Millions of Years of Greenland Ice Sheet History Recorded in Ocean Sediments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Vegetation and Fire at the Last Glacial Maximum in Tropical South America
Past Climate Variability in South America and Surrounding Regions Developments in Paleoenvironmental Research VOLUME 14 Aims and Scope: Paleoenvironmental research continues to enjoy tremendous interest and progress in the scientific community. The overall aims and scope of the Developments in Paleoenvironmental Research book series is to capture this excitement and doc- ument these developments. Volumes related to any aspect of paleoenvironmental research, encompassing any time period, are within the scope of the series. For example, relevant topics include studies focused on terrestrial, peatland, lacustrine, riverine, estuarine, and marine systems, ice cores, cave deposits, palynology, iso- topes, geochemistry, sedimentology, paleontology, etc. Methodological and taxo- nomic volumes relevant to paleoenvironmental research are also encouraged. The series will include edited volumes on a particular subject, geographic region, or time period, conference and workshop proceedings, as well as monographs. Prospective authors and/or editors should consult the series editor for more details. The series editor also welcomes any comments or suggestions for future volumes. EDITOR AND BOARD OF ADVISORS Series Editor: John P. Smol, Queen’s University, Canada Advisory Board: Keith Alverson, Intergovernmental Oceanographic Commission (IOC), UNESCO, France H. John B. Birks, University of Bergen and Bjerknes Centre for Climate Research, Norway Raymond S. Bradley, University of Massachusetts, USA Glen M. MacDonald, University of California, USA For futher -
The Eocene Arctic Azolla Bloom: Environmental Conditions, Productivity and Carbon Drawdown
Geobiology (2009), 7, 155–170 DOI: 10.1111/j.1472-4669.2009.00195.x TheBlackwell Publishing Ltd Eocene Arctic Azolla bloom: environmental conditions, productivity and carbon drawdown E. N. SPEELMAN,1 M. M. L. VAN KEMPEN,2 J. BARKE,3 H. BRINKHUIS,3 G. J. REICHART,1 A. J. P. SMOLDERS,2 J. G. M. ROELOFS,2 F. SANGIORGI,3 J. W. DE LEEUW,1,3,4 A. F. LOTTER3 AND J. S. SINNINGHE DAMSTÉ1,4 1Faculty of Geosciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands 2Department of Aquatic Ecology and Environmental Biology, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands 3Institute of Environmental Biology, Laboratory of Palaeobotany and Palynology, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands 4NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, PO Box 59, 1790 AB Den Burg, Texel, The Netherlands ABSTRACT Enormous quantities of the free-floating freshwater fern Azolla grew and reproduced in situ in the Arctic Ocean during the middle Eocene, as was demonstrated by microscopic analysis of microlaminated sediments recovered from the Lomonosov Ridge during Integrated Ocean Drilling Program (IODP) Expedition 302. The timing of the Azolla phase (~48.5 Ma) coincides with the earliest signs of onset of the transition from a greenhouse towards the modern icehouse Earth. The sustained growth of Azolla, currently ranking among the fastest growing plants on Earth, in a major anoxic oceanic basin may have contributed to decreasing atmospheric pCO2 levels via burial of Azolla-derived organic matter. The consequences of these enormous Azolla blooms for regional and global nutrient and carbon cycles are still largely unknown. -
Safeguarding the Arctic Why the U.S
Safeguarding the Arctic Why the U.S. Must Lead in the High North By Cathleen Kelly and Miranda Peterson January 22, 2015 “As the United States assumes the Chairmanship of the Arctic Council, it is more important than ever that we have a coordinated national effort that takes advantage of our combined expertise and efforts in the Arctic region to promote our shared values and priorities.” — President Obama, Executive Order on Enhancing Coordination of National Efforts in the Arctic, January 21, 20151 While many Americans do not consider the United States to be an Arctic nation, Alaska—which constitutes 16 percent of the country’s landmass and sits on the Arctic Circle—puts the country solidly in that category.2 Consequently, it is with good reason that the United States has a seat on the Arctic Council. As Arctic warming accelerates, U.S. leadership in the High North is key not only to the public health and safety of Americans and other people in the region, but also to U.S. national security and the fate of the planet. In just three months, U.S. Secretary of State John Kerry will become chairman of the Arctic Council. The two-year position rotates among the eight Arctic nations3—Canada, Finland, Iceland, Norway, Russia, Sweden, the United States, and Denmark, including Greenland and the Faroe Islands—and is a powerful platform for shaping how the risks and opportunities of increasing commercial activity at the top of the world are managed. To ready the administration for Secretary Kerry’s turn to hold the Arctic Council gavel from 2015 to 2017, President Barack Obama recently issued an executive order to better coordinate national efforts in the Arctic.4 The executive order is the latest signal from the White House that President Obama and Secretary Kerry are focused on preparing the nation for dramatic changes in the Arctic and protecting U.S. -
Highs and Lows: Height Changes in the Ice Sheets Mapped EGU Press Release on Research Published in the Cryosphere
15 Highs and lows: height changes in the ice sheets mapped EGU press release on research published in The Cryosphere Researchers from the Alfred Wegener Institute in Germany have used satellite data to map elevation and elevation changes in both Greenland and Antarctica. The new maps are the most complete published to date, from a single satellite mission. They also show the ice sheets are losing volume at an unprecedented rate of about 500 cubic kilometres per year. The results are now published in The Cryosphere, an open access journal of the European Geosciences Union (EGU). “The new elevation maps are snapshots of the current state of the ice sheets,” says lead-author Veit Helm of the Alfred Wegener Insti- tute, Helmholtz Centre for Polar and Marine Research (AWI), in Bremerhaven, Germany. The snapshots are very accurate, to just a few metres in height, and cover close to 16 million km2 of the area of the ice sheets. “This is 500,000 square kilometres more than any previous elevation model from altimetry – about the size of Spain.” Satellite altimetry missions measure height by bouncing radar New elevation model of Greenland derived from CryoSat-2. More elevation and elevation change maps are available online. (Credit: Helm et al., The Cryo- or laser pulses off the surface of the ice sheets and surrounding sphere, 2014) water. The team derived the maps, which show how height differs across each of the ice sheets, using just over a year’s worth of data collected in 2012 by the altimeter on board the European Space authors. -
Imaging Laurentide Ice Sheet Drainage Into the Deep Sea: Impact on Sediments and Bottom Water
Imaging Laurentide Ice Sheet Drainage into the Deep Sea: Impact on Sediments and Bottom Water Reinhard Hesse*, Ingo Klaucke, Department of Earth and Planetary Sciences, McGill University, Montreal, Quebec H3A 2A7, Canada William B. F. Ryan, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964-8000 Margo B. Edwards, Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, HI 96822 David J. W. Piper, Geological Survey of Canada—Atlantic, Bedford Institute of Oceanography, Dartmouth, Nova Scotia B2Y 4A2, Canada NAMOC Study Group† ABSTRACT the western Atlantic, some 5000 to 6000 State-of-the-art sidescan-sonar imagery provides a bird’s-eye view of the giant km from their source. submarine drainage system of the Northwest Atlantic Mid-Ocean Channel Drainage of the ice sheet involved (NAMOC) in the Labrador Sea and reveals the far-reaching effects of drainage of the repeated collapse of the ice dome over Pleistocene Laurentide Ice Sheet into the deep sea. Two large-scale depositional Hudson Bay, releasing vast numbers of ice- systems resulting from this drainage, one mud dominated and the other sand bergs from the Hudson Strait ice stream in dominated, are juxtaposed. The mud-dominated system is associated with the short time spans. The repeat interval was meandering NAMOC, whereas the sand-dominated one forms a giant submarine on the order of 104 yr. These dramatic ice- braid plain, which onlaps the eastern NAMOC levee. This dichotomy is the result of rafting events, named Heinrich events grain-size separation on an enormous scale, induced by ice-margin sifting off the (Broecker et al., 1992), occurred through- Hudson Strait outlet. -
The Cordilleran Ice Sheet 3 4 Derek B
1 2 The cordilleran ice sheet 3 4 Derek B. Booth1, Kathy Goetz Troost1, John J. Clague2 and Richard B. Waitt3 5 6 1 Departments of Civil & Environmental Engineering and Earth & Space Sciences, University of Washington, 7 Box 352700, Seattle, WA 98195, USA (206)543-7923 Fax (206)685-3836. 8 2 Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada 9 3 U.S. Geological Survey, Cascade Volcano Observatory, Vancouver, WA, USA 10 11 12 Introduction techniques yield crude but consistent chronologies of local 13 and regional sequences of alternating glacial and nonglacial 14 The Cordilleran ice sheet, the smaller of two great continental deposits. These dates secure correlations of many widely 15 ice sheets that covered North America during Quaternary scattered exposures of lithologically similar deposits and 16 glacial periods, extended from the mountains of coastal south show clear differences among others. 17 and southeast Alaska, along the Coast Mountains of British Besides improvements in geochronology and paleoenvi- 18 Columbia, and into northern Washington and northwestern ronmental reconstruction (i.e. glacial geology), glaciology 19 Montana (Fig. 1). To the west its extent would have been provides quantitative tools for reconstructing and analyzing 20 limited by declining topography and the Pacific Ocean; to the any ice sheet with geologic data to constrain its physical form 21 east, it likely coalesced at times with the western margin of and history. Parts of the Cordilleran ice sheet, especially 22 the Laurentide ice sheet to form a continuous ice sheet over its southwestern margin during the last glaciation, are well 23 4,000 km wide. -
Regional and Global Climate for the Mid-Pliocene Using the University of Toronto Version of CCSM4 and Pliomip2 Boundary Conditions
Clim. Past, 13, 919–942, 2017 https://doi.org/10.5194/cp-13-919-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Regional and global climate for the mid-Pliocene using the University of Toronto version of CCSM4 and PlioMIP2 boundary conditions Deepak Chandan and W. Richard Peltier Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario, M5S 1A7, Canada Correspondence to: Deepak Chandan ([email protected]) Received: 20 February 2017 – Discussion started: 24 February 2017 Revised: 6 June 2017 – Accepted: 19 June 2017 – Published: 19 July 2017 Abstract. The Pliocene Model Intercomparison Project 1 Introduction Phase 2 (PlioMIP2) is an international collaboration to simu- late the climate of the mid-Pliocene interglacial, correspond- The mid-Pliocene warm period, 3.3–3 million years ago, ing to marine isotope stage KM5c (3.205 Mya), using a wide was the most recent time period during which the global selection of climate models with the objective of understand- temperature was higher than present for an interval of time ing the nature of the warming that is known to have occurred longer than any of the Pleistocene interglacials. The preva- during the broader mid-Pliocene warm period. PlioMIP2 lence of widespread warming during this time has been in- builds on the successes of PlioMIP by shifting the focus to a ferred from proxy-based sea surface temperature (SST) re- specific interglacial and using a revised set of geographic and constructions from a number of widely distributed deep- orbital boundary conditions. -
Erik the Red's Land
In May this year, a Briton named Alex Hartley gamely claimed as his personal territory a tiny island in Sval- bard that had been revealed by retreating ice. Sval bard’s islands have a long history of claims and counter-claims by adventurers of diverse nations: the question of who owns the Arctic is an old one. In this next article in our unreviewed biographical/historical series, Frode Skarstein describes Norway’s bid to wrest a corner of Greenland from the Danish crown 75 years ago. Erik the Red’s Land: the land that never was Frode Skarstein Norwegian Polar Institute, Polar Environmental Centre, NO-9296 Tromsø, Norway, [email protected]. “Saturday, 27th of June, 1931. Eventful day. A long coded telegram late last night that I deciphered during the night. At fi ve pm we hoisted the fl ag and occupied the land from Calsbergfjord to Besselsfjord. It will be exciting to see how it develops.” (Devold 1931: author’s translation.) Although not as pithy as the Unity’s log entry from 1616—“Cape Hoorn in 57° 48' S. Rounded 8 p.m.”—when the southern tip of the Americas was fi rst rounded (Hough 1971), the above diary entry by Hallvard Devold is still a salient understatement given the context in which it was made. The next day Devold sent the following telegram to a select few Norwegian newspapers: “In the presence of Eiliv Herdal, Tor Halle, Ingvald Strøm and Søren Rich- ter, the Norwegian fl ag has been hoisted today in Myggbukta. And the land between Carls berg fjord to the south and Bessel fjord to the north occupied in His Pawns in their game: Devold (left) and fellow expe di tion mem bers during the Majesty King Haakon’s name. -
Climate Change and Cultural Evolution
VOLUME 24 ∙ NO 2 ∙ DEcembEr 2016 MAGAZINE CLIMATE CHANGE AND CULTURAL EVOLUTION EDITORS claudio Latorre, Janet Wilmshurst and Lucien von Gunten 54 ANNOUNCEMENTS Calendar News 1st Forest Dynamics Workshop 21-24 March 2017 - Jutland, Denmark PAGES 5th OSM and 3rd YSM TropPeat: Low-latitude peat ecosystems Excitement is building for PAGES’ flagship event, the Open Science Meeting and 26-28 March 2017 - Honolulu, USA associated Young Scientists Meeting, in Zaragoza, Spain, in 2017. The YSM runs from 7-9 May. Over 80 participants have been selected. Resilience in Long-term Ecological Datasets The OSM runs from 9-13 May. More than 30 sessions have been proposed. Abstract 27-31 March 2017 - bergen, Norway submissions close 20 December 2016. Early registration closes 20 February 2017 and all Lessons from 1.5-2°C warmer world online registrations must be submitted by 20 April 2017. 4-7 April 2017 - bern, Switzerland read more and register: http://pages-osm.org The social media hashtag for both events is #PAGES17. Late Pliocene climate variability 19-24 April 2017 - Durham, UK DOI numbers now in PAGES Magazine Proxy system modeling and data assimilation Have you noticed? All PAGES Magazines and associated articles from this issue forward 29 May - 1 June 2017 - Louvain-la-Neuve, belgium will be assigned digital object identifier (DOI) numbers. DOI numbers provide a permanent link to the article location on the internet. Approximately 133 million DOIs www.pastglobalchanges.org/calendar have been assigned through a federation of registration Agencies world-wide with an annual growth rate of 16% (Source: https://www.doi.org/faq.html). -
Early Pliocene (Pre–Ice Age) El Niño–Like Global Climate: Which El Niño?
Early Pliocene (pre–Ice Age) El Niño–like global climate: Which El Niño? Peter Molnar* Department of Geological Sciences and Cooperative Institute for Research in Environmental Science (CIRES), University of Colo- rado, Boulder, Colorado 80309-0399, USA Mark A. Cane Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, New York 10964-8000, USA ABSTRACT warmest region extending into the eastern- in part from theoretical predictions for how the most Pacifi c Ocean, not near the dateline as structure of the upper ocean and its circulation Paleoceanographic data from sites near occurs in most El Niño events. This inference have changed over late Cenozoic time (e.g., the equator in the eastern and western Pacifi c is consistent with equatorial Pacifi c proxy Cane and Molnar, 2001; Philander and Fedorov, Ocean show that sea-surface temperatures, data indicating that at most a small east-west 2003). Not surprisingly, controversies continue and apparently also the depth and tempera- gradient in sea-surface temperature seems to to surround hypothesized stimuli for switches ture distribution in the thermocline, have have existed along the equator in late Mio- both from permanent El Niño to the present-day changed markedly over the past ~4 m.y., from cene to early Pliocene time. Accordingly, such ENSO state and from ice-free Laurentide and those resembling an El Niño state before ice a difference in sea-surface temperatures may Fenno-Scandinavian regions to the alternation sheets formed in the Northern Hemisphere account for the large global differences in cli- between glacial and interglacial periods that has to the present-day marked contrast between mate that characterized the earth before ice occurred since ca. -
Orbital Control of Productivity and of Sea-Ice Production/Drifting in the Central Arctic Ocean During the Late Quaternary
Geophysical Research Abstracts Vol. 21, EGU2019-1743, 2019 EGU General Assembly 2019 © Author(s) 2018. CC Attribution 4.0 license. Orbital control of productivity and of sea-ice production/drifting in the central Arctic Ocean during the late Quaternary Claude Hillaire-Marcel (1), Anne de Vernal (1), Yanguang Liu (2), Jenny Maccali (3), Karl Purcell (1), Bassam Ghaleb (1), Allison Jacobel (4), Rüdiger Stein (5), Jerry McManus (4), and Michel Crucifix (6) (1) GEOTOP-UQAM, Université du Québec, Montreal, Canada ([email protected]), (2) First Institute of Oceanography, State Oceanic Administration, Qingdao, China (yanguangliu@fio.org.cn), (3) Department of Earth Sciences, University of Bergen, Norway ([email protected]), (4) Lamont-Doherty Earth Observatory of Columbia University, New-York, USA ([email protected]), (5) Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany ([email protected]), (6) ELIC, Université catholique de Louvain, Louvain-la-Neuve, Belgium (michel.crucifi[email protected]) The recently revised chronostratigraphy of the central Arctic Ocean sedimentary sequences (https://doi.org/10.1002/2017GC007050) provides the means to insert the Arctic paleoceanography into the Earth’s global climate history. Based on magnetostratigraphy, 14C ages and 230Th-231Pa excess extinction ages in a series of sedimentary cores raised from the Mendeleev and Lomonosov ridges by the R/V Polarstern, Healy and MV Xue Long ice-breakers, with chronological complementary information from pre-2000 studies, we have been able to estimate sedimentation rates ranging from less than a few mm/ka to a few cm/ka along these ridges, with the highest accumulation rates eastward, near the ice-factories of the Russian shelf. -
The Need for Fast Near-Term Climate Mitigation to Slow Feedbacks and Tipping Points
The Need for Fast Near-Term Climate Mitigation to Slow Feedbacks and Tipping Points Critical Role of Short-lived Super Climate Pollutants in the Climate Emergency Background Note DRAFT: 27 September 2021 Institute for Governance Center for Human Rights and & Sustainable Development (IGSD) Environment (CHRE/CEDHA) Lead authors Durwood Zaelke, Romina Picolotti, Kristin Campbell, & Gabrielle Dreyfus Contributing authors Trina Thorbjornsen, Laura Bloomer, Blake Hite, Kiran Ghosh, & Daniel Taillant Acknowledgements We thank readers for comments that have allowed us to continue to update and improve this note. About the Institute for Governance & About the Center for Human Rights and Sustainable Development (IGSD) Environment (CHRE/CEDHA) IGSD’s mission is to promote just and Originally founded in 1999 in Argentina, the sustainable societies and to protect the Center for Human Rights and Environment environment by advancing the understanding, (CHRE or CEDHA by its Spanish acronym) development, and implementation of effective aims to build a more harmonious relationship and accountable systems of governance for between the environment and people. Its work sustainable development. centers on promoting greater access to justice and to guarantee human rights for victims of As part of its work, IGSD is pursuing “fast- environmental degradation, or due to the non- action” climate mitigation strategies that will sustainable management of natural resources, result in significant reductions of climate and to prevent future violations. To this end, emissions to limit temperature increase and other CHRE fosters the creation of public policy that climate impacts in the near-term. The focus is on promotes inclusive socially and environmentally strategies to reduce non-CO2 climate pollutants, sustainable development, through community protect sinks, and enhance urban albedo with participation, public interest litigation, smart surfaces, as a complement to cuts in CO2.