Distribution and Significance of Alien Amphipods and Decapods in The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The 17Th International Colloquium on Amphipoda
Biodiversity Journal, 2017, 8 (2): 391–394 MONOGRAPH The 17th International Colloquium on Amphipoda Sabrina Lo Brutto1,2,*, Eugenia Schimmenti1 & Davide Iaciofano1 1Dept. STEBICEF, Section of Animal Biology, via Archirafi 18, Palermo, University of Palermo, Italy 2Museum of Zoology “Doderlein”, SIMUA, via Archirafi 16, University of Palermo, Italy *Corresponding author, email: [email protected] th th ABSTRACT The 17 International Colloquium on Amphipoda (17 ICA) has been organized by the University of Palermo (Sicily, Italy), and took place in Trapani, 4-7 September 2017. All the contributions have been published in the present monograph and include a wide range of topics. KEY WORDS International Colloquium on Amphipoda; ICA; Amphipoda. Received 30.04.2017; accepted 31.05.2017; printed 30.06.2017 Proceedings of the 17th International Colloquium on Amphipoda (17th ICA), September 4th-7th 2017, Trapani (Italy) The first International Colloquium on Amphi- Poland, Turkey, Norway, Brazil and Canada within poda was held in Verona in 1969, as a simple meet- the Scientific Committee: ing of specialists interested in the Systematics of Sabrina Lo Brutto (Coordinator) - University of Gammarus and Niphargus. Palermo, Italy Now, after 48 years, the Colloquium reached the Elvira De Matthaeis - University La Sapienza, 17th edition, held at the “Polo Territoriale della Italy Provincia di Trapani”, a site of the University of Felicita Scapini - University of Firenze, Italy Palermo, in Italy; and for the second time in Sicily Alberto Ugolini - University of Firenze, Italy (Lo Brutto et al., 2013). Maria Beatrice Scipione - Stazione Zoologica The Organizing and Scientific Committees were Anton Dohrn, Italy composed by people from different countries. -
Diversity of Alien Macroinvertebrate Species in Serbian Waters
water Article Diversity of Alien Macroinvertebrate Species in Serbian Waters Katarina Zori´c* , Ana Atanackovi´c,Jelena Tomovi´c,Božica Vasiljevi´c,Bojana Tubi´c and Momir Paunovi´c Department for Hydroecology and Water Protection, Institute for Biological Research “Siniša Stankovi´c”—NationalInstitute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia; [email protected] (A.A.); [email protected] (J.T.); [email protected] (B.V.); [email protected] (B.T.); [email protected] (M.P.) * Correspondence: [email protected] Received: 29 September 2020; Accepted: 7 December 2020; Published: 15 December 2020 Abstract: This article provides the first comprehensive list of alien macroinvertebrate species registered and/or established in aquatic ecosystems in Serbia as a potential threat to native biodiversity. The list comprised field investigations, articles, grey literature, and unpublished data. Twenty-nine species of macroinvertebrates have been recorded since 1942, with a domination of the Ponto-Caspian faunistic elements. The majority of recorded species have broad distribution and are naturalized in the waters of Serbia, while occasional or single findings of seven taxa indicate that these species have failed to form populations. Presented results clearly show that the Danube is the main corridor for the introduction and spread of non-native species into Serbia. Keywords: Serbia; inland waters; allochthonous species; introduction 1. Introduction The Water Framework Directive (WFD) [1] represents key regulation and one of the most important documents in the European Union water legislation since it was adopted in 2000. -
Translation Series No.2137
FISHERIES RESEARCH BOARD OF CANADA Translation Series No. 2137 • Salmon of Lake Onega • by YU. A. Smirnov -Original title: •Losost onezhskogo ozera Biologiya vosproiFvodstvo ispOliziovapie From: Lososi onezhskogo ozera Biolop.iya vosproizvodstvc* ispoll .zovanie (Salmon of Lake Onega), : 1-143, 1Q71 Translated by the Translation Bureau-( PH) . Foreign Languages Division Department of the Secretary of . State of Canada Department of the-Environment- Fisheries Research Board of Canada Biological Station. Nanaimd, b... Biological Station, St. Andrews, X. S. Biological Station, St. John's, Nfld. 19 72 195 & pages typescript lleibliography 7:7 1 OF THE SECRETARY OF STATE s E DEPAR'RENT c R F.Pr r; D'iT A T • TRANSLATION BUREAU bUREAU DES RADUCTIONS N iq E DES, E LANGUES GAN A DA. 1C D!.\fî5i N L. TA9SLATED FROM — TRADUCTION DE INTO — EN Fusq .d. P.n Elish AU rtiop. AuTuun rnov Yu. "FITLE FI•LISH — TITRE ANGLAIS salmon of Lake Onega l bioloy reprouction - utilizetion Title in foreign language (transliterate foreign characters) Loos' onezhskoiy) ozera biolos,j_ya vosproizvoCts1;vo ispol";:.ovP.nie ------ RE'FrE..- RENCE IN FOREIGN LANGUAGE (NAME OF BOOK OR PUBLICATION) IN FULL. TRANSLITERATE FOREIG4 CHA.RACTERS. rzr,-FE,.PENCE EN LANGUE ÉTRANGÉRE (NOM DU LIVRE OU PUBLICATION), AU COMPLET. TRANSCRIRE EN CARACTÉFiES PHONÉTIQUES. • REFERENcE IN ENGLISH — RÉFÉRENCE EN ANGLAIS Ao above PUBLISH ER —.ÉDITEUR PAGE NUMBERS IN ORIGINAL DATE OF PUBLICATION NUMÉROS DES PAGES DANS DATE DE PUBLICATION L'ORIGINAL yauka Press 3 143 YEAR ISSUE NO. VOLUME ANNÉE NUMERO PLACE OF PUBLICATION NUMBER OF TYPED PAGES LIEU DE PUBLICATION NOMBRE DE-PAGES DAÇTYLOGRAPHIÉEs 195 (exclusive of Lenirw.rad IWR 1971 Bibliographmj REQUESTING DEPARTMENT Environment TRANSLATION BUREAU NO. -
Trophic Relationships in the Rhine Food Web During Invasion and After Establishment of the Ponto-Caspian Invader Dikerogammarus Villosus
Hydrobiologia (2006) 565:39–58 Ó Springer 2006 R.S.E.W. Leuven, A.M.J. Ragas, A.J.M. Smits & G. van der Velde (eds), Living Rivers: Trends and Challenges in Science and Management DOI 10.1007/s10750-005-1904-8 Trophic relationships in the Rhine food web during invasion and after establishment of the Ponto-Caspian invader Dikerogammarus villosus M.C. van Riel1,4, G. van der Velde1,4,*, S. Rajagopal1,4, S. Marguillier2, F. Dehairs2 & A. bij de Vaate3,4 1Department of Animal Ecology and Ecophysiology, Section Aquatic Animal Ecology, Institute for Wetland and Water Research, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands 2Department of Analytical Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium 3Ministry of Transport, Public Works and Water Management, Institute for Inland Water Management and Waste Water Treatment, P.O. Box 17, 8200 AA Lelystad, The Netherlands 4Member of Netherlands Centre for River Studies, P.O. Box 177, 2600 MH Delft, The Netherlands (*Author for correspondence: E-mail: [email protected]) Key words: macroinvertebrates, invaders, ecotopes, food web, trophic relations, stable isotopes, Rhine Abstract The Rhine ecosystem is highly influenced by anthropogenic stresses from pollution, intensive shipping and increased connectivity with other large European rivers. Canalization of the Rhine resulted in a reduction of heterogeneity to two main biotopes: sandy streambeds and riverbanks consisting of groyne stones. Both biotopes are heavily subjected to biological invasions, affecting the rivers food web structure. The Ponto- Caspian amphipods, Chelicorophium curvispinum and Dikerogammarus villosus, have exerted the highest impact on this food web. -
Monthly Discharges for 2400 Rivers and Streams of the Former Soviet Union [FSU]
Annotations for Monthly Discharges for 2400 Rivers and Streams of the former Soviet Union [FSU] v1.1, September, 2001 Byron A. Bodo [email protected] Toronto, Canada Disclaimer Users assume responsibility for errors in the river and stream discharge data, associated metadata [river names, gauge names, drainage areas, & geographic coordinates], and the annotations contained herein. No doubt errors and discrepancies remain in the metadata and discharge records. Anyone data set users who uncover further errors and other discrepancies are invited to report them to NCAR. Acknowledgement Most discharge records in this compilation originated from the State Hydrological Institute [SHI] in St. Petersburg, Russia. Problems with some discharge records and metadata notwithstanding; this compilation could not have been created were it not for the efforts of SHI. The University of New Hampshire’s Global Hydrology Group is credited for making the SHI Arctic Basin data available. Foreword This document was prepared for on-screen viewing, not printing !!! Printed output can be very messy. To ensure wide accessibility, this document was prepared as an MS Word 6 doc file. The www addresses are not active hyperlinks. They have to be copied and pasted into www browsers. Clicking on a page number in the Table of Contents will jump the cursor to the beginning of that section of text [in the MS Word version, not the pdf file]. Distribution Files Files in the distribution package are listed below: Contents File name short abstract abstract.txt ascii description of -
MIAMI UNIVERSITY the Graduate School Certificate for Approving The
MIAMI UNIVERSITY The Graduate School Certificate for Approving the Dissertation We hereby approve the Dissertation of Richard A. Seidel Candidate for the Degree: Doctor of Philosophy Director Dr. David J. Berg Reader Dr. Brian Keane Reader Dr. Nancy G. Solomon Reader Dr. Bruce A. Steinly Jr. Graduate School Representative Dr. A. John Bailer ABSTRACT CONSERVATION BIOLOGY OF THE GAMMARUS PECOS SPECIES COMPLEX: ECOLOGICAL PATTERNS ACROSS AQUATIC HABITATS IN AN ARID ECOSYSTEM by Richard A. Seidel This dissertation consists of three chapters, each of which addresses a topic in one of three related categories of research as required by the Ph.D. program in ecology as directed through the Department of Zoology at Miami University. Chapter 1, Phylogeographic analysis reveals multiple cryptic species of amphipods (Crustacea: Amphipoda) in Chihuahuan Desert springs, investigates how biodiversity conservation and the identification of conservation units among invertebrates are complicated by low levels of morphological difference, particularly among aquatic taxa. Accordingly, biodiversity is often underestimated in communities of aquatic invertebrates, as revealed by high genetic divergence between cryptic species. I analyzed PCR-amplified portions of the mitochondrial cytochrome c oxidase I (COI) gene and 16S rRNA gene for amphipods in the Gammarus pecos species complex endemic to springs in the Chihuahuan Desert of southeast New Mexico and west Texas. My analyses uncover the presence of seven separate species in this complex, of which only three nominal taxa are formally described. The distribution of these species is highly correlated with geography, with many present only in one spring or one spatially-restricted cluster of springs, indicating that each species likely merits protection under the U.S. -
Alien Crustacea in Polish Waters – Amphipoda
Aquatic Invasions (2007) Volume 2, Issue 1: 25-38 DOI 10.3391/ai.2007.2.1.3 © 2007 The Author(s) Journal compilation © 2007 REABIC (http://www.reabic.net) This is an Open Access article Research article Alien Crustacea in Polish waters – Amphipoda Michał Grabowski*, Krzysztof Jażdżewski and Alicja Konopacka Department of Invertebrate Zoology and Hydrobiology, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland *Corresponding author E-mail: [email protected] Received 1 November 2006; accepted in revised form 9 February 2007 Abstract Among ca. 750 species of Crustacea recorded from Poland, 18 representatives of 5 orders of macro-crustaceans have been identified as alien species that have invaded or have been introduced to Polish waters. Out of 44 freshwater, brackishwater and semiterrestrial species of Amphipoda occurring in Poland (not counting several stygobiotic species), 8 species from three families may be included in this group. They are Corophiidae: Chelicorophium curvispinum (=Corophium curvispinum), Gammaridae: Gammarus roeselii, G. tigrinus, Chaetogammarus ischnus (=Echinogammarus ischnus), Pontogammaridae: Dikerogammarus haemobaphes, D. villosus, Pontogammarus robustoides and Obesogammarus crassus. It is noticeable that most of them (C. curvispinum, C. ischnus, D. haemobaphes, D. villosus, P. robustoides, O. crassus) are of Ponto-Caspian origin, one species was introduced from North America (G. tigrinus), and one from south-eastern Europe (G. roeselii). All the species listed above have spread widely in Poland, in large rivers and artifical reservoirs (Chelicorophium curvispinum, Dikerogammarus villosus, D. haemobaphes, Pontogammarus robustoides, Gammarus tigrinus) or in medium sized rivers (Gammarus roeselii), in brackish coastal waters (Obesogammarus crassus) or both in fresh and brackish waters (Gammarus tigrinus, Pontogammarus robustoides). -
The Comparison of Calculated and Measured Total Phosphorus
P-income, kg/week 9000 8000 7000 6000 Suna 5000 Shuya 4000 Vytegra Vodla 3000 2000 1000 0 0 4 8 12 16 20 24 28 32 36 40 44 48 52 Time, weeks Fig. 8.3. Total P income with main inflow rivers to Lake Onega calculated using LakeWeb load sub- model. The comparison of calculated and measured total phosphorus concentrations shows rather good agreement even in the case of default value of TP concentration 30 mg m-3 used for all rivers (Fig. 8.4). Measured & calculated TP income TP, kg/a 200000 180000 160000 140000 120000 LakeWeb 100000 Measured 80000 60000 40000 20000 0 Suna Shuya Vytegra Vodla Fig. 8.4. Comparison of measured and total phosphorus income calculated using LakeWeb model for the period April 2001-March 2002 (12 months). This simple statistical phosphorus load model was combined with Vollenweider – Canfield – Bachmann lake model (1), (3) into one integrated lake-catchment model. A graphical user interface, GUI (Figs. 8.5 - 8.6) helps to modify input parameters and to visualize the model output. 40 The Finnish Environment 36 | 2009 Fig. 8.5. Input parameters dialog of the integrated lake-catchment model interface. Fig. 8.6. Output window of the lake-catchment model GUI. This model was applied to Petrozavodsk and Kondopoga Bays of Lake Onega. The calculations were organized in the following way. The model was run for several years period with different combinations of mean annual inflow discharge and mean annual inflow concentration of total phosphorus until the periodic solution was achieved. The calculated total phosphorus concentration in lake waters was averaged for the last simulated one year period. -
Download Fulltext
BRDEM-2019 International applied research conference «Biological Resources Development and Environmental Management» Volume 2020 Conference Paper Morphological and Genetic Variability of the Mass Whitefish Forms in Lake Onega Nikolay Ilmast1, Dmitry Sendek2, Elena Zuykova3, Nikolay Milyanchuk1, Denis Savosin1, Aleksandra Borisovskaya2, Maksim Alekseev4, and Nikolay Bochkarev3 1Institute of Biology, Karelian Research Centre, Russian Academy of Sciences, Petrozavodsk, Russian Federation 2State Research Institute on Lake and River Fisheries, St. Petersburg, Russian Federation 3Institute of Systematic and Ecology of Animals, Siberian branch, Russian Academy of Sciences, Novosibirsk, Russian Federation 4Knipovich Polar Research Institute of Marine Fisheries and Oceanography, Murmansk, Russian Federation Abstract In Lake Onega, the whitefish Coregonus lavaretus has been shown to occur as a variety of forms. Medium- and sparsely-ranked whitefish are most abundant. Analysis of available data indicates that whitefish populations from Karelia's large lakes display Corresponding Author: the maximum values of various genetic variability indices. This fact seems to be due Nikolay Ilmast to the history of the colonization of the lake by the discrete evolutionary whitefish [email protected] lineages from various Late Quaternary habitats followed by their hybridization. A great Received: 24 December 2019 variety of Onega whitefish haplotypes is probably related to the genetic heterogeneity Accepted: 9 January 2020 of the whitefish who until recently had occurred as five ecological forms ranking as Published: 15 January 2020 subspecies. The median network obtained suggests that many of the populations studied have become less abundant. The well-defined ``star-like'' network structure is Publishing services provided by characteristic of populations that passed through a narrow ``bottleneck'' in the near Knowledge E past and then expanded rapidly, as indicated by the abundance of rare haplotype Nikolay Ilmast et al. -
Alien Macroinvertebrates in Croatian Freshwaters
Aquatic Invasions (2020) Volume 15, Issue 4: 593–615 CORRECTED PROOF Review Alien macroinvertebrates in Croatian freshwaters Krešimir Žganec1,*, Jasna Lajtner2, Renata Ćuk3, Petar Crnčan4, Ivana Pušić5, Ana Atanacković6, Tomislav Kralj7, Damir Valić7, Mišel Jelić8 and Ivana Maguire2 1University of Zadar, Department of Teacher Education Studies in Gospić, dr. Ante Starčevića 12, 53000 Gospić, Croatia 2Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, Zagreb, Croatia 3Hrvatske Vode, Central Water Management Laboratory, Ulica grada Vukovara 220, 10000 Zagreb, Croatia 4Croatian Natural History Museum, Demetrova 1, 10000 Zagreb, Croatia 5GEONATURA Ltd., Fallerovo šetalište 22, 10000 Zagreb, Croatia 6Department for Hydroecology and Water protection, Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, 142 Despota Stefana Blvd, 11060 Belgrade, Serbia 7Ruđer Bošković Institute, Division for Marine and Environmental Research, Laboratory for Aquaculture and Pathology of Aquatic Organisms, Bijenička cesta 54, 10000 Zagreb, Croatia 8Department of Natural Sciences, Varaždin City Museum, Šetalište Josipa Jurja Strossmayera 3, 42000 Varaždin, Croatia Author e-mails: [email protected] (KŽ), [email protected] (JL), [email protected] (IM), [email protected] (RC), [email protected] (PC), [email protected] (IP), [email protected] (TK), [email protected] (DV), [email protected] (MJ), [email protected] (AA) *Corresponding author Citation: Žganec K, Lajtner J, Ćuk R, Crnčan P, Pušić I, Atanacković A, Kralj T, Abstract Valić D, Jelić M, Maguire I (2020) Alien macroinvertebrates in Croatian freshwaters. Alien aquatic macroinvertebrates, especially invasive crustaceans and molluscs, Aquatic Invasions 15(4): 593–615, have heavily impacted native species and ecosystem processes in freshwaters https://doi.org/10.3391/ai.2020.15.4.04 worldwide. -
Experiences of Finnish Cooperation in the Health and Social Sectors in the Republic of Karelia (North-Western Russian Federation) a Case Study
Policy Learning Curve Series Number 3 Experiences of Finnish cooperation in the health and social sectors in the Republic of Karelia (north-western Russian Federation) A case study Ali Arsalo Sanna Vesikansa World Health Organization Regional Office for Europe, Copenhagen European Centre for Health Policy, Brussels Experiences of Finnish cooperation in the health and social sectors in the Republic of Karelia (north-western Russian Federation) A case study Ali Arsalo Sanna Vesikansa Policy Learning Curve Series, Number 3 December, 2000 EUR/00/5019128/3 EUROPEAN HEALTH21 TARGET 1 SOLIDARITY FOR HEALTH IN THE EUROPEAN REGION By the year 2020, the present gap in health status between Member States of the European Region should be reduced by at least one third (Adopted by the WHO Regional Committee for Europe at its forty-eighth session, Copenhagen, September 1998) EUROPEAN HEALTH21 TARGET 14 MULTISECTORAL RESPONSIBILITY FOR HEALTH By the year 2020, all sectors should have recognized and accepted their responsibility for health (Adopted by the WHO Regional Committee for Europe at its forty-eighth session, Copenhagen, September 1998) EUROPEAN HEALTH21 TARGET 18 DEVELOPING HUMAN RESOURCES FOR HEALTH By the year 2010, all Member States should have ensured that health professionals and professionals in other sectors have acquired appropriate knowledge, attitudes and skills to protect and promote health (Adopted by the WHO Regional Committee for Europe at its forty-eighth session, Copenhagen, September 1998) Keywords INTERNATIONAL COOPERATION HEALTH PLANNING HEALTH POLICY PRIMARY HEALTH CARE SOCIAL SECURITY FINLAND RUSSIAN FEDERATION Text editing: Frank Theakston Cover design: Manfred Frank © World Health Organization – 2000 All rights in this document are reserved by the WHO Regional Office for Europe. -
A Checklist of Alien and Cryptogenic Aquatic Species in Ireland
Aquatic Invasions (2007) Volume 2, Issue 4: 341-366 DOI 10.3391/ai.2007.2.4.4 © 2007 The Author(s) Journal compilation © 2007 REABIC (http://www.reabic.net) This is an Open Access article Special issue “Alien species in European coastal waters” Geoff Boxshall, Ferdinando Boero and Sergej Olenin (Guest Editors) Research article A checklist of alien and cryptogenic aquatic species in Ireland Dan Minchin Marine Organism Investigations, Ballina, Killaloe, Co Clare, Ireland E-mail: [email protected] Received 14 May 2007; accepted in revised form 27 October 2007 Abstract One-hundred-and-twelve alien species are recorded for marine, brackish and freshwater environments in Ireland, of these sixty- eight are thought to be established. Their arrival has been mainly due to shipping, aquaculture and the ornamental industries. There are almost thirty species considered to be invasive and some that have arrived recently may have significant future impact. The majority of recorded alien species will have arrived since 1950. Usually these species appear in Britain or Northern Europe before occurring in Ireland. The majority of the marine species will have originated from the North Pacific Ocean whilst most of the freshwater species will have originally been sourced from North America. The sixty-three cryptogenic species arise out of the uncertainty of their origin or as to how they will have arrived. Ireland being a recently deglaciated island and separated from the continental land mass will have acquired the majority of its biota since the last glacial retreat making distinction between native and alien species more difficult. Key words: Ireland, Celtic Sea, aquatic species, introductions, alien, freshwater, marine, invasive, population status (Minchin 1996, 2004).