The Geologic Record of the Antarctic Ice Sheet from Drilling, Coring and Seismic Studies

Total Page:16

File Type:pdf, Size:1020Kb

The Geologic Record of the Antarctic Ice Sheet from Drilling, Coring and Seismic Studies Direttore Enzo Boschi Comitato di Redazione Cesidio Bianchi Tecnologia Geofisica Rodolfo Console Sismologia Giorgiana De Franceschi Relazioni Sole-Terra Leonardo Sagnotti Geomagnetismo Giancarlo Scalera Geodinamica Ufficio Editoriale Francesca Di Stefano Istituto Nazionale di Geofisica e Vulcanologia Via di Vigna Murata, 605 00143 Roma Tel. (06) 51860468 Telefax: (06) 51860507 e-mail: [email protected] Extended Abstracts for the International ANTOSTRAT Symposium on THE GEOLOGIC RECORD OF THE ANTARCTIC ICE SHEET FROM DRILLING, CORING AND SEISMIC STUDIES “Ettore Majorana” Foundation and Centre for Scientific Culture, Erice, Italy, September 8-14, 2001 Edited by Fabio Florindo and Alan K. Cooper Conveners of the symposium (ANTOSTRAT Steering Committee) A. Cooper P. Barker P. Barrett G. Brancolini I. Goodwin Y. Kristoffersen R. Oglesby P. O’Brien Directors of the symposium A. Cooper F. Florindo A. Meloni Director of the School E. Boschi Director of the Center A. Zichichi Contents Foreword.............................................................................................................................................................IX ********** Carbonate Diagenesis of the Cenozoic Sedimentary Successions Recovered at the CRP-1, 2 and 3 Drillsites, Ross Sea, Antarctica. An Overview F.S. Aghib, M. Ripamonti and G. Riva...........................................................................................................1 Late Quaternary Fluctuations in the Antarctic Ice Sheet J.B. Anderson, S.S. Shipp, A.L. Lowe, J.W. Wellner and A.B. Mosola..........................................................3 North American Patterns of Faunal and Floral Response to the Eocene/Oligocene Antarctic Ice Sheet Development J.M. Armentrout.............................................................................................................................................5 Antarctic Glacial History from Margin Drilling P.F. Barker......................................................................................................................................................7 Glacial Sediment Transport and Distribution on the Antarctic Peninsula Pacific Continental Shelf and Slope - New Results from Seismic Reflection Profiles and ODP Leg 178 Drilling P.F. Barker, A. Camerlenghi, L.A.P. Gamboa, A. Maldonado, M. Tanahashi, F.J. Hernandez-Molina, P.J. Bart, D.E. Hayes, R.D. Larter, M. Rebesco and R. Geletti..............................9 Determining the Glacial History of Prydz Bay, Antarctica: Observations Based on the Integration of Downhole Logging Data and Sedimentological Description from ODP Leg 188, Hole 1166 S.R. Barr, N. Januszczak, T.S. Brewer and P.K. Harvey...............................................................................11 Cenozoic Antarctic Glacial History – Checks from the Margin P.J. Barrett....................................................................................................................................................13 An Evaluation of the Messinian Salinity Crisis: Implications of new Palynological Results on the Interpretation of Late Miocene Antarctic Ice Sheet Evolution P.J. Bart and S.A. Warny..............................................................................................................................17 Rift Basins and Volcanism beneath the Ross Sea Continental Shelf and West Antarctic Ice Sheet J.C. Behrendt................................................................................................................................................19 Glacial Evolution of Antarctica: Evidence from the Deep-Sea Record K. Billups......................................................................................................................................................21 Miocene Diatom Biostratigraphy of ODP Site 1165, Antarctic Continental Rise S.M. Bohaty and J.M. Whitehead.................................................................................................................23 Seismic Stratigraphy from the Continental Margin in the Offshore of the George Vth Land (East Antarctica) G. Brancolini, P. Harris, L. Armand, M. Busetti, L. De Santis, G. Giorgetti and M. Presti.......................25 The Eocene-Oligocene Boundary in the Ross-Sea (Antarctica) Based on Downhole Measurements C.J. Bücker, R.D. Jarrard, F. Niessen and T. Wonik....................................................................................27 Plio-Quaternary Sedimentation on the Wilkes Land Continental Rise M. Busetti, A. Caburlotto, D. Damiani, G. Giorgetti and R.G. Lucchi.......................................................29 I Deep Sea Sediment Consolidation Through the Glacial History of the Pacific Margin of the Antarctic Peninsula A. Camerlenghi, V. Volpi, M. Rebesco, C.-D. Hillenbrand and T. Moerz...................................................31 An Antarctic Seismic Data Library System for the 21st Century J.R. Childs, N.Wardell, A.K. Cooper, G. Brancolini and P.E. O’Brien.......................................................33 Early and Middle Miocene Advances of the Antarctic Ice Sheet across the Ross Sea Continental Shelf J.M. Chow and P.J. Bart..............................................................................................................................35 Cyclicity in the High-Resolution Physical Properties Record from the Cape Roberts Project (Victoria Land Basin, Antarctica) and Implication for Sedimentation Rate M. Claps, F. Florindo and F. Niessen..........................................................................................................37 Methane Diagenesis and Authigenic Carbonates in Continental Rise and Shelf Sediments, ODP Leg 188 Sites 1165 and 1166, Offshore Antarctica (Prydz Bay) G.E. Claypool and T.D. Lorenson................................................................................................................39 Early Stages of East Antarctic Glaciation – Insights from Drilling and Seismic Reflection Data in the Prydz Bay Region A.K. Cooper, P.E. O’Brien and ODP Leg 188 Shipboard Scientific Party..................................................41 The Seismic Stratigraphic Record in the McMurdo Region, what can it Tell us about Glacial and Tectonic Events? F.J. Davey and L. De Santis.........................................................................................................................43 The Early Glacial History of Antarctica: A new Modelling Perspective R.M. DeConto and D. Pollard.....................................................................................................................45 2-D Backstripping Modelling of Three Antarctic Continental Margins (The Ross Sea, The Antarctic Peninsula and the Prydz Bay Examples) L. De Santis, G. Brancolini, A. Camerlenghi and M. Rebesco...................................................................49 Palaeomagnetic Constraints from the Livingston Island (South Shetland Islands, Antarctica) and Implications for the Neogene Evolution of the Bransfield Strait J. Dinarès-Turell and J.M. Parés................................................................................................................51 Seismic Expression of Sediment Mound Deposits on the Continental Rise off the Wilkes Land F. Donda, L. De Santis and G. Brancolini..................................................................................................53 Sediment Texture and Palaeobathymetry Changes off Cape Roberts during the Late Oligocene G.B. Dunbar and P.J. Barrett......................................................................................................................55 13,000 Years of Decadal-to-Millennial Oceanographic Variability along the Antarctic Peninsula: ODP Site 1098 R.B. Dunbar, A.C. Ravelo, E. Domack, A. Leventer and S. Brachfeld.......................................................59 Seismic and Downhole Signatures of Glacial Sequences from the Antarctic Peninsula Continental Shelf: ODP Leg 178, Site 1103 C. Escutia, T. Moerz, C. Lauer-Laredde, T. Williams, J.M. Jaramillo and the Leg 178 Shipboard Scientific Party.......................................................................................................61 Architecture of Litho/Sequence Stratigraphic Units in the Cenozoic of the Cape Roberts Area, and Correlation with CIROS – Implications for Basin History in the Victoria Land Basin C.R. Fielding, S.A. Henrys and T.R. Naish.................................................................................................63 II A new High-Resolution Magnetostratigraphy from Eocene-Oligocene Sediments, Maud Rise, Weddell Sea, Antarctica F. Florindo and A.P. Roberts.......................................................................................................................65 Magnetostratigraphy and Environmental Magnetism from ODP Site 1165, Offshore of Prydz Bay, Antarctica F. Florindo, P.S. Erwin, C. Richter, A.P. Roberts and ODP Leg 188 Shipboard Science Party.................67 Magnetostratigraphy of Late Eocene - Early Oligocene Strata from the CRP-3 Core, McMurdo Sound, Ross Sea, Antarctica F. Florindo, G.S. Wilson, A.P. Roberts, L. Sagnotti and K.L. Verosub........................................................69 Glacial Development in the Prydz Bay Region as Witnessed by Geotechnical and Mineralogical Properties of Leg 188 Sites 1166 and 1167 C.F. Forsberg, A. Solheim, J. Gruetzner, B. Taylor and K. Strand.............................................................71 Morphometric Analysis
Recommended publications
  • Imaging Laurentide Ice Sheet Drainage Into the Deep Sea: Impact on Sediments and Bottom Water
    Imaging Laurentide Ice Sheet Drainage into the Deep Sea: Impact on Sediments and Bottom Water Reinhard Hesse*, Ingo Klaucke, Department of Earth and Planetary Sciences, McGill University, Montreal, Quebec H3A 2A7, Canada William B. F. Ryan, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964-8000 Margo B. Edwards, Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, HI 96822 David J. W. Piper, Geological Survey of Canada—Atlantic, Bedford Institute of Oceanography, Dartmouth, Nova Scotia B2Y 4A2, Canada NAMOC Study Group† ABSTRACT the western Atlantic, some 5000 to 6000 State-of-the-art sidescan-sonar imagery provides a bird’s-eye view of the giant km from their source. submarine drainage system of the Northwest Atlantic Mid-Ocean Channel Drainage of the ice sheet involved (NAMOC) in the Labrador Sea and reveals the far-reaching effects of drainage of the repeated collapse of the ice dome over Pleistocene Laurentide Ice Sheet into the deep sea. Two large-scale depositional Hudson Bay, releasing vast numbers of ice- systems resulting from this drainage, one mud dominated and the other sand bergs from the Hudson Strait ice stream in dominated, are juxtaposed. The mud-dominated system is associated with the short time spans. The repeat interval was meandering NAMOC, whereas the sand-dominated one forms a giant submarine on the order of 104 yr. These dramatic ice- braid plain, which onlaps the eastern NAMOC levee. This dichotomy is the result of rafting events, named Heinrich events grain-size separation on an enormous scale, induced by ice-margin sifting off the (Broecker et al., 1992), occurred through- Hudson Strait outlet.
    [Show full text]
  • The Cordilleran Ice Sheet 3 4 Derek B
    1 2 The cordilleran ice sheet 3 4 Derek B. Booth1, Kathy Goetz Troost1, John J. Clague2 and Richard B. Waitt3 5 6 1 Departments of Civil & Environmental Engineering and Earth & Space Sciences, University of Washington, 7 Box 352700, Seattle, WA 98195, USA (206)543-7923 Fax (206)685-3836. 8 2 Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada 9 3 U.S. Geological Survey, Cascade Volcano Observatory, Vancouver, WA, USA 10 11 12 Introduction techniques yield crude but consistent chronologies of local 13 and regional sequences of alternating glacial and nonglacial 14 The Cordilleran ice sheet, the smaller of two great continental deposits. These dates secure correlations of many widely 15 ice sheets that covered North America during Quaternary scattered exposures of lithologically similar deposits and 16 glacial periods, extended from the mountains of coastal south show clear differences among others. 17 and southeast Alaska, along the Coast Mountains of British Besides improvements in geochronology and paleoenvi- 18 Columbia, and into northern Washington and northwestern ronmental reconstruction (i.e. glacial geology), glaciology 19 Montana (Fig. 1). To the west its extent would have been provides quantitative tools for reconstructing and analyzing 20 limited by declining topography and the Pacific Ocean; to the any ice sheet with geologic data to constrain its physical form 21 east, it likely coalesced at times with the western margin of and history. Parts of the Cordilleran ice sheet, especially 22 the Laurentide ice sheet to form a continuous ice sheet over its southwestern margin during the last glaciation, are well 23 4,000 km wide.
    [Show full text]
  • Marie Tharp: Mapping the Seafloor of Back-Arc Basins, Mid-Ocean Ridges, Continental Margins & Plate Boundaries Vienna (Austria), EGU 2020-3676, 7/5/2020
    A Tribute to Marie Tharp: Mapping the seafloor of back-arc basins, mid-ocean ridges, continental margins & plate boundaries Vienna (Austria), EGU 2020-3676, 7/5/2020 Eulàlia Gràcia, Sara Martínez Loriente, Susana Diez, Laura Gómez de la Peña*, Cristina S. Serra, Rafael Bartolome, Valentí Sallarès, Claudio Lo Iacono, Hector Perea**, Roger Urgeles, Ingo Grevemeyer* and Cesar R. Ranero B-CSI at Institut de Ciències del Mar – CSIC, Barcelona *GEOMAR, Kiel, Germany **Universidad Complutense de Madrid, Facultad de Geologia, Madrid 1 The first steps of Marie Tharp • Marie Tharp, July 30, 1920 (Ypsilanti, Michigan) – August 23, 2006 (Nyack, New York) was an American geologist & oceano- graphic cartographer who, in partnership with Bruce Heezen, created the first scientific map of the Atlantic Ocean floor. • Tharp's work revealed the detailed topography and multi-dimensional geographical landscape of the ocean bottom. • Her work revealed the presence of a continuous rift-valley along the axis Fig. 1. A young Marie in the field helping his father, William E. of the Mid- Atlantic Ridge, causing a Tharp, a soil surveyor for United States Dpt. of Agriculture. Marie often paradigm shift in Earth Sciences that helped him with this task, which gave her an introduction to map- led to acceptance of Plate Tectonics making. From book “Soundings” by Hali Felt (2012). and Continental Drift. 2 Working at Columbia University Lamont Geological Observatory (NY) Fig. 2. Marie Fig. 3. at streets of Bruce New York, Heezen after she looking at a was hired to fathogram work by Dr. being Maurice produced by Ewing’, at an early the newly- echosounder formed (year 1940).
    [Show full text]
  • Orbital Control of Productivity and of Sea-Ice Production/Drifting in the Central Arctic Ocean During the Late Quaternary
    Geophysical Research Abstracts Vol. 21, EGU2019-1743, 2019 EGU General Assembly 2019 © Author(s) 2018. CC Attribution 4.0 license. Orbital control of productivity and of sea-ice production/drifting in the central Arctic Ocean during the late Quaternary Claude Hillaire-Marcel (1), Anne de Vernal (1), Yanguang Liu (2), Jenny Maccali (3), Karl Purcell (1), Bassam Ghaleb (1), Allison Jacobel (4), Rüdiger Stein (5), Jerry McManus (4), and Michel Crucifix (6) (1) GEOTOP-UQAM, Université du Québec, Montreal, Canada ([email protected]), (2) First Institute of Oceanography, State Oceanic Administration, Qingdao, China (yanguangliu@fio.org.cn), (3) Department of Earth Sciences, University of Bergen, Norway ([email protected]), (4) Lamont-Doherty Earth Observatory of Columbia University, New-York, USA ([email protected]), (5) Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany ([email protected]), (6) ELIC, Université catholique de Louvain, Louvain-la-Neuve, Belgium (michel.crucifi[email protected]) The recently revised chronostratigraphy of the central Arctic Ocean sedimentary sequences (https://doi.org/10.1002/2017GC007050) provides the means to insert the Arctic paleoceanography into the Earth’s global climate history. Based on magnetostratigraphy, 14C ages and 230Th-231Pa excess extinction ages in a series of sedimentary cores raised from the Mendeleev and Lomonosov ridges by the R/V Polarstern, Healy and MV Xue Long ice-breakers, with chronological complementary information from pre-2000 studies, we have been able to estimate sedimentation rates ranging from less than a few mm/ka to a few cm/ka along these ridges, with the highest accumulation rates eastward, near the ice-factories of the Russian shelf.
    [Show full text]
  • The Most Extensive Holocene Advance in the Stauning Alper, East Greenland, Occurred in the Little Ice Age Brenda L
    The University of Maine DigitalCommons@UMaine Earth Science Faculty Scholarship Earth Sciences 8-1-2008 The oM st Extensive Holocene Advance in the Stauning Alper, East Greenland, Occurred in the Little ceI Age Brenda L. Hall University of Maine - Main, [email protected] Carlo Baroni George H. Denton University of Maine - Main, [email protected] Follow this and additional works at: https://digitalcommons.library.umaine.edu/ers_facpub Part of the Earth Sciences Commons Repository Citation Hall, Brenda L.; Baroni, Carlo; and Denton, George H., "The osM t Extensive Holocene Advance in the Stauning Alper, East Greenland, Occurred in the Little cI e Age" (2008). Earth Science Faculty Scholarship. 103. https://digitalcommons.library.umaine.edu/ers_facpub/103 This Article is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Earth Science Faculty Scholarship by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. The most extensive Holocene advance in the Stauning Alper, East Greenland, occurred in the Little Ice Age Brenda L. Hall1, Carlo Baroni2 & George H. Denton1 1 Dept. of Earth Sciences and the Climate Change Institute, University of Maine, Orono, ME 04469, USA 2 Dipartimento di Scienze della Terra, Università di Pisa, IT-56126 Pisa, Italy Keywords Abstract Glaciation; Greenland; Holocene; Little Ice Age. We present glacial geologic and chronologic data concerning the Holocene ice extent in the Stauning Alper of East Greenland. The retreat of ice from the Correspondence late-glacial position back into the mountains was accomplished by at least Brenda L.
    [Show full text]
  • Dicionarioct.Pdf
    McGraw-Hill Dictionary of Earth Science Second Edition McGraw-Hill New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2003 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be repro- duced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. 0-07-141798-2 The material in this eBook also appears in the print version of this title: 0-07-141045-7 All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. For more information, please contact George Hoare, Special Sales, at [email protected] or (212) 904-4069. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw- Hill”) and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decom- pile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent.
    [Show full text]
  • An Evaporite-Bearing Accretionary Complex in the Northern Front of The
    PUBLICATIONS Tectonics RESEARCH ARTICLE An evaporite-bearing accretionary complex in the northern 10.1002/2016TC004414 front of the Betic-Rif orogen Special Section: Fernando Pérez-Valera1,2 , Mario Sánchez-Gómez1,3 , Alberto Pérez-López4,5 , fi Orogenic cycles: from eld and Luis Alfonso Pérez-Valera1 observations to global geodynamics 1Centro de Estudios Avanzados en Ciencias de la Tierra (Universidad de Jaén), Jaén, Spain, 2Departamento de Ciencias de la Tierra y del Medio Ambiente, Universidad de Alicante, Alicante, Spain, 3Departamento de Geología, Facultad de Ciencias Key Points: Experimentales (Universidad de Jaén), Jaén, Spain, 4Departamento de Estratigrafía y Paleontología, Facultad de Ciencias • Evaporite-bearing units form an (Universidad de Granada), Granada, Spain, 5Instituto Andaluz de Ciencias de la Tierra (CSIC-Universidad de Granada), accretional complex in Betics Armilla, Spain north end • Evaporites display a suite of ductile structures with coherent kinematics • Kinematics indicate westward motion, Abstract The Guadalquivir Accretionary Complex forms a largely oblique prism at the northern edge of with subordinate N-S contraction the Betic-Rif orogen, where Miocene sediments plus allochthonous evaporite-bearing units were accreted during the displacement of the Alborán Domain toward the west. Traditional interpretations end the tectonic structuring of the Betic Cordillera at the present topographic front, beyond which gravitational and/or Correspondence to: diapiric processes would predominate. However, this study shows pervasive tectonic deformation in the F. Pérez-Valera, outer prism with coherent oblique shortening kinematics, which is achieved through an alternation of [email protected] roughly N-S arcuate thrust systems connected by E-W transfer fault zones. These structures accord well with the geophysical models that propose westward rollback subduction.
    [Show full text]
  • Gondwana Breakup Via Double-Saloon-Door Rifting and Seafloor Spreading in a Backarc Basin During Subduction Rollback
    Available online at www.sciencedirect.com Tectonophysics 445 (2007) 245–272 www.elsevier.com/locate/tecto Gondwana breakup via double-saloon-door rifting and seafloor spreading in a backarc basin during subduction rollback A.K. Martin Repsol YPF Exploración, Al Fattan Plaza, PO Box 35700, Dubai, United Arab Emirates Received 2 February 2007; received in revised form 4 July 2007; accepted 21 August 2007 Available online 28 August 2007 Abstract A model has been developed where two arc-parallel rifts propagate in opposite directions from an initial central location during backarc seafloor spreading and subduction rollback. The resultant geometry causes pairs of terranes to simultaneously rotate clockwise and counterclockwise like the motion of double-saloon-doors about their hinges. As movement proceeds and the two terranes rotate, a gap begins to extend between them, where a third rift initiates and propagates in the opposite direction to subduction rollback. Observations from the Oligocene to Recent Western Mediterranean, the Miocene to Recent Carpathians, the Miocene to Recent Aegean and the Oligocene to Recent Caribbean point to a two-stage process. Initially, pairs of terranes comprising a pre-existing retro-arc fold thrust belt and magmatic arc rotate about poles and accrete to adjacent continents. Terrane docking reduces the width of the subduction zone, leading to a second phase during which subduction to strike-slip transitions initiate. The clockwise rotated terrane is caught up in a dextral strike-slip zone, whereas the counterclockwise rotated terrane is entrained in a sinistral strike-slip fault system. The likely driving force is a pair of rotational torques caused by slab sinking and rollback of a curved subduction hingeline.
    [Show full text]
  • Back Matter (PDF)
    Index Page numbers in italic denote figures. Page numbers in bold denote tables. ablation, effect of debris cover 28–29 40Ar/39Ar dating 3,4 accumulation area ratios Apennine tephra 163, 165, 168 Azzaden valley 28–29 Aralar 56, 57, 58, 59, 60, 62, 63, 67, 70, 75 Gesso Basin 141 Arba´s/Alto Bernesga 58, 59, 62 Mt Chelmos 218, 227, 229, 230 Aremogna Plain 171, 172, 173, 174, 175 Tazaghart and Adrar Iouzagner 44–45 Argentera 7, 138, 139, 153 Uludag˘ 261 Arie`ge catchment 112, 130 Adrar Iouzagner plateau 25, 26, 27 Arinsal valley 119, 120, 121, 129 ice fields 49–50 radiocarbon dating 121–123, 125 palaeoglacier reconstruction 44–48 Assif n’Ouarhou valley 27,44 age of glaciations 48–49 Atlas Mountains 4, 7,25–50 regolith 42–44 climate 26, 28, 29, 49–50 valley geomorphology 39–44 reconstruction 47–48 Afella North 27, 35, 45 current state of knowledge 5–6 African Humid Periods 49 modern glaciers 11, 12 Akdag˘ 7, 290, 291 palaeoglacier reconstructions 28–29, 44–48 glaciation 262, 263, 264, 265, 271, 272, 292–293, 294, age of glaciations 48–49 295, 296, 297 plateau ice fields 49–50 Aksoual 25 atmospheric circulation, Mediterranean Basin 1, 10, 138, age of glaciation 48, 50 179, 186, 232, 289 Aksu Glacier 262, 263, 264, 265, 297, 302 atmospheric depressions, North Atlantic Ocean 1, 6, 8, 10, Aladag˘lar 7, 290, 291 14, 47, 49–50, 78–79, 87–88, 131, 138 glaciation 295, 296, 297, 298, 301 Aure`s Mountains 5 Alago¨l Valley 275–277 Azib Ifergane valley 40,44 glacial chronology 281, 282, 283, 284–285, 297, 298 Azzaden valley Albania, glaciers 11 accumulation
    [Show full text]
  • Polyphase Tectonic Evolution of Fore-Arc Basin Related to STEP Fault As Revealed by Seismic Reflection Data from the Alboran Sea (W-Mediterranean) E
    Polyphase Tectonic Evolution of Fore-Arc Basin Related to STEP Fault as Revealed by Seismic Reflection Data From the Alboran Sea (W-Mediterranean) E. d’Acremont, M. Lafosse, A. Rabaute, G. Teurquety, D. Do Couto, G. Ercilla, C. Juan, B. Mercier Lépinay, S. Lafuerza, J. Galindo-zaldivar, et al. To cite this version: E. d’Acremont, M. Lafosse, A. Rabaute, G. Teurquety, D. Do Couto, et al.. Polyphase Tectonic Evolution of Fore-Arc Basin Related to STEP Fault as Revealed by Seismic Reflection Data From the Alboran Sea (W-Mediterranean). Tectonics, American Geophysical Union (AGU), 2020, 39 (3), 10.1029/2019TC005885. hal-03004274 HAL Id: hal-03004274 https://hal.archives-ouvertes.fr/hal-03004274 Submitted on 15 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RESEARCH ARTICLE Polyphase Tectonic Evolution of Fore‐Arc Basin Related 10.1029/2019TC005885 to STEP Fault as Revealed by Seismic Reflection Data Key Points: ‐ • The reactivation of the Subduction From the Alboran Sea (W Mediterranean) Tear Edge Propagator fault zone on E. d'Acremont1 , M. Lafosse1 , A. Rabaute1 , G. Teurquety1,2, D. Do Couto1, G. Ercilla3, the southern edge of the Alboran 3 4 1 5,6 3 Domain forms the South Alboran C.
    [Show full text]
  • 2014 Newsletter Draft
    DECEMBER 2014 ISSUE NO.8 Earth & Environmental Sciences A letter from the chair.... Dear friends, students, and alumni of Earth and Environmental Sciences, I wish you the warmest of holiday greetings. The EES department continues to be a vibrant academic community of highly talented faculty, staff, and students...albeit with change. Professor Bruce Hargreaves is set to retire after 38 years at Lehigh. We all wish Bruce and his family good health and much success for years to come. EES achievements in 2014 made it difficult to select what to highlight in the following pages. Noteworthy were the election of Professor Ken Kodama as a Fellow of the American Association for the Advancement of Science, the awarding of the Christian and Mary Linback award for distinguished teaching to Professor Frank Pazzaglia, and the selection of EES graduate student Helen Malenda as a National Science Foundation Fellow. The newsletter also gives me an opportunity to acknowledge the generosity of our alumni who have given their time to share their career experiences with our students or their wealth to EES to embellish the educational experiences we can provide. For many earth and environmental scientists, a field setting always stirs emotions, provides awe and wonder, and inspires our curiosity. The field setting also provides a strong social learning environment where professor-student and peer-to-peer relations flourish. Inspirational field trips and summer field camp provides students with the opportunity to discover the breadth and scale of the many processes that have shaped the Earth. Thanks to the generosity of the Chevron Corporation and Chevron-EES alumni our field programs got a boost in 2014.
    [Show full text]
  • Ice-Rafted Detritus Events in the Arctic During the Last Glacial Interval, and the Timing of the Innuitian and Laurentide Ice Sheet Calving Events Dennis A
    Old Dominion University ODU Digital Commons OEAS Faculty Publications Ocean, Earth & Atmospheric Sciences 8-2008 Ice-Rafted Detritus Events in the Arctic During the Last Glacial Interval, and the Timing of the Innuitian and Laurentide Ice Sheet Calving Events Dennis A. Darby Old Dominion University, [email protected] Paula Zimmerman Old Dominion University Follow this and additional works at: https://digitalcommons.odu.edu/oeas_fac_pubs Part of the Glaciology Commons, and the Oceanography and Atmospheric Sciences and Meteorology Commons Repository Citation Darby, Dennis A. and Zimmerman, Paula, "Ice-Rafted Detritus Events in the Arctic During the Last Glacial Interval, and the Timing of the Innuitian and Laurentide Ice Sheet Calving Events" (2008). OEAS Faculty Publications. 18. https://digitalcommons.odu.edu/oeas_fac_pubs/18 Original Publication Citation Darby, D. A., & Zimmerman, P. (2008). Ice-rafted detritus events in the Arctic during the last glacial interval, and the timing of the Innuitian and Laurentide ice sheet calving events. Polar Research, 27(2), 114-127. doi: 10.1111/j.1751-8369.2008.00057.x This Article is brought to you for free and open access by the Ocean, Earth & Atmospheric Sciences at ODU Digital Commons. It has been accepted for inclusion in OEAS Faculty Publications by an authorized administrator of ODU Digital Commons. For more information, please contact [email protected]. Ice-rafted detritus events in the Arctic during the last glacial interval, and the timing of the Innuitian and Laurentide ice sheet calving events Dennis A. Darby & Paula Zimmerman Dept. of Ocean, Earth, and Atmospheric Sciences, Old Dominion University, Norfolk, VA 23529, USA Keywords Abstract Arctic Ocean; ice-rafting events; glacial collapses; sea ice; Fe grain provenance.
    [Show full text]