Anteromedial Tibial Tubercle Osteotomy 1 3 (Fulkerson Osteotomy) 40

Total Page:16

File Type:pdf, Size:1020Kb

Anteromedial Tibial Tubercle Osteotomy 1 3 (Fulkerson Osteotomy) 40 2 Anteromedial Tibial Tubercle Osteotomy 1 3 (Fulkerson Osteotomy) 40 4 Jack Farr, Brian J. Cole, James Kercher, Lachlan Batty, [AU1] 5 and Sarvottam Bajaj 6 40.1 Introduction nature of the Fulkerson osteotomy allows for simul- 34 taneous anteriorization and medialization of the tib- 35 ial tubercle. By varying the angle of the osteotomy, the 36 7 The tibial tubercle (interchangeable with tuberosity) tubercle can be biased to a more anterior or more medial 37 8 is the most distal anchor of the extensor mechanism position. Since his initial description, the indications for 38 9 and can serve as a tool in altering patellofemoral (PF) this procedure have evolved significantly and continue 39 10 mechanics. Known collectively as distal realignment to be refined. This has been primarily driven by the evo- 40 11 procedures, osteotomies of the tibial tubercle are a use- lution and outcomes of patellofemoral resurfacing 41 12 ful method to treat a variety of PF conditions by allow- procedures as well as improved objective measures of 42 13 ing coronal, axial, and sagittal plane adjustments of the patellar alignment, contact area, and forces. 43 14 patellofemoral articulation which redistribute patellar The tibial tuberosity to trochlear groove (TT–TG) 44 15 contact pressures (force and contact area) and poten- distance, popularized by Dejour et al.8 as an objective 45 [AU2]16 tially improve tracking. Numerous tibial tubercle osteot- measure of tuberosity position, has helped quantify 46 17 omies have been described in the literature to treat PF abnormal tuberosity position and enhanced appropri- 47 18 pain, chondrosis, and instability. The most notable ate candidate identification for all tuberosity osteoto- 48 19 include medialization, initially described by Roux and mies including the AMZ. This becomes important 49 20 later popularized by Elmslie and Trillat, for the treat- because patellar contact pressures are very sensitive 50 21 ment of PF instability30 and anteriorization of the tibial to distal realignment.1,17,25 In addition, combining 51 22 tubercle described by Maquet18 performed to treat PF AMZ with PF cartilage restorative procedures such as 52 23 pain associated with arthritis. Each of these procedures autologous chondrocyte implantation and osteoartic- 53 24 takes advantage of important technical alterations in ular grafting procedures within the PF compartment 54 25 patellar kinematics. Anteriorization of the tubercle ele- have demonstrated superior results to either proce- 55 26 vates the distal extensor mechanism and serves to shift dure performed independently.10,14,19,21,28 56 27 patellar contact forces proximally, while medialization 28 results in a decrease of the lateral force vector. 29 In an effort to avoid complications associated 11 30 with the Maquet procedure, Fulkerson designed 40.2 Indications 57 31 a tubercle osteotomy known as the anteromedializa- 32 tion (AMZ) technique to address PF pain in con- When discussing the indications for AMZ it is impor- 58 33 junction with patellar maltracking. The oblique tant to note that as with most patellofemoral surger- 59 ies, it should only be performed after the patient has 60 tried and failed nonoperative measures that include a 61 Uncorrected Proof9 comprehensive “core to the floor” program of reha- 62 B.J. Cole () bilitation, bracing, and orthotics. Indications for 63 Departments of Orthopaedics & Anatomy and Cell Biology, AMZ are primarily based upon mechanical and chon- 64 Division of Sports Medicine, Cartilage Restoration Center at Rush, Rush University Medical Center, Chicago, IL, USA dral pathologies specific to each individual knee. 65 e-mail: [email protected] Malalignment is a term that has different meanings to 66 V. Sanchis-Alfonso (ed.), Anterior Knee Pain and Patellar Instability, 1 DOI: 10.1007/978-0-85729-507-1_40, © Springer-Verlag London Limited 2011 2 J. Farr et al. 67 different experts, but for the purposes of this chapter Table 40.1 Summary of indications for anteromedialization t1.1 68 it simply means alignment that is different from the Summary of AMZ indications: t1.2 69 average asymptomatic individual. A comprehensive • Lateral or distal patella chondrosis with an increased t1.3 70 review by Post et al.23 demonstrated that the “Q” TT–TG distance, excessive lateral tilt/subluxation, and the t1.4 absence of trochlea chondrosis. t1.5 71 angle was inadequate to use as a measure of mala- • As an adjunct procedure to patellofemoral cartilage t1.6 72 lignment of the tibial tuberosity. Using the objectively restoration in an effort to improve the contact area and t1.7 73 measured TT–TG, asymptomatic patients have dis- decrease PF forces to optimize the biomechanical t1.8 74 tances averaging 13 mm and those with instability environment of the new cartilage implant. t1.9 • Possibly, in conjunction with MPFL repair or reconstruc- t1.10 75 symptoms have average measurements of over tion in patients with markedly increased TT–TG distance. t1.11 76 15 mm.27 A panel of patellofemoral experts agreed 77 that TT–TG distances of over 20 mm were definitely 78 abnormal and would be potential candidates for mov- carefully assessed as medialization will significantly 114 15 79 ing the tibial tubercle. Patients with isolated chon- increase contact pressures between the medial patellar 115 80 drosis of the distal or lateral patella, who have excessive facet and trochlea.25 In addition, AMZ is contraindicated 116 81 lateral patellar tilt and/or subluxation associated with for proximal patella, panpatella, and bipolar chondrosis 117 82 an increased TT–TG distance and minimal trochlear based upon the outcomes from Pidoriano et al.22 118 83 chondrosis are optimal AMZ candidates based on a Advanced chondrosis of the central trochlea has 119 22 84 retrospective review of AMZ outcomes by Pidoriano. been associated with suboptimal results and is con- 120 85 It has been argued that rotational tuberosity abnormali- sidered a contraindication to AMZ as an isolated pro- 121 86 ties associated with subjective instability and pain may cedure.5,22 Standard contraindications to any osteotomy 122 87 be sufficiently treated with straight medialization or must also be considered, which includes smoking, 123 20 88 derotation of the tibial tubercle, although Pritsch infection, inflammatory arthropathy, marked osteopo- 124 24 89 et al. found 80% of 66 patients undergoing tubercle rosis inhibiting adequate fixation, complex regional 125 90 transfer for patellar instability and pain associated with pain syndrome, arthrofibrosis, inability to minimally 126 91 maltracking required anteriorization based on intraop- weight-bear, and noncompliant patients. A summary 127 92 erative examination. Second, patients who are under- of AMZ contraindications is presented in Table 40.2. 128 93 going PF cartilage restorative procedures have been 94 shown to benefit from a combined AMZ proce- 10,14,19,21,28 95 dure, where optimization of the biomechani- 40.4 Surgical Technique 129 96 cal environment and decreased stress across the 97 restored cartilage is required. Additionally, in patients Techniques for AMZ have classically been described 130 98 undergoing MPFL repair or reconstruction for recur- as an isolated procedure; however, AMZ typically 131 99 rent lateral patella instability, AMZ may be indicated includes lateral retinacular release or lengthening to 132 100 only in the setting of a significantly increased TT–TG untether the patella allowing the patellar medialization 133 101 distance. However, it should be noted that while this component, and is not uncommonly performed in 134 102 theoretically decreases the lateral vector forces on the conjunction with procedures such as MPFL repair/ 135 103 healing MPFL tissues, there is no randomized study of Uncorrectedreconstruction or Proofcartilage restorative procedures. 136 104 AMZ plus MPFL surgery versus MPFL surgery alone These procedures must be taken into consideration 137 105 published as of this writing. A summary of AMZ indi- when planning the surgical approach. 138 106 cations is presented in Table 40.1. Table 40.2 Summary of contraindications to anteromedialization t2.1 107 40.3 Contraindications Summary of contraindications to isolated AMZ: t2.2 • Normal TT–TG distance t2.3 108 Several contraindications to AMZ exist and potential • Medial patellofemoral chondrosis (only if not combined t2.4 with cartilage restoration procedure) t2.5 109 candidates must be assessed carefully prior to surgery. • As an isolated procedure, when not combined with t2.6 110 Anteromedialization is contraindicated in patients with a cartilage restoration, to treat proximal pole, panpatella, t2.7 111 normal TT–TG distance and in patients who have symp- trochlear, or bipolar chondrosis t2.8 112 toms not explained by an increased TT–TG distance. • General contraindications to osteotomy (i.e., smoking, t2.9 osteoporosis, inflammatory arthropathy) t2.10 113 The condition of the medial PF articulation should be 40 Anteromedial Tibial Tubercle Osteotomy (Fulkerson Osteotomy) 3 139 40.4.1 Preoperative Assessment anesthesia includes assessment of range of motion, 176 140 and Planning patella tracking, and patella displacement. The patient 177 is then prepped and draped in standard fashion. 178 141 The desired amount of anteriorization and medializa- 142 tion (based on the objective measurement of the 143 TT–TG distance) must be calculated preoperatively. 40.4.3 Arthroscopic Evaluation 179 144 These two components are considered separately and 145 then basic trigonometric ratios can be used to determine Initially, arthroscopic evaluation and documentation of 180 146 the desired angle for the osteotomy. Anteriorization of patellofemoral chondrosis is performed. The areas of 181 147 between 10 and 15 mm is most commonly recom- chondrosis are regionally mapped using the ICRS 182 148 mended as it decreases PF stress loads by approxi- region knee mapping system noting that significant 183 149 mately 20%7,8 and results in minimal sagittal rotation patellar chondrosis may lead to termination of the pro- 184 150 of the patella.
Recommended publications
  • List: Bones & Bone Markings of Appendicular Skeleton and Knee
    List: Bones & Bone markings of Appendicular skeleton and Knee joint Lab: Handout 4 Superior Appendicular Skeleton I. Clavicle (Left or Right?) A. Acromial End B. Conoid Tubercle C. Shaft D. Sternal End II. Scapula (Left or Right?) A. Superior border (superior margin) B. Medial border (vertebral margin) C. Lateral border (axillary margin) D. Scapular notch (suprascapular notch) E. Acromion Process F. Coracoid Process G. Glenoid Fossa (cavity) H. Infraglenoid tubercle I. Subscapular fossa J. Superior & Inferior Angle K. Scapular Spine L. Supraspinous Fossa M. Infraspinous Fossa III. Humerus (Left or Right?) A. Head of Humerus B. Anatomical Neck C. Surgical Neck D. Greater Tubercle E. Lesser Tubercle F. Intertubercular fossa (bicipital groove) G. Deltoid Tuberosity H. Radial Groove (groove for radial nerve) I. Lateral Epicondyle J. Medial Epicondyle K. Radial Fossa L. Coronoid Fossa M. Capitulum N. Trochlea O. Olecranon Fossa IV. Radius (Left or Right?) A. Head of Radius B. Neck C. Radial Tuberosity D. Styloid Process of radius E. Ulnar Notch of radius V. Ulna (Left or Right?) A. Olecranon Process B. Coronoid Process of ulna C. Trochlear Notch of ulna Human Anatomy List: Bones & Bone markings of Appendicular skeleton and Knee joint Lab: Handout 4 D. Radial Notch of ulna E. Head of Ulna F. Styloid Process VI. Carpals (8) A. Proximal row (4): Scaphoid, Lunate, Triquetrum, Pisiform B. Distal row (4): Trapezium, Trapezoid, Capitate, Hamate VII. Metacarpals: Numbered 1-5 A. Base B. Shaft C. Head VIII. Phalanges A. Proximal Phalanx B. Middle Phalanx C. Distal Phalanx ============================================================================= Inferior Appendicular Skeleton IX. Os Coxae (Innominate bone) (Left or Right?) A.
    [Show full text]
  • Trapezius Origin: Occipital Bone, Ligamentum Nuchae & Spinous Processes of Thoracic Vertebrae Insertion: Clavicle and Scapul
    Origin: occipital bone, ligamentum nuchae & spinous processes of thoracic vertebrae Insertion: clavicle and scapula (acromion Trapezius and scapular spine) Action: elevate, retract, depress, or rotate scapula upward and/or elevate clavicle; extend neck Origin: spinous process of vertebrae C7-T1 Rhomboideus Insertion: vertebral border of scapula Minor Action: adducts & performs downward rotation of scapula Origin: spinous process of superior thoracic vertebrae Rhomboideus Insertion: vertebral border of scapula from Major spine to inferior angle Action: adducts and downward rotation of scapula Origin: transverse precesses of C1-C4 vertebrae Levator Scapulae Insertion: vertebral border of scapula near superior angle Action: elevates scapula Origin: anterior and superior margins of ribs 1-8 or 1-9 Insertion: anterior surface of vertebral Serratus Anterior border of scapula Action: protracts shoulder: rotates scapula so glenoid cavity moves upward rotation Origin: anterior surfaces and superior margins of ribs 3-5 Insertion: coracoid process of scapula Pectoralis Minor Action: depresses & protracts shoulder, rotates scapula (glenoid cavity rotates downward), elevates ribs Origin: supraspinous fossa of scapula Supraspinatus Insertion: greater tuberacle of humerus Action: abduction at the shoulder Origin: infraspinous fossa of scapula Infraspinatus Insertion: greater tubercle of humerus Action: lateral rotation at shoulder Origin: clavicle and scapula (acromion and adjacent scapular spine) Insertion: deltoid tuberosity of humerus Deltoid Action:
    [Show full text]
  • Morphometric Study of Tibial Condylar Area in the North Indian Population. Ankit Srivastava1, Dr
    JMSCR Volume||2||Issue||3||Page515-519||March 2014 2014 www.jmscr.igmpublication.org Impact Factcor-1.1147 ISSN (e)-2347-176x Morphometric Study of Tibial Condylar area in the North Indian Population. Ankit Srivastava1, Dr. Anjoo Yadav2, Prof. R.J. Thomas3, Ms. Neha Gupta4 1Tutor in AIIMS Bhopal. 2Lecturer in Govt. medical college, Kannauj. 3Professor in Govt. medical college, Kannauj. 4Tutor in Govt. medical college, Kannauj. Email: [email protected] Abstract: The upper end of tibia is expanded to form a mass that consists of two parts: lateral and medial condyles which articulate with the corresponding condylar surfaces of the femur. Separating these two condyles is the intercondylar area whose central part is raised to form the intercondylar eminence. The present study will give information of the exact dimensions and percentage covered by medial and lateral condyles out of total condylar area. This study was undertaken to collect metrical data about the medial and lateral condyles of tibia. The present study was performed on 150 dry tibia of north Indian subjects, Out of which 70 tibia belonged to right side and 80 were of left side. The age and sex of these bones were not known. The anteroposterior length of medial and lateral tibial condylar area was measured along with their transverse diameter. The data was statistically analyzed to hold comparisons between tibia of right and left side and also between medial and lateral tibial condyles of the same side. The area covered by MTC is 38.56% and by LTC is 35.97% out of total condylar area in right side.
    [Show full text]
  • Palpation Techniques
    Palpation Techniques Bearbeitet von Wolfgang Stelzenmüller, Michelle Hertrich, Gertrud Graubart Champe, Bernhard Reichert 1. Auflage 2010. Taschenbuch. 500 S. Paperback ISBN 978 3 13 146341 8 Format (B x L): 19,5 x 27 cm Weitere Fachgebiete > Medizin > Komplementäre Medizin, Asiatische Medizin (TCM), Heilpraktiker Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. 140 6 Knee Joint Iliotibial tract Gerdy tubercle Fig. 6.49 Palpation of the iliotibial tract—anterior edge. Fig. 6.51 Palpation of the Gerdy tubercle. With the knee in slight flexion, the patient is instructed to isometrically contract the quadriceps. The hip is also flexed, abducted, and medially rotated. Using a perpendicular palpation technique, the edges of the tract can be identified slightly proximal to the level of the base of the patella (Fig. 6.50). Note • The tract is found directly over the lateral epicondyle when the knee is in 30−40° flexion. Less flexion shifts the tract so that it is then anterior to the epicondyle, while more flexion moves it posteriorly. It now be- comes apparent that the iliotibial tract must slide over the epicondyle during the gait cycle. This can oc- casionally cause symptoms. • A significant number of tract fibers extend down to the lateral edge of the patella and insert slightly distal to the vastus lateralis tendon.
    [Show full text]
  • The Anatomy of the Medial Part of the Knee
    LaPrade.fm Page 2000 Thursday, August 16, 2007 12:24 PM COPYRIGHT © 2007 BY THE JOURNAL OF BONE AND JOINT SURGERY, INCORPORATED The Anatomy of the Medial Part of the Knee By Robert F. LaPrade, MD, PhD, Anders Hauge Engebretsen, Medical Student, Thuan V. Ly, MD, Steinar Johansen, MD, Fred A. Wentorf, MS, and Lars Engebretsen, MD, PhD Investigation performed at the University of Minnesota, Minneapolis, Minnesota Background: While the anatomy of the medial part of the knee has been described qualitatively, quantitative de- scriptions of the attachment sites of the main medial knee structures have not been reported. The purpose of the present study was to verify the qualitative anatomy of medial knee structures and to perform a quantitative evaluation of their anatomic attachment sites as well as their relationships to pertinent osseous landmarks. Methods: Dissections were performed and measurements were made for eight nonpaired fresh-frozen cadaveric knees with use of an electromagnetic three-dimensional tracking sensor system. Results: In addition to the medial epicondyle and the adductor tubercle, a third osseous prominence, the gastrocne- mius tubercle, which corresponded to the attachment site of the medial gastrocnemius tendon, was identified. The average length of the superficial medial (tibial) collateral ligament was 94.8 mm. The superficial medial collateral lig- ament femoral attachment was 3.2 mm proximal and 4.8 mm posterior to the medial epicondyle. The superficial me- dial collateral ligament had two separate attachments on the tibia. The distal attachment of the superficial medial collateral ligament on the tibia was 61.2 mm distal to the knee joint.
    [Show full text]
  • The Patellofemoral Joint
    The Patellofemoral Joint Tal Laor, MD Department of Radiology Cincinnati Children’s Hospital Medical Center Patellofemoral Joint Disorders • Overuse pain • Transient patellar dislocation • Arthritis Patellofemoral Joint Disorders • Overuse pain • Transient patellar dislocation • Arthritis Transient Patellar Dislocation • Common in children, adolescents • Lateral dislocation • Spontaneous reduction • Predisposing factors • Associated injuries http://ortho-teaching.feinberg.northwestern.edu/ Transient Patellar Dislocation • Highest incidence 10-17 year olds • Half experience anterior knee pain after episode managed conservatively • High rate of recurrent dislocations • Persistent symptoms, degenerative changes Predisposing Factors • Most factors are congenital/developmental • Osseous –Patellar configuration, location –Femoral (trochlea) –Tibial (tubercle) • Soft tissue Patellar Factors www.boundless.com Patella • Sesamoid bone • Medial, lateral facets • Odd facet (80%): far medial O L M Goodfellow J, et al. JBJS 58-B 1976 Patella • Sesamoid bone • Medial, lateral facets • Odd facet (80%): far medial • Shape medial, lateral facets (Wiberg classification) I II L M III Patella Alta • Associated with instability • Insall-Salvati ratio – Patellar tendon/patellar length – Lateral radiograph in 30° flexion – Standing increases quadriceps contraction and adds to “alta” Modified Insall-Salvati ratio (mIS) Insall-Salvati ratio (IS) Caton-Deschamps Index (CDI) PL TL Normal: IS = 0.8-1.2 Normal: mIS = mean 1.25 (>2 is alta) Normal: CDI = 0.8-1.2 Caton
    [Show full text]
  • OSGOOD-SCHLATTER DISEASE (Osteochondrosis, Apophysitis of the Tibial Tubercle)
    Montefiore Pediatric Orthopedic and Scoliosis Center Children’s Hospital at Montefiore Norman Otsuka MD – Eric Fornari MD Jacob Schulz MD – Jaime Gomez MD – Christine Moloney PA th 3400 Bainbridge Avenue, 6 Fl, Bronx, NY 10467 phone 718 920 2060 / fax 718 920 7799 1250 Waters Place, 11th Fl, Bronx, NY 10461 OSGOOD-SCHLATTER DISEASE (Osteochondrosis, Apophysitis of the Tibial Tubercle) Description Osgood-Schlatter disease is characterized by inflammation of the growth plate of the leg just below the knee at the tibial tubercle, a prominence just below the kneecap. The tibial tubercle is the bony attachment on the large bone of the lower leg (tibia) of the big, powerful thigh muscle (quadriceps). The growth plate is an area of relative weakness, and injury to it occurs due to repeated stress or vigorous exercise. It is a temporary condition of the tibial tubercle that is uncommon after age 16. Common Signs and Symptoms • A slightly swollen, warm, and tender bump below the knee • Pain with activity, especially straightening the leg against force (stair climbing, jumping, deep knee bends, or weight-lifting) or following an extended period of vigorous exercise in an adolescent. In more severe cases, pain occurs during less vigorous activity. Causes Osgood-Schlatter disease results from stress or injury to the tibial tubercle growth plate (which is still developing during adolescence), causing a flare-up. Repeated stress or injury interferes with development, causing inflammation. Risk Increases With • Overzealous conditioning routines, such as running, jumping, or jogging • Being overweight • Boys between 11 and 18 • Rapid skeletal growth • Poor physical conditioning (strength and flexibility) Preventive Measures • Lose weight or maintain ideal body weight.
    [Show full text]
  • The Innominate Tubercle of the Femur: Application to Anterior Surgical Approaches to the Hip
    The innominate tubercle of the femur: application to anterior surgical approaches to the hip Kielbasinski Podlaszewska O1, Bekvalac J2, Williams RL3, Adds PJ1 1 Institute of Medical and Biomedical Education (Anatomy), St George’s, University of London, London, UK. 2 The Centre for Human Bioarchaeology, Musuem of London, London, UK 3 Department of Trauma and Orthopaedics, Swansea Hospital, Swansea, UK Abbreviated title: The innominate tubercle: a survey of variability Corresponding author Philip J Adds, Institute of Medical and Biomedical Education (Anatomy), St George’s, University of London, Cranmer Terrace, London SW17 0RE, UK. Email: [email protected], 02087255208 This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as an ‘Accepted Article’, doi: 10.1002/ca.22870 This article is protected by copyright. All rights reserved. The innominate tubercle of the femur: application to anterior surgical approaches to the hip Abstract Introduction. There has recently been an increase in popularity of the direct anterior approach (DAA) hip arthroplasty, due to the muscle sparing nature of its interneural intervals, with the innominate tubercle being used as a lateral reference point for the femoral neck osteotomy. However, there is very little information in the literature on this rather enigmatic structure, with no evidence as to whether it is a consistent and reliable marker, or if it varies significantly in the population. Materials and Methods. In this study, data were gathered from 79 pairs of adult, post-medieval skeletal femora to investigate the effects of sex, age, femoral side, femoral length, femoral neck length, and femoral neck-shaft angle on the width, length, and height of the innominate tubercle.
    [Show full text]
  • Bone Handout”)
    The Skeletal System (“Bone Handout”) Bone Markings - as in Table 6.1, know categories, names, descriptions and categories of bone markings Common Fractures - as in Table 6.2, identify type from pictures The Axial Skeleton Skull Cranial bones frontal (supraorbital foramen) parietal temporal (mastoid process, external auditory(acoustic) meatus, styloid process, zygomatic process, stylomastoid foramen) occipital (foramen magnum, hypoglossal canal, occipital condyles) sphenoid (optic canal, superior orbital fissure, sella turcica, foramen rotundum, foramen ovale, foramen spinosum , greater wings, lesser wings) ethmoid (olfactory foramina) Relevant Figures: 7.4, 7.6, 7.7a, 7.9 Facial bones nasal maxilla (infraorbital foramen, inferior orbital fissure) zygomatic mandible (mental foramen, body, ramus, mandibular condyle) lacrimal (lacrimal fossa) palatine inferior nasal conchae vomer Relevant Figures: 7.4, 7.6, 7.7a Sutures coronal sagittal lambdoid squamous Relevant Figures: 7.4, 7.5 Paranasal Sinuses frontal sphenoidal maxillary ethmoidal Relevant Figures: 7.15 Fontanels anterior posterior sphenoidal mastoid Relevant Figures: 7.28 Hyoid bone Relevant Figures: 7.17 1 Vertebrae Parts of a “typical vertebra” using thoracic as example body vertebral arch (pedicle, lamina, vertebral foramen) intervertebral foramen transverse process spinous process superior articular process inferior articular process Divisions of vertebral column cervical (transverse foramina) thoracic (transverse costal facet - for tubercle of rib, superior and inferior costal
    [Show full text]
  • Chapter 9 the Hip Joint and Pelvic Girdle
    The Hip Joint and Pelvic Girdle • Hip joint (acetabular femoral) – relatively stable due to • bony architecture Chapter 9 • strong ligaments • large supportive muscles The Hip Joint and Pelvic Girdle – functions in weight bearing & locomotion • enhanced significantly by its wide range of Manual of Structural Kinesiology motion • ability to run, cross-over cut, side-step cut, R.T. Floyd, EdD, ATC, CSCS jump, & many other directional changes © 2007 McGraw-Hill Higher Education. All rights reserved. 9-1 © 2007 McGraw-Hill Higher Education. All rights reserved. 9-2 Bones Bones • Ball & socket joint – Sacrum – Head of femur connecting • extension of spinal column with acetabulum of pelvic with 5 fused vertebrae girdle • extending inferiorly is the coccyx – Pelvic girdle • Pelvic bone - divided into 3 • right & left pelvic bone areas joined together posteriorly by sacrum – Upper two fifths = ilium • pelvic bones are ilium, – Posterior & lower two fifths = ischium, & pubis ischium – Femur – Anterior & lower one fifth = pubis • longest bone in body © 2007 McGraw-Hill Higher Education. All rights reserved. 9-3 © 2007 McGraw-Hill Higher Education. All rights reserved. 9-4 Bones Bones • Bony landmarks • Bony landmarks – Anterior pelvis - origin – Lateral pelvis - for hip flexors origin for hip • tensor fasciae latae - abductors anterior iliac crest • gluteus medius & • sartorius - anterior minimus - just superior iliac spine below iliac crest • rectus femoris - anterior inferior iliac spine © 2007 McGraw-Hill Higher Education. All rights reserved. 9-5 © 2007 McGraw-Hill Higher Education. All rights reserved. 9-6 1 Bones Bones • Bony landmarks • Bony landmarks – Medially - origin for – Posteriorly – origin for hip hip adductors extensors • adductor magnus, • gluteus maximus - adductor longus, posterior iliac crest & adductor brevis, posterior sacrum & coccyx pectineus, & gracilis - – Posteroinferiorly - origin pubis & its inferior for hip extensors ramus • hamstrings - ischial tuberosity © 2007 McGraw-Hill Higher Education.
    [Show full text]
  • Patella Tibia Patella Tendon Tibial Tubercle Screw
    601 West Fifth Avenue, Suite 400 Spokane, WA 99204 Tibial Tubercle Osteotomy Overview This procedure, also called bone realignment, is designed to improve the movement of the patella (the kneecap) to correct patellar tracking disorder. The procedure usually requires hospitalization and general anesthesia. Incision Made After anesthesia is administered, the surgeon makes a four- to six-inch incision over the tibial tubercle. Patella Tubercle Detached The surgeon uses a bone chisel and/or a surgical saw to partially or completely detach the tibial Patella tubercle from the tibia. The patellar tendon, which tendon connects the patella to the tibia, remains connected to the tubercle. Tibia Tubercle Realigned Tibial The tibial tubercle is realigned with the patella in a tubercle position that allows for proper movement when the knee bends. Once in place, the bone is reattached to the tibia with a metal plate, wires or screws. The attachment parts are permanent unless they cause pain. If they do, they can be removed after the bone has healed in its new position. Patella Adjusted In some cases, attachments on either side of the patella may be loosened or tightened to ensure Medial retinaculum proper alignment of the patella. This procedure is may be tightened called lateral release and medial imbrication. (imbrication). End of Procedure The incision is closed with sutures or staples, and a cast or knee immobilizer is placed around the knee to restrict movement. The knee is iced and elevated. The sutures or staples are removed after two to three weeks. The knee will be swollen and Tibial crutches may be necessary for four to six weeks, tubercle with physical therapy to follow.
    [Show full text]
  • Prevalence of Accessory Bones of the Foot in Turkish Patients
    Original Investigation 147 Prevalence of Accessory Bones of the Foot in Turkish Patients Esat Uygur1, Birol Aktaş2, Tayyar Taylan Öz2, Samet Erinç2, Murat Koç3 1Department of Orthopedics and Traumatology, Emsey Hospital, İstanbul, Turkey 2Department of Orthopedics and Traumatology, İstanbul Medeniyet University Göztepe Training and Research Hospital, İstanbul, Turkey 3Department of Radiology, Gazi University School of Medicine, Ankara, Turkey ABSTRACT Objective: The aim of this study was to investigate the prevalence and distribution of accessory bones of the foot by age and gender in a Turkish patient group. Methods: Dorsoplantar and lateral foot radiographs acquired from the data related to outpatient clinics patients in 2014 were retrospectively examined for the presence of accessory bones. The computed radiography images were evaluated via a picture archiving and communication system. A total of 8204 radiographs were assessed and 6779 radiographs were found to be eligible for inclusion in the study. Results: 47.4% of the radiographs were from males and 52.5% females. The prevalence of accessory bones in the whole study group was found to be 18.1%. Gender analysis showed that 17.5% of the female radiographs and 16.4% of the male radiographs had accessory bones. Among all the accessory bones found in the study group, os tibiale externum was found to be the most common accessory bone (32.1%). Conclusion: In the present study, no significant difference was detected in terms of gender. Os tibiale externum was found to be the most common accessory bone of the foot. Os peroneum and os trigonum were found to be the second and third most common, respectively.
    [Show full text]