Chapter-Vi Difectants

Total Page:16

File Type:pdf, Size:1020Kb

Chapter-Vi Difectants R.KAVITHA, M.PHARM, LECTURER, DEPARTMENT OF PHARMACEUTICS, SRM COLLEGE OF PHARMACY, SRM UNIVERSITY, KATTANKULATHUR. CHEMICAL METHODS OF DISINFECTION: Disinfectants are those chemicals that destroy pathogenic bacteria from inanimate surfaces. Some chemical have very narrow spectrum of activity and some have very wide. Those chemicals that can sterilize are called chemisterilants. Those chemicals that can be safely applied over skin and mucus membranes are called antiseptics. Classification of disinfectants: 1. Based on consistency a. Liquid (E.g., Alcohols, Phenols) b. Gaseous (Formaldehyde vapour, Ethylene oxide) 2. Based on spectrum of activity a. High level b. Intermediate level c. Low level 3. Based on mechanism of action a. Action on membrane (E.g., Alcohol, detergent) b. Denaturation of cellular proteins (E.g., Alcohol, Phenol) c. Oxidation of essential sulphydryl groups of enzymes (E.g., H2O2, Halogens) d. Alkylation of amino-, carboxyl- and hydroxyl group (E.g., Ethylene Oxide, Formaldehyde) e. Damage to nucleic acids (Ethylene Oxide, Formaldehyde) ALCOHOLS: Mode of action: Alcohols dehydrate cells, disrupt membranes and cause coagulation of protein. Examples: Ethyl alcohol, isopropyl alcohol and methyl alcohol Application: A 70% aqueous solution is more effective at killing microbes than absolute alcohols. 70% ethyl alcohol (spirit) is used as antiseptic on skin. Isopropyl alcohol is preferred to ethanol. It can also be used to disinfect surfaces. It is used to disinfect clinical thermometers. Methyl alcohol kills fungal spores, hence is useful in disinfecting inoculation hoods. Disadvantages: Skin irritant, volatile (evaporates rapidly), inflammable ALDEHYDES: Mode of action: Acts through alkylation of amino-, carboxyl- or hydroxyl group, and probably damages nucleic acids. It kills all microorganisms, including spores. Examples: Formaldehyde, Gluteraldehyde Application: 40% Formaldehyde (formalin) is used for surface disinfection and fumigation of rooms, chambers, operation theatres, biological safety cabinets, wards, sick rooms etc. Fumigation is achieved by boiling formalin, heating paraformaldehyde or treating formalin with potassium permanganate. It also sterilizes bedding, furniture and books. 10% formalin with 0.5% tetraborate sterilizes clean metal instruments. 2% Gluteraldehyde is used to sterilize ` thermometers, cyst scopes, bronchoscopes, centrifuges, anaesthetic equipments etc. An exposure of at least 3 ` hours at alkaline pH is required for action by Gluteraldehyde. 2% formaldehyde at 40oC for 20 minutes is used to disinfect wool and 0.25% at 60oC for six hours to disinfect animal hair and bristles.D PHENOL: ` Mode of action: Act by disruption of membranes, precipitation of proteins and inactivation of enzymes. ` Examples: 5% phenol, 1-5% Cresol, 5% Lysol (a saponified cresol), hexachlorophene, chlorhexidine, chloroxylenol ` (Dettol) ` Applications: Joseph Lister used it to prevent infection of surgical wounds. Phenols are coal-tar derivatives. ` They act as disinfectants at high concentration and as antiseptics at low concentrations. They are bactericidal, fungicidal, mycobactericidal but are inactive against spores and most viruses. They are not readily inactivated by organic matter. The corrosive phenolics are used for disinfection of ward floors, in discarding jars in laboratories and ` disinfection of bedpans. Chlorhexidine can be used in an isopropanol solution for skin disinfection, or as an ` aqueous solution for wound irrigation. It is often used as an antiseptic hand wash. 20% Chlorhexidine gluconate solution is used for pre-operative hand and skin preparation and for general skin disinfection. HALOGENS: Mode of action: They are oxidizing agents and cause damage by oxidation of essential sulfydryl groups of enzymes. Chlorine reacts with water to form hypochlorous acid, which is microbicidal. Examples: Chlorine compounds (chlorine, bleach, hypochlorite) and iodine compounds (tincture iodine, iodophores) Applications: Tincture of iodine (2% iodine in 70% alcohol) is an antiseptic. Iodine can be combined with neutral ` carrier polymers such as polyvinylpyrrolidone to prepare iodophores such as povidone-iodine. Iodophores permit slow release and reduce the irritation of the antiseptic. For hand washing iodophores are diluted in 50% alcohol. ` 10% Povidone Iodine is used undiluted in pre and postoperative skin disinfection. Chlorine gas is used to bleach water. Household bleach can be used to disinfect floors. Household bleach used in a stock dilution of 1:10. ` In higher concentrations chlorine is used to disinfect swimming pools. 0.5% sodium hypochlorite is used in serology and virology. ` Used at a dilution of 1:10 in decontamination of spillage of infectious material. ` Mercuric chloride is used as a disinfectant. ` Disadvantages: They are rapidly inactivated in the presence of organic matter. Iodine is corrosive and staining. ` Bleach solution is corrosive and will corrode stainless steel surfaces. ` HEAVY METALS: ` Mode of action: Act by precipitation of proteins and oxidation of sulfydryl groups. They are bacteriostatic. ` Examples: Mercuric chloride, silver nitrate, copper sulphate, organic mercury salts (e.g., mercurochrome, ` merthiolate) ` Applications: 1% silver nitrate solution can be applied on eyes as treatment for opthalmia neonatorum (Crede’s method). This procedure is no longer followed. Silver sulphadiazine is used topically to help to prevent colonization and infection of burn tissues. Mercurials are active against viruses at dilution of 1:500 to 1:1000. ` Merthiolate at a concentration of 1:10000 is used in preservation of serum. Copper salts are used as a fungicide. ` Disadvantages: Mercuric chloride is highly toxic, are readily inactivated by organic matter. SURFACE ACTIVE AGENTS: Mode of actions: They have the property of concentrating at interfaces between lipid containing membrane of bacterial cell and surrounding aqueous medium. These compounds have long chain hydrocarbons that are fat soluble and charged ions that are water- soluble. Since they contain both of these, they concentrate on the surface of membranes. They disrupt membrane resulting in leakage of cell constituents. Examples: These are soaps or detergents. Detergents can be anionic or cationic. Detergents containing negatively charged long chain hydrocarbon are called anionic detergents. These include soaps and bile salts. DYES: Mode of action: Acridine dyes are bactericidal because of their interaction with bacterial nucleic acids. Examples: Aniline dyes such as crystal violet, malachite green and brilliant green. Acridine dyes such as acriflavin and aminacrine. Acriflavin is a mixture of proflavine and euflavine. Only euflavine has effective antimicrobial properties. A related dye, ethidium bromide, is also germicidal. It intercalates between base pairs in DNA. They are more effective against gram positive bacteria than gram negative bacteria and are more bacteriostatic in action. Applications: They may be used topically as antiseptics to treat mild burns. They are used as paint on the skin to treat bacterial skin infections. The dyes are used as selective agents in certain selective media. TESTING OF DISINFECTANTS: A disinfectant must be tested to know the required effective dilution, the time taken to effect disinfection and to periodically monitor its activity. As disinfectants are known to lose their activity on standing as well as in the presence of organic matter, their activity must be periodically tested. Different methods 1. Koch’s method 2. Rideal Walker Method 3. Chick Martin test 4. Capacity use dilution test (Kelsey-Sykes test) Rideal -Walker Chick-Martin Volume medium 5.0 ml 10.0 ml Diluent for test disinfectant Water Yeast suspension Reaction temperature 17.5±0.5ºC 30ºC Organism Salmonella typhi Salmonella typhi, Staphylococcus aureus Sampling times 2.5, 5.0, 7.5, 10.0 min. 30.0 min. Calculation of coefficient Dilution test killing in 7.5 min divided by same for phenol Mean concentration of phenol showing no growth after 30 min. divided by same for test.
Recommended publications
  • Antiseptics and Disinfectants for the Treatment Of
    Verstraelen et al. BMC Infectious Diseases 2012, 12:148 http://www.biomedcentral.com/1471-2334/12/148 RESEARCH ARTICLE Open Access Antiseptics and disinfectants for the treatment of bacterial vaginosis: A systematic review Hans Verstraelen1*, Rita Verhelst2, Kristien Roelens1 and Marleen Temmerman1,2 Abstract Background: The study objective was to assess the available data on efficacy and tolerability of antiseptics and disinfectants in treating bacterial vaginosis (BV). Methods: A systematic search was conducted by consulting PubMed (1966-2010), CINAHL (1982-2010), IPA (1970- 2010), and the Cochrane CENTRAL databases. Clinical trials were searched for by the generic names of all antiseptics and disinfectants listed in the Anatomical Therapeutic Chemical (ATC) Classification System under the code D08A. Clinical trials were considered eligible if the efficacy of antiseptics and disinfectants in the treatment of BV was assessed in comparison to placebo or standard antibiotic treatment with metronidazole or clindamycin and if diagnosis of BV relied on standard criteria such as Amsel’s and Nugent’s criteria. Results: A total of 262 articles were found, of which 15 reports on clinical trials were assessed. Of these, four randomised controlled trials (RCTs) were withheld from analysis. Reasons for exclusion were primarily the lack of standard criteria to diagnose BV or to assess cure, and control treatment not involving placebo or standard antibiotic treatment. Risk of bias for the included studies was assessed with the Cochrane Collaboration’s tool for assessing risk of bias. Three studies showed non-inferiority of chlorhexidine and polyhexamethylene biguanide compared to metronidazole or clindamycin. One RCT found that a single vaginal douche with hydrogen peroxide was slightly, though significantly less effective than a single oral dose of metronidazole.
    [Show full text]
  • Sterilization and Disinfection
    Sterilization and Disinfection Sterilization is defined as the process where all the living microorganisms, including bacterial spores are killed. Sterilization can be achieved by physical, chemical and physiochemical means. Chemicals used as sterilizing agents are called chemisterilants. Disinfection is the process of elimination of most pathogenic microorganisms (excluding bacterial spores) on inanimate objects. Disinfection can be achieved by physical or chemical methods. Chemicals used in disinfection are called disinfectants. Different disinfectants have different target ranges, not all disinfectants can kill all microorganisms. Some methods of disinfection such as filtration do not kill bacteria, they separate them out. Sterilization is an absolute condition while disinfection is not. The two are not synonymous. Decontamination is the process of removal of contaminating pathogenic microorganisms from the articles by a process of sterilization or disinfection. It is the use of physical or chemical means to remove, inactivate, or destroy living organisms on a surface so that the organisms are no longer infectious. Sanitization is the process of chemical or mechanical cleansing, applicable in public health systems. Usually used by the food industry. It reduces microbes on eating utensils to safe, acceptable levels for public health. Asepsis is the employment of techniques (such as usage of gloves, air filters, uv rays etc) to achieve microbe-free environment. Antisepsis is the use of chemicals (antiseptics) to make skin or mucus membranes devoid of pathogenic microorganisms. Bacteriostasis is a condition where the multiplication of the bacteria is inhibited without killing them. Bactericidal is that chemical that can kill or inactivate bacteria. Such chemicals may be called variously depending on the spectrum of activity, such as bactericidal, virucidal, fungicidal, microbicidal, sporicidal, tuberculocidal or germicidal.
    [Show full text]
  • Classification of Medicinal Drugs and Driving: Co-Ordination and Synthesis Report
    Project No. TREN-05-FP6TR-S07.61320-518404-DRUID DRUID Driving under the Influence of Drugs, Alcohol and Medicines Integrated Project 1.6. Sustainable Development, Global Change and Ecosystem 1.6.2: Sustainable Surface Transport 6th Framework Programme Deliverable 4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Due date of deliverable: 21.07.2011 Actual submission date: 21.07.2011 Revision date: 21.07.2011 Start date of project: 15.10.2006 Duration: 48 months Organisation name of lead contractor for this deliverable: UVA Revision 0.0 Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006) Dissemination Level PU Public PP Restricted to other programme participants (including the Commission x Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) DRUID 6th Framework Programme Deliverable D.4.4.1 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Page 1 of 243 Classification of medicinal drugs and driving: Co-ordination and synthesis report. Authors Trinidad Gómez-Talegón, Inmaculada Fierro, M. Carmen Del Río, F. Javier Álvarez (UVa, University of Valladolid, Spain) Partners - Silvia Ravera, Susana Monteiro, Han de Gier (RUGPha, University of Groningen, the Netherlands) - Gertrude Van der Linden, Sara-Ann Legrand, Kristof Pil, Alain Verstraete (UGent, Ghent University, Belgium) - Michel Mallaret, Charles Mercier-Guyon, Isabelle Mercier-Guyon (UGren, University of Grenoble, Centre Regional de Pharmacovigilance, France) - Katerina Touliou (CERT-HIT, Centre for Research and Technology Hellas, Greece) - Michael Hei βing (BASt, Bundesanstalt für Straßenwesen, Germany).
    [Show full text]
  • Alcohol ⊗ Hypoglycaemia, and Hypokalaemia May Occur
    Acridine Derivatives/Alcohol 1625 Acriflavinium Chloride (rINN) Pharmacopoeias. Chin., Eur. (see p.vii), and Jpn describe the Booze; Drinks; Grog; Juice; Jungle juice; Liq; Liquor; Lunch head; Moonshine; Piss; Sauce; Schwillins. Acriflavine; Acriflavine Hydrochloride; Acriflavinii Chloridum; monohydrate. Ph. Eur. 6.2 (Ethacridine Lactate Monohydrate). A yellow crys- Acriflavinii Dichloridum; Acriflavinium, Chlorure d’; Akriflavinium- Pharmacopoeias. Various strengths are included in Br., Chin., talline powder. Sparingly soluble in water; very slightly soluble chlorid; Cloruro de acriflavinio. A mixture of 3,6-diamino-10- Eur. (see p.vii), Int., Jpn, US, and Viet. Also in USNF. in alcohol; practically insoluble in dichloromethane. A 2% solu- In Martindale the term alcohol is used for alcohol 95 or 96% v/v. methylacridinium chloride hydrochloride and 3,6-diaminoacrid- tion in water has a pH of 5.5 to 7.0. Protect from light. ine dihydrochloride. Ph. Eur. 6.2 (Ethanol, Anhydrous; Ethanolum Anhydricum; Etha- nol BP 2008). It contains not less than 99.5% v/v or 99.2% w/w Акрифлавиния Хлорид Proflavine Hemisulfate of C2H5OH at 20°. A colourless, clear, volatile, flammable, hy- CAS — 8063-24-9; 65589-70-0. Proflavine Hemisulphate (pINNM); Hemisulfato de proflavina; groscopic liquid; it burns with a blue, smokeless flame. B.p. ATC — R02AA13. Neutral Proflavine Sulphate; Proflavine, Hémisulfate de; Proflavini about 78°. Miscible with water and with dichloromethane. Pro- ATC Vet — QG01AC90; QR02AA13. Hemisulfas. 3,6-Diaminoacridine sulphate dihydrate. tect from light. The BP 2008 gives Absolute Alcohol and Dehydrated Alcohol Профлавина Гемисульфат as approved synonyms. (C13H11N3)2,H2SO4,2H2O = 552.6. Ph. Eur. 6.2 (Ethanol (96 per cent)).
    [Show full text]
  • The Use of Povidone Iodine Nasal Spray and Mouthwash During the Current COVID-19 Pandemic May Protect Healthcare Workers and Reduce Cross Infection
    March 27, 2020 The use of Povidone Iodine nasal spray and mouthwash during the current COVID-19 pandemic may protect healthcare workers and reduce cross infection. J Kirk-Bayley MRCP FRCA EDIC FFICM, Consultant Intensivist & Anaesthetist, Royal Surrey County Hospital S Challacombe, PhD, FRCPath, FDSRCS, FMedSci, DSc(h.c), FKC, Martin Rushton Professor of Oral Medicine, KCL VS Sunkaraneni LLM FRCS(2019), Consultant Rhinologist, Royal Surrey County Hospital J Combes FDS FRCS (OMFS), Lt Col RAMC, Consultant Advisor (ARMY) in OMFS, Defence Medical Services Abstract In late 2019 a novel coronavirus, SARS-CoV-2 causing Coronavirus disease 2019 (COVID-19) appeared in Wuhan China, and on 11th March 2020 the World Health Organisation declared it to have developed pandemic status. Povidone-iodine (PVP-I) has a better anti-viral activity than other antiseptics, and has already been proven to be an effective virucide in vitro against severe acute respiratory syndrome and Middle East respiratory syndrome coronaviruses (SARS-CoV and MERS- CoV). Povidone iodine has been shown to be a safe therapy when inhaled nasally or gargled. We propose that a protocolised nasal inhalation and oropharyngeal wash of PVP-I should be used in the current COVID-19 pandemic to limit the spread of SARS-CoV-2 from patients to healthcare workers (and vice versa) and thus reduce the incidence of COVID-19. There should be regular use in patients with COVID-19 to limit upper respiratory SARS-CoV-2 contamination, but also use by healthcare workers prior to treating COVID 19 patients or performing procedures in and around the mouth/ nose during the pandemic, regardless of the COVID 19 status of the patient.
    [Show full text]
  • Lugol's Iodine 1 Lugol's Iodine
    Lugol's iodine 1 Lugol's iodine Lugol's iodine, also known as Lugol's solution, first made in 1829, is a solution of elemental iodine and potassium iodide in water, named after the French physician J.G.A. Lugol. Lugol's iodine solution is often used as an antiseptic and disinfectant, for emergency disinfection of drinking water, and as a reagent for starch detection in routine laboratory and medical tests. It has been used more rarely to replenish iodine deficiency.[1] However, pure potassium iodide, containing the relatively benign iodide ion without the more toxic elemental iodine, is preferred for this purpose. Formula and manufacture Lugol's solution consists of 5 g iodine (I ) and 10 g potassium iodide (KI) mixed with enough distilled water to make 2 a brown solution with a total volume of 100 mL and a total iodine content of 150 mg/mL. Potassium iodide renders the elementary iodine soluble in water through the formation of the triiodide (I) ion. It is not to be confused with tincture of iodine solutions, which consist of elemental iodine, and iodide salts dissolved in water and alcohol. Lugol's solution contains no alcohol. Other names for Lugol's solution are I KI (iodine-potassium iodide); Markodine, Strong solution (Systemic); and 2 Aqueous Iodine Solution BCP. Lugol's is obtained from chemists and pharmacists who are licensed to prepare and dispense the solution. This indicator, also called a stain, is used in many different fields. Applications • This solution is used as an indicator test for the presence of starches in organic compounds, with which it reacts by turning a dark-blue/black.
    [Show full text]
  • Alphabetical Listing of ATC Drugs & Codes
    Alphabetical Listing of ATC drugs & codes. Introduction This file is an alphabetical listing of ATC codes as supplied to us in November 1999. It is supplied free as a service to those who care about good medicine use by mSupply support. To get an overview of the ATC system, use the “ATC categories.pdf” document also alvailable from www.msupply.org.nz Thanks to the WHO collaborating centre for Drug Statistics & Methodology, Norway, for supplying the raw data. I have intentionally supplied these files as PDFs so that they are not quite so easily manipulated and redistributed. I am told there is no copyright on the files, but it still seems polite to ask before using other people’s work, so please contact <[email protected]> for permission before asking us for text files. mSupply support also distributes mSupply software for inventory control, which has an inbuilt system for reporting on medicine usage using the ATC system You can download a full working version from www.msupply.org.nz Craig Drown, mSupply Support <[email protected]> April 2000 A (2-benzhydryloxyethyl)diethyl-methylammonium iodide A03AB16 0.3 g O 2-(4-chlorphenoxy)-ethanol D01AE06 4-dimethylaminophenol V03AB27 Abciximab B01AC13 25 mg P Absorbable gelatin sponge B02BC01 Acadesine C01EB13 Acamprosate V03AA03 2 g O Acarbose A10BF01 0.3 g O Acebutolol C07AB04 0.4 g O,P Acebutolol and thiazides C07BB04 Aceclidine S01EB08 Aceclidine, combinations S01EB58 Aceclofenac M01AB16 0.2 g O Acefylline piperazine R03DA09 Acemetacin M01AB11 Acenocoumarol B01AA07 5 mg O Acepromazine N05AA04
    [Show full text]
  • RECENT DEVELOPMENTS in WOUND ANTISEPTICS by H
    Postgrad Med J: first published as 10.1136/pgmj.22.246.118 on 1 April 1946. Downloaded from 118 POST-GRADUATE MEDICAL JOURNAL April, I946 If the patient is allowed fluid by mouth, it 4. If the apparatus does not appear to be work- should be given by the feeder between times of ing, the clips should be clamped, the appa- aspiration. ratus disconnected from the gastric tube and Aspiration is performed at regular intervals some water injected down the tube to make either every hour or half-hour according to sure that it is patent. instructions. The aspirated material must always be saved The Time for Removal of the Tube: The tube is for inspection. removed under the Doctor's instructions. In 2. Continuous Suction: A study of the diagram cases of intestinal obstruction this is usually (Fig. 2) will explain the work of the apparatus, after the patient has had one bowel action, and and attention must be to the has passed flatus on at least two occasions. particular paid After operations on the stomach, the tube is following points:- removed when the aspirated contents appear I. The reservoir A must never be allowed to clear contain bile. become empty. and 2. The end of the tubing in bottle B must be Vomiting: If a patient who is undergoing gastro- below the level of the water. intestinal suction vomits, it indicates that there 3. The clips D and E must be clamped before is some fault in the procedure, and is a reflection and during the changing of the bottles A and on the management of the suction.
    [Show full text]
  • Material Safety Data Sheet
    Fisher Science Education 6771 Silver Crest Road, Nazareth, PA 18064 (800) 955-1177 Emergency Number: (800) 255-3924 Material Safety Data Sheet Section 1 – Chemical Product and Company Identification Catalog Numbers: S25944 Product Identity: Iodine Solution, Tincture Chemical Family: Not Applicable Synonyms: Tincture of Iodine Recommended Use: Laboratory chemicals Manufacturer’s Name: AquaPhoenix Scientific, Inc., 9 Barnhart Dr., Hanover, PA 17331, (866) 632-1291 Emergency Contact Number (24hr): Chemtel (800) 255-3924 Issue Date: 05/14/13 Revision Date: 05/23/13, 7/1/13 Section 2 – Hazard Identification Emergency Overview Flammable liquid. Primarily toxic by ingestion. Contact with skin may cause dryness and cracking. May cause irritation to the eyes and the respiratory system. Wash areas of contact with water. Appearance: Brown liquid Odor: Alcohol-like Target Organs: Eyes, skin, respiratory system, central nervous system, liver, pancreas, cardiovascular system. Potential Health Effects/ Routes of Exposure: Eyes: May cause irritation with stinging and burning with possible damage to the conjunctiva and cornea. Skin: Results in drying and cracking which can lead to secondary infections and dermatitis. Ingestion: Symptoms can include sleep disorders, hallucinations, distorted perceptions, ataxia, motor function changes, convulsions and tremors, coma, headaches, pulmonary changes, and alteration of gastric secretions. Inhalation: May cause irritation of the nose and mucosa of the respiratory tract. Exposure to high concentrations can cause suppression of the central nervous system with symptoms of sleepiness and lack of concentration. Chronic Effect / Carcinogenicity Chronic ingestion may cause thyroid disease. Carcinogenicity – None (IARC, NTP, OSHA) Aggravated Medical Conditions No information available These chemicals are considered hazardous by OSHA.
    [Show full text]
  • IV. Literature Cited...41
    THE DISINFECTION OF THE ORAL MUCOSA WITH CRYSTAL VIOLET AND BRILLIANT GREEN1 C. COLEMAN BERWICK George William Hooper Foundation for Medical Research and Research Laboratories of the Dental Department of the University of California, San Francisco, California CONTENTS 1. Introduction ........................................................... 22 II. The general plan, method, and results of the author's experiments ............ 23 1. First series. Results with alcohol, acetone, ether and tincture of iodine... 23 2. Second series. Results with dyes .. 25 A. Historical ................................................... 25 B. Technical .................................................... 26 C. Results with brilliant green (saturated solution in alcohol) .... ..... 27 D. Results with brilliant green (1 per cent solution in 50 per cent alcohol) 28 E. Results with brilliant green and crystal violet in solution together (1 per cent of each in 50 per cent alcohol) applied for 1.5 minute. 28 F. Results of tests similar to those in the last preceding section (E), with additional bacteriological precautions ...................... 30 G. Results of tests with brilliant green and crystal violet in solution together (1 per centof eachin aqueoussolution) compared with hydro- quinone (1 per cent aqueous solution) ...... .................... 33 H. Results of a repetition of the tests with brilliant green and crystal violet in solution together in alcohol (section E), with an extension of the period of application to the gum (from 1.5 minute) to 2 minutes ................................................... 33 I. Results of a repetition of the tests with brilliant green and crystal violet together in alcohol, in the last preceding section (H), after previous thorough flushing of the mouth with an alkaline wash and brushing of the teeth .................................... 38 3. General discussion of the results of the first two series of tests ..
    [Show full text]
  • Surgical Skin Antisepsis Preparation Intervention Guidelines
    Author Jane Barnett Version 0.7 Date Created 22 October 2013 Date Updated 10 February 2014 Surgical Skin Antisepsis Preparation Intervention Guidelines Authorisation Document Reviewed and Approved by Name Position / Project Role Signature and Date Sally Roberts Chair SSI Improvement Steering Group Arthur Morris SSI Improvement Clinical Lead Distribution List Name Position / Project Role Organisation Sally Roberts, Andrew Steering Group N/A Keenan, Paula Halliday, Diane Callinicos, Trevor English, Allan Panting, Arthur Morris, Dave Mackay Change Record Date Version Modified By Description 22/10/2013 0.1 Jane Barnett First draft for approval 24/10/2013 0.2 Angelica Harry Updated following feedback from Sally Roberts 19/11/2013 0.3 Angelica Harry Updated following feedback from Margaret Drury 21/11/2013 0.4 Angelica Harry Updated following feedback from the Clinical Leadership Group 20/01/2014 0.5 Hayley Callard Updated with preface, new front cover and general formatting. 30/01/2014 0.6 Hayley Callard Updated preface following feedback from Arthur Morris. 10/02/2014 0.7 Hayley Callard Amendment to wording about drying time of alcohol solution. Skin Antisepsis Preparation Document Programme SSI Improvement Intervention Guidelines Version 0.7 Author Jane Barnett Page 2 of 13 Created 22 October 2013 Updated 11 February 2014 CONTENTS Preface .............................................................................................................. 4 Executive Summary ..........................................................................................
    [Show full text]
  • Comparative Efficacy of Three Antiseptics As Surgical Skin Preparations in Dogs
    COMPARATIVE EFFICACY OF THREE ANTISEPTICS AS SURGICAL SKIN PREPARATIONS IN DOGS by Charles Boucher Submitted in partial fulfilment of the requirements for the degree of MMedVet (Surgery)(Small Animals) Companion Animal Clinical Studies Faculty of Veterinary Science University of Pretoria Pretoria, April 2017 Dissertation Comparative efficacy of three antiseptics as surgical skin preparations in dogs Charles Boucher 97099245 Supervisor: Prof Marthinus J. Hartman Co-supervisor: Dr Maryke M. Henton Department: Companion Animal Clinical Studies Faculty of Veterinary Science University: University of Pretoria DECLARATION I, Charles Boucher, student number 97099245 hereby declare that this dissertation, “Comparative efficacy of three antiseptics as surgical skin preparations in dogs”, is submitted in accordance with the requirements for the Master in Veterinary Medicine degree at University of Pretoria, is my own original work and has not previously been submitted to any other institution of higher learning. All sources cited or quoted in this research paper are indicated and acknowledged with a comprehensive list of references. Signature: ____________________ Dr Charles Boucher Date: 31 March 2017 i DEDICATION I dedicate this research to my loving wife, Christie, and our two children Charlie and Celeste, for their unconditional love and support in my pursuit of a lifelong dream. Quote by Sir Thomas Clifford Allbutt, about Lord Joseph Lister (English surgeon, medical scientist and pioneer of aseptic surgery): “Lister saw the vast importance of the discoveries of Pasteur. He saw it because he was watching on the heights, and he was watching there alone.” ii ACKNOWLEDGEMENTS My sincere appreciation and grateful thanks to the following people for their contributions in helping me to complete this research project: Professor Marthinus Hartman, acted as my research supervisor.
    [Show full text]