Iodine Types
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ni33nh3+3Nhi
Pure & Appi. Chem., Vol. 49, pp.67—73. Pergamon Press, 1977. Printed in Great Britain. NON-AQJEOUS SOLVENTS FOR PREPARATION AND REACTIONS OF NITROGEN HALOGEN COMPOUNDS Jochen Jander Department of Chemistry, University of Heidelberg, D 69 Heidelberg, Germany Abstract -Theimportance of non—aqueous solvents for the chemistry of haloamines is shown in more recent reaction examples. The solvents must be low-melting because of the general temperature sensitivity of the haloamines. They may take part in the reaction (formation of CH NI •CH NH (CH )2NI, NI-,.5 NH-, and NH0I.NH-)ormay e ner (ormation of I .quinuiilidin, 2 NI •1 trithylenediamine, [I(qunuclidine),] salts pure NBr, and compounds of the type R1R2NC103 with R1 and R2 =orgnicgroup or hydrogen). INTRODUCTION Non-aqueous solvents play an important role in preparation and reactions of nitrogen halogen compounds. Due to the fact, that all haloamines are derivatives of ammonia or amines, liquid ammonia or liquid organic amines are used as solvents very often. Liquid ammonia and the lower organic amines reveal, in addition, the advantage of low melting points (liquid ammonia -78, liquid monomethylamine -93.5, liquid dimethylamine -92, liquid tn-. methylamine -12k°C); these meet the general temperature sensitivity of the nitrogen halogen compounds, especially of the pure .lorganic ones. Ammonia and amines are very seldom inert solvents; they mostly take part in the reaction planned for synthesis or conversion of the haloamine. In case a reaction of the solvent is to be avoided, one has to look for a low melting inert solvent, for example methylene chloride (m.p. -
Minutesbasel Approved
Approved minutes, Basel 2018 International Union of Pure and Applied Chemistry Division VIII Chemical Nomenclature and Structure Representation Approved minutes for Division Committee Meeting Basel, Switzerland, 13–14 August, 2018 1. Welcome, introductory remarks and housekeeping announcements Alan Hutton (ATH) welcomed everybody to the meeting, extending a special welcome to those who were attending the Division Committee (DC) meeting for the first time, and noting the presence of three former Presidents of the Division, as well as the current Secretary General of IUPAC. He described the house rules and arrangements for the course of the meeting. 2. Attendance and apologies Present: Alan T. Hutton (President, ATH), Karl-Heinz Hellwich (Past-President, KHH), Risto S. Laitinen (Secretary, RSL), Michael A. Beckett (MAB), Edwin C. Constable (ECC), Ture Damhus (TD), Richard M. Hartshorn (RMH), Elisabeth Mansfield (EM), Gerry P. Moss (GPM), Michelle M. Rogers (MMR), Molly A. Strausbaugh (MAS), Clare Tovee (CT), Andrey Yerin (AY) (see also Appendix 1) Apologies: Fabio Aricò (FA), Maria Atanasova Petrova (MA), Neil Burford (NB), (JC), Ana Maria da Costa Ferreira (ACF), Safiye Erdem (SE), Rafał Kruszyński (RK), Robin Macaluso (RM), , Ladda Meesuk (LM), Ebbe Nordlander (EN), Amelia P. Rauter (APR), Erik Szabó (ES), Keith T. Taylor (KTT), Jiří Vohlídal (JV) Invited observer: G. Jeffery Leigh (GJL) No replies: József Nagy, Sangho Koo 3. Introduction of attendees A short round of introductions was made. A new titular member, Prof. Edwin C. Constable and a new Associate Member, Dr. Clare Tovee, were attending the meeting of the Division Committee for the first time in this function. KHH informed the meeting that the following persons had passed away during recent years: Peter A. -
The Structure and Stability of Simple Tri-Iodides
THE STRUCTURE AND STABILITY OF SIMPLE TRI -IODIDES by ANTHONY JOHN THOMPSON FINNEY B.Sc.(Hons.) submitted in fulfilment of the requirements for the Degree of Doctor of Philosophy UNIVERSITY OF TASMANIA HOBART OCTOBER, 1973 . r " • f (i) Frontispiece (reproduced as Plate 6 - 1, Chapter 1) - two views of a large single crystal of KI 3 .H20. The dimensions of this specimen were approximately 3.0 cm x 1.5 cm x 0.5 cm. • - - . ;or • - This thesis contains no material which has been accepted for the award of any other degree or diploma in any University, and to the best of my knowledge and belief, this thesis contains no copy or paraphrase of material previously published or written by another person, except where reference is made in the text of this thesis. Anthony John Finney Contents page Abstract (iv) Acknowledgements (vii) Chapter 1 - The Structure and Stability of Simple 1 Tri-iodides Chapter 2 - The Theoretical Basis of X-Ray Structural 32 Analysis Chapter 3 - The Crystallographic Program Suite 50 Chapter 4 - The Refinement of the Structure of NH I 94 4 3 Chapter 5 - The Solution of the Structure of RbI 115 3 Chapter 6 - The Solution of the Structure of KI 3 .1120 135 Chapter 7 Discussion of the Inter-relation of 201 Structure and Stability Bibliography 255 Appendix A - Programming Details 267 Appendix B - Density Determinations 286 Appendix C - Derivation of the Unit Cell Constants of 292 KI .H 0 3 2 Appendix D - I -3 force constant Calculation 299 Appendix E - Publications 311 ( iv) THE STRUCTURE AND STABILITY OF SIMPLE TRI-IODIDES Abstract In this work the simple tri-iodides are regarded as being those in which the crystal lattice contains only cations, tri-iodide anions and possibly solvate molecules. -
The Use of Povidone Iodine Nasal Spray and Mouthwash During the Current COVID-19 Pandemic May Protect Healthcare Workers and Reduce Cross Infection
March 27, 2020 The use of Povidone Iodine nasal spray and mouthwash during the current COVID-19 pandemic may protect healthcare workers and reduce cross infection. J Kirk-Bayley MRCP FRCA EDIC FFICM, Consultant Intensivist & Anaesthetist, Royal Surrey County Hospital S Challacombe, PhD, FRCPath, FDSRCS, FMedSci, DSc(h.c), FKC, Martin Rushton Professor of Oral Medicine, KCL VS Sunkaraneni LLM FRCS(2019), Consultant Rhinologist, Royal Surrey County Hospital J Combes FDS FRCS (OMFS), Lt Col RAMC, Consultant Advisor (ARMY) in OMFS, Defence Medical Services Abstract In late 2019 a novel coronavirus, SARS-CoV-2 causing Coronavirus disease 2019 (COVID-19) appeared in Wuhan China, and on 11th March 2020 the World Health Organisation declared it to have developed pandemic status. Povidone-iodine (PVP-I) has a better anti-viral activity than other antiseptics, and has already been proven to be an effective virucide in vitro against severe acute respiratory syndrome and Middle East respiratory syndrome coronaviruses (SARS-CoV and MERS- CoV). Povidone iodine has been shown to be a safe therapy when inhaled nasally or gargled. We propose that a protocolised nasal inhalation and oropharyngeal wash of PVP-I should be used in the current COVID-19 pandemic to limit the spread of SARS-CoV-2 from patients to healthcare workers (and vice versa) and thus reduce the incidence of COVID-19. There should be regular use in patients with COVID-19 to limit upper respiratory SARS-CoV-2 contamination, but also use by healthcare workers prior to treating COVID 19 patients or performing procedures in and around the mouth/ nose during the pandemic, regardless of the COVID 19 status of the patient. -
Lugol's Iodine 1 Lugol's Iodine
Lugol's iodine 1 Lugol's iodine Lugol's iodine, also known as Lugol's solution, first made in 1829, is a solution of elemental iodine and potassium iodide in water, named after the French physician J.G.A. Lugol. Lugol's iodine solution is often used as an antiseptic and disinfectant, for emergency disinfection of drinking water, and as a reagent for starch detection in routine laboratory and medical tests. It has been used more rarely to replenish iodine deficiency.[1] However, pure potassium iodide, containing the relatively benign iodide ion without the more toxic elemental iodine, is preferred for this purpose. Formula and manufacture Lugol's solution consists of 5 g iodine (I ) and 10 g potassium iodide (KI) mixed with enough distilled water to make 2 a brown solution with a total volume of 100 mL and a total iodine content of 150 mg/mL. Potassium iodide renders the elementary iodine soluble in water through the formation of the triiodide (I) ion. It is not to be confused with tincture of iodine solutions, which consist of elemental iodine, and iodide salts dissolved in water and alcohol. Lugol's solution contains no alcohol. Other names for Lugol's solution are I KI (iodine-potassium iodide); Markodine, Strong solution (Systemic); and 2 Aqueous Iodine Solution BCP. Lugol's is obtained from chemists and pharmacists who are licensed to prepare and dispense the solution. This indicator, also called a stain, is used in many different fields. Applications • This solution is used as an indicator test for the presence of starches in organic compounds, with which it reacts by turning a dark-blue/black. -
Chapter-Vi Difectants
R.KAVITHA, M.PHARM, LECTURER, DEPARTMENT OF PHARMACEUTICS, SRM COLLEGE OF PHARMACY, SRM UNIVERSITY, KATTANKULATHUR. CHEMICAL METHODS OF DISINFECTION: Disinfectants are those chemicals that destroy pathogenic bacteria from inanimate surfaces. Some chemical have very narrow spectrum of activity and some have very wide. Those chemicals that can sterilize are called chemisterilants. Those chemicals that can be safely applied over skin and mucus membranes are called antiseptics. Classification of disinfectants: 1. Based on consistency a. Liquid (E.g., Alcohols, Phenols) b. Gaseous (Formaldehyde vapour, Ethylene oxide) 2. Based on spectrum of activity a. High level b. Intermediate level c. Low level 3. Based on mechanism of action a. Action on membrane (E.g., Alcohol, detergent) b. Denaturation of cellular proteins (E.g., Alcohol, Phenol) c. Oxidation of essential sulphydryl groups of enzymes (E.g., H2O2, Halogens) d. Alkylation of amino-, carboxyl- and hydroxyl group (E.g., Ethylene Oxide, Formaldehyde) e. Damage to nucleic acids (Ethylene Oxide, Formaldehyde) ALCOHOLS: Mode of action: Alcohols dehydrate cells, disrupt membranes and cause coagulation of protein. Examples: Ethyl alcohol, isopropyl alcohol and methyl alcohol Application: A 70% aqueous solution is more effective at killing microbes than absolute alcohols. 70% ethyl alcohol (spirit) is used as antiseptic on skin. Isopropyl alcohol is preferred to ethanol. It can also be used to disinfect surfaces. It is used to disinfect clinical thermometers. Methyl alcohol kills fungal spores, hence is useful in disinfecting inoculation hoods. Disadvantages: Skin irritant, volatile (evaporates rapidly), inflammable ALDEHYDES: Mode of action: Acts through alkylation of amino-, carboxyl- or hydroxyl group, and probably damages nucleic acids. -
Chemistry of +1 Iodine in Alkaline Solution
Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Title CHEMISTRY OF +1 IODINE IN ALKALINE SOLUTION Permalink https://escholarship.org/uc/item/71312227 Author Chia, Yuan-tsan. Publication Date 2008-06-23 eScholarship.org Powered by the California Digital Library University of California UCRL-8311 Chemistry Distribution UNIVERSITY OF CALIFORNIA Radiation Laboratory Berkeley, California Contract No. W-7405-enz-4G CHEMISTRY OF +1 IODINE IN ALKALINE SOLUTION Yuan-tsan Chi2- (Thesis) June 2, 1958 Printed for the U. S. Atomic Energy Commission This report was prepared as an account of Government sponsored work. Neither the United States, nor the Com mISSIon, nor any person acting on behalf of the Commission: A. Makes any warranty or representation, express or implied, with respect to the accuracy, com pleteness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe pri vately owned rights; or B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process dis closed In this report. As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission to the extent that such employee or contractor prepares, handles or distributes, or provides access to, any information pursuant to his employment or contract with the Commission. -2- CHEMISTRY OF +1 IODINE IN ALKALINE SOLUTION Contents Page Abstract 4 I. Introduction 5 II. Apparatus and Equipment 6 III. Preparation and Analysis of Reagents ••••• 10 IV• +1 Iodine Species in Alkaline Solution - the Hypoiodite Ion. -
Material Safety Data Sheet
Fisher Science Education 6771 Silver Crest Road, Nazareth, PA 18064 (800) 955-1177 Emergency Number: (800) 255-3924 Material Safety Data Sheet Section 1 – Chemical Product and Company Identification Catalog Numbers: S25944 Product Identity: Iodine Solution, Tincture Chemical Family: Not Applicable Synonyms: Tincture of Iodine Recommended Use: Laboratory chemicals Manufacturer’s Name: AquaPhoenix Scientific, Inc., 9 Barnhart Dr., Hanover, PA 17331, (866) 632-1291 Emergency Contact Number (24hr): Chemtel (800) 255-3924 Issue Date: 05/14/13 Revision Date: 05/23/13, 7/1/13 Section 2 – Hazard Identification Emergency Overview Flammable liquid. Primarily toxic by ingestion. Contact with skin may cause dryness and cracking. May cause irritation to the eyes and the respiratory system. Wash areas of contact with water. Appearance: Brown liquid Odor: Alcohol-like Target Organs: Eyes, skin, respiratory system, central nervous system, liver, pancreas, cardiovascular system. Potential Health Effects/ Routes of Exposure: Eyes: May cause irritation with stinging and burning with possible damage to the conjunctiva and cornea. Skin: Results in drying and cracking which can lead to secondary infections and dermatitis. Ingestion: Symptoms can include sleep disorders, hallucinations, distorted perceptions, ataxia, motor function changes, convulsions and tremors, coma, headaches, pulmonary changes, and alteration of gastric secretions. Inhalation: May cause irritation of the nose and mucosa of the respiratory tract. Exposure to high concentrations can cause suppression of the central nervous system with symptoms of sleepiness and lack of concentration. Chronic Effect / Carcinogenicity Chronic ingestion may cause thyroid disease. Carcinogenicity – None (IARC, NTP, OSHA) Aggravated Medical Conditions No information available These chemicals are considered hazardous by OSHA. -
Nitrogen Triiodide
Nitrogen Triiodide Method #1: This is a very powerful and shock sensitive explosive. Never store it and be careful for air movements, and other tiny things could set it off. Materials: 2-3g Iodine 15ml Conc. Ammonia 8 Sheets of filter paper 50ml Beaker Feather on a 10ft pole Ear plugs Tape Spatula Stirring rod Add iodine to ammonia in the beaker. Stir, let stand for 5 minutes. Do the following within 5 minutes!! Retain the solid, and pour off the liquid. Scrape the brown solid onto a stack of four sheets of filter paper. Divide solid into four parts, putting each on a sheet of dry filter paper. Tape in position. Leave to dry undisturbed for at least 30 minutes. To detonate, touch with the feather. Wear the ear plugs while doing this...it is very loud! Method #2: AMMONIUM TRIIODIDE CRYSTALS Ammonium triiodide crystals are foul-smelling purple colored crystals that decompose under the slightest amount of heat, friction, or shock, if they are made with the purest ammonia (ammonium hydroxide) and iodine. Such crystals are said to detonate when a fly lands on them, or when an ant walks across them. Household ammonia, however, has enough impurities, such as soaps and abrasive agents, so that the crystals will detonate when thrown,crushed, or heated. Upon detonation, a loud report is heard, and a cloud of purple iodine gas appears about the detonation site. Whatever the unfortunate surface that the crystal was detonated upon will usually be ruined, as some of the iodine in the crystal is thrown about in a solid form, and iodine is corrosive. -
IV. Literature Cited...41
THE DISINFECTION OF THE ORAL MUCOSA WITH CRYSTAL VIOLET AND BRILLIANT GREEN1 C. COLEMAN BERWICK George William Hooper Foundation for Medical Research and Research Laboratories of the Dental Department of the University of California, San Francisco, California CONTENTS 1. Introduction ........................................................... 22 II. The general plan, method, and results of the author's experiments ............ 23 1. First series. Results with alcohol, acetone, ether and tincture of iodine... 23 2. Second series. Results with dyes .. 25 A. Historical ................................................... 25 B. Technical .................................................... 26 C. Results with brilliant green (saturated solution in alcohol) .... ..... 27 D. Results with brilliant green (1 per cent solution in 50 per cent alcohol) 28 E. Results with brilliant green and crystal violet in solution together (1 per cent of each in 50 per cent alcohol) applied for 1.5 minute. 28 F. Results of tests similar to those in the last preceding section (E), with additional bacteriological precautions ...................... 30 G. Results of tests with brilliant green and crystal violet in solution together (1 per centof eachin aqueoussolution) compared with hydro- quinone (1 per cent aqueous solution) ...... .................... 33 H. Results of a repetition of the tests with brilliant green and crystal violet in solution together in alcohol (section E), with an extension of the period of application to the gum (from 1.5 minute) to 2 minutes ................................................... 33 I. Results of a repetition of the tests with brilliant green and crystal violet together in alcohol, in the last preceding section (H), after previous thorough flushing of the mouth with an alkaline wash and brushing of the teeth .................................... 38 3. General discussion of the results of the first two series of tests .. -
Surgical Skin Antisepsis Preparation Intervention Guidelines
Author Jane Barnett Version 0.7 Date Created 22 October 2013 Date Updated 10 February 2014 Surgical Skin Antisepsis Preparation Intervention Guidelines Authorisation Document Reviewed and Approved by Name Position / Project Role Signature and Date Sally Roberts Chair SSI Improvement Steering Group Arthur Morris SSI Improvement Clinical Lead Distribution List Name Position / Project Role Organisation Sally Roberts, Andrew Steering Group N/A Keenan, Paula Halliday, Diane Callinicos, Trevor English, Allan Panting, Arthur Morris, Dave Mackay Change Record Date Version Modified By Description 22/10/2013 0.1 Jane Barnett First draft for approval 24/10/2013 0.2 Angelica Harry Updated following feedback from Sally Roberts 19/11/2013 0.3 Angelica Harry Updated following feedback from Margaret Drury 21/11/2013 0.4 Angelica Harry Updated following feedback from the Clinical Leadership Group 20/01/2014 0.5 Hayley Callard Updated with preface, new front cover and general formatting. 30/01/2014 0.6 Hayley Callard Updated preface following feedback from Arthur Morris. 10/02/2014 0.7 Hayley Callard Amendment to wording about drying time of alcohol solution. Skin Antisepsis Preparation Document Programme SSI Improvement Intervention Guidelines Version 0.7 Author Jane Barnett Page 2 of 13 Created 22 October 2013 Updated 11 February 2014 CONTENTS Preface .............................................................................................................. 4 Executive Summary .......................................................................................... -
Iodine Tincture 7% Sheet (Tincture of Iodine) Olathe, KS Tel: 913-390-6184 Emergency Phone: 800 424 9300 (Chemtrec)
Safety Data Iodine Tincture 7% Sheet (Tincture of Iodine) Olathe, KS Tel: 913-390-6184 Emergency phone: 800 424 9300 (Chemtrec) NFPA Rating: Health 0, Flammability 3, Reactivity 0 Special 0 HMIS Rating: Health 2, Flammability 3, Physical 0, Reactivity, 0 1. Product Identity Product Name: Iodine Tincture, 7% Product Number: 31 2. Hazardous Iodine: Corrosive Ingredients Isopropyl Alcohol 200 proof: Flammable Irritant Signal Word: Danger Hazard Statement: Flammable Precautionary Statements: Take time observe label directions. Keep away from heat & open flame. Keep container closed when not in use. Protect from light. Store at 10°-30°C (50°-86°F). Avoid contact with eyes & mucous membranes. Antiseptic. Irritation may occur if used on tender skin area. Do not apply under bandage. Keep out of reach of children. For veterinary use only. Not for use in body cavities 3.Composition Weight%: Iodine: 7% Potassium Iodide: 5% Isopropyl Alcohol: 85% Water: 3% Iodine: CAS: 7553-56-2 Isopropyl Alcohol 200 proof: CAS: 63-67-0 Potassium Iodide: CAS: 7681-11-0 Page 1 of 6 7% Iodine Tincture 4. First Aid Measures Eye Contact: Immediately flush eyes with plenty of water for five, minutes, then remove contact lens if present. Continue flushing for at least 15 minutes. See medical if irritation persists. Inhalation: Move victim to fresh air if inhaled. Seek medical help if breathing is distressed. Ingestion: Do not induce vomiting. Give victim large quantities of milk or water and seek immediate medical attention. Never give anything by mouth to an unconscious person. Skin Contact: Flush with large quantities of water.