, some photosynthetic organisms do benefit from their symbiotic relationship with certain fungus. In fact, endophytes facilitate changes in their host morphology, osmotic properties, resource allocation, and regrowth dynamics, which subsequently could provide the latter with enhanced drought resistance. Changes in the morphology and physiology of fodder species can also affect the herbivores feeding on them. In this study, cloned daughter endophyte-infected and endophyte-uninfected meadow fescue (Schedonorus pratensis) plants were assigned to two greenhouse experiments in which water levels needed to cause drought stress in the grass was determine. Also, water stressed plants utilised for a bioassay with fall armyworms (Spodoptera frugiperda) larvae were generated. Percentage water content of meadow fescue leaves decreased over a period of 6 days. Larvae fed with endophyte-infected grass maintained under a low water regime had the lowest relative growth rates (RGR) (0.19±0.05 mg/mg/day) which was significantly different from the RGR of larvae fed with grasses maintained under higher water regimes. Résumé Les endophytes fournissent une protection à leur hôte contre les herbivores via la synthèse d'alcaloïdes.