First Detection of Piscine Reovirus (PRV) in Marine Fish Species
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
In the Severn Estuary
Metadata, citation and similar papers at core.ac.uk CORE J. mar. biol. Ass. U.K. (1984), 64, 771-790 771 Printed in Great Britain ABUNDANCE, MOVEMENTS AND SIZE OF GADOIDS (TELEOSTEI) IN THE SEVERN ESTUARY P. N. CLARIDGE* AND I. C. POTTERf School of Biological Sciences, University of Bath, Claverton Down, Bath, BA2 7AY Provided by Research Repository (Figs. 1-7) Samples collected regularly from the intake screens of power stations between July 1972 and June 1977 demonstrate that the Gadidae is the most abundant and diverse teleost family in the inner Bristol Channel and Severn Estuary. The first records for the Severn Estuary of two cold water species, northern rockling and Norway pout, which were present in appreciable numbers, may be related to the effects of the changes that commenced in south-western English waters during the 1960s. Maximum numbers of the five most abundant gadoids were attained in different years, with the greatest catches being recorded for whiting and poor cod in 1975/6, bib and pollack in 1974/5 and northern rockling in 1976/7. Peak abundance in the middle estuary was reached by whiting, bib, poor cod and pollack in the autumn and by northern rockling in the winter or early spring. The 0 + age class of these species, which was always by far the most predominant category, showed increases in mean length during their relatively short stay in the estuary. Movement out of the shallows of the inner Severn Estuary by whiting and also apparently by some other gadoids occurred when salinities fell below 10%,,. -
Norway Pout, Sandeel and North Sea Sprat
FINAL REPORT Initial assessment of the Norway sandeel, pout and North Sea sprat fishery Norges Fiskarlag Report No.: 2017-008, Rev 3 Date: January 2nd 2018 Certificate code: 251453-2017-AQ-NOR-ASI Report type: Final Report DNV GL – Business Assurance Report title: Initial assessment of the Norway sandeel, pout and North Sea sprat fishery DNV GL Business Assurance Customer: Norges Fiskarlag, Pirsenteret, Norway AS 7462 TRONDHEIM Veritasveien 1 Contact person: Tor Bjørklund Larsen 1322 HØVIK, Norway Date of issue: January 2nd 2018 Tel: +47 67 57 99 00 Project No.: PRJC -557210 -2016 -MSC -NOR http://www.dnvgl.com Organisation unit: ZNONO418 Report No.: 2017-008, Rev 3 Certificate No.: 251453-2017-AQ-NOR-ASI Objective: Assessment of the Norway sandeel, pout and North Sea sprat fishery against MSC Fisheries Standards v2.0. Prepared by: Verified by: Lucia Revenga Sigrun Bekkevold Team Leader and P2 Expert Principle Consultant Hans Lassen P1 Expert Geir Hønneland P3 Expert Stefan Midteide Project Manager Copyright © DNV GL 2014. All rights reserved. This publication or parts thereof may not be copied, reproduced or transmitted in any form, or by any means, whether digitally or otherwise without the prior written consent of DNV GL. DNV GL and the Horizon Graphic are trademarks of DNV GL AS. The content of this publication shall be kept confidential by the customer, unless otherwise agreed in writing. Reference to part of this publication which may lead to misinterpretation is prohibited. DNV GL Distribution: ☒ Unrestricted distribution (internal and external) ☐ Unrestricted distribution within DNV GL ☐ Limited distribution within DNV GL after 3 years ☐ No distribution (confidential) ☐ Secret Rev. -
Molecular Systematics of Gadid Fishes: Implications for the Biogeographic Origins of Pacific Species
Color profile: Disabled Composite Default screen 19 Molecular systematics of gadid fishes: implications for the biogeographic origins of Pacific species Steven M. Carr, David S. Kivlichan, Pierre Pepin, and Dorothy C. Crutcher Abstract: Phylogenetic relationships among 14 species of gadid fishes were investigated with portions of two mitochondrial DNA (mtDNA) genes, a 401 base pair (bp) segment of the cytochrome b gene, and a 495 bp segment of the cytochrome oxidase I gene. The molecular data indicate that the three species of gadids endemic to the Pacific Basin represent simultaneous invasions by separate phylogenetic lineages. The Alaskan or walleye pollock (Theragra chalcogramma) is about as closely related to the Atlantic cod (Gadus morhua) as is the Pacific cod (Gadus macrocephalus), which suggests that T. chalcogramma and G. macrocephalus represent separate invasions of the Pacific Basin. The Pacific tomcod (Microgadus proximus) is more closely related to the Barents Sea navaga (Eleginus navaga) than to the congeneric Atlantic tomcod (Microgadus tomcod), which suggests that the Pacific species is derived from the Eleginus lineage and that Eleginus should be synonymized with Microgadus. Molecular divergences between each of the three endemic Pacific species and their respective closest relatives are similar and consistent with contemporaneous speciation events following the reopening of the Bering Strait ca. 3.0–3.5 million years BP. In contrast, the Greenland cod (Gadus ogac) and the Pacific cod have essentially identical mtDNA sequences; differences between them are less than those found within G. morhua. The Greenland cod appears to represent a contemporary northward and eastward range extension of the Pacific cod, and should be synonymized with it as G. -
Diet Composition of Cod (Gadus Morhua): Small-Scale Differences in a Sub-Arctic Fjord
Diet composition of cod (Gadus morhua): small-scale differences in a sub-arctic fjord Enoksen, Siri Elise BI309F MSc IN MARINE ECOLOGY Faculty for Biosciences and Aquaculture May 2015 Acknowledgements The presented thesis is the final part of a two-year Master of Science program at the Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway. I owe my supervisor Associate Professor Henning Reiss eternal gratitude for his patience and all the help with sampling, species determination and writing of this thesis. Without his expertise and guidance, this master thesis would not have been possible. A special thanks to Bjørn Tore Zahl at Saltstraumen Brygge, Geir Jøran Nyheim at Saltstraumen camping, Lill-Anita Stenersen at Kafe Kjelen, Fauske Båtforening and Saltdal Båtforening for helping during sampling, Coop Extra Bygg Fauske for sponsoring sheds for collecting stations, and to all anglers who handed inn samples. This project would not have been possible without their help. I would like to thank Professor Truls Moum, Martina Kopp, Vigdis Edvardsen, Tor Erik Jørgensen and Teshome Tilahun Bizuayehu for help and guidance during DNA barcoding analysis. I thank Nina Tande Hansen and Bibbi Myrvoll at Karrieresenteret Indre Salten for believing in me and convincing me that I was capable of studying at university level. This thesis would not have been possible without their guidance. I would also like to thank my family for their patience during the five years of fulfilling my Master. i Table of contents Acknowledgements ......................................................................................................................... -
Scenario Calculations of Mercury Exposure
VKM Report 2019:3 Scenario calculations of mercury exposure from fish and overview of species with high mercury concentrations Opinion of the Panel on Contaminants of the Norwegian Scientific Committee for Food and Environment Report from the Norwegian Scientific Committee for Food and Environment (VKM) 2019:3 Scenario calculations of mercury exposure from fish and overview of species with high mercury concentrations Opinion of the Panel on Contaminants of the Norwegian Scientific Committee for Food and Environment 05.04.2019 ISBN: 978-82-8259-319-9 ISSN: 2535-4019 Norwegian Scientific Committee for Food and Environment (VKM) Po 4404 Nydalen N – 0403 Oslo Norway Phone: +47 21 62 28 00 Email: [email protected] vkm.no vkm.no/english Cover photo: Colourbox Suggested citation: VKM, Heidi Amlund, Kirsten Eline Rakkestad, Anders Ruus, Jostein Starrfelt, Jonny Beyer, Anne Lise Brantsæter, Sara Bremer, Gunnar Sundstøl Eriksen, Espen Mariussen, Ingunn Anita Samdal, Cathrine Thomsen and Helle Katrine Knutsen (2019). Scenario calculations of mercury exposure from fish and overview of species with high mercury concentrations. Opinion of the Panel on Contaminants of the Norwegian Scientific Committee for Food and Environment. VKM report 2019:3, ISBN: 978-82-8259-319-9, ISSN: 2535-4019. Norwegian Scientific Committee for Food and Environment (VKM), Oslo, Norway. Scenario calculations of mercury exposure from fish and overview of species with high mercury concentrations Preparation of the opinion The Norwegian Scientific Committee for Food and Environment (Vitenskapskomiteen for mat og miljø, VKM) appointed a project group to answer the request from the Norwegian Food Safety Authority. The project group consisted of three VKM-members, and three employees, including a project leader, from the VKM secretariat. -
17 References
990 ICES WGNSSK Report 2006 17 References Note: several references to ICES documents are incomplete. These are marked with XXXX. Arnott, S. A. and Ruxton, G. D. (2002) Sandeel recruitment in the North Sea: demographic, climatic and trophic effects. Marine Ecology Progress series, 238, 199-210. Bagge, O. and Munch-Petersen, S. (1979). Some possible factors governing the catchability of Norway lobster in the Kattegat. Rapports et proces-verbaux des reunions. Conseil international pour l exploration de la mer 175:143-146. Bagge, O., Nielsen, E., Mellergaard, S. and Dalsgaard, I. (1990). Hypoxia and the demersal fish stock in Kattegat (IIIa) and Subdivision 22. ICES C.M. 1990/E:4. Bailey N., Chapman C.J., Kinnear J., Bova D. and Weetman A. (1993) Estimation of Nephrops stock biomass on the Fladen Ground by TV survey. ICES CM 1993/K:34. Bell, M., Dann, J., Lawler, A., Lovewell, S., Cutchey, S., Palmer, D., Smith, M., McCubbin, D. and Armstrong, M. (2005). Programme 6: NE Nephrops; 6a: Nephrops survey. CEFAS/NFFO Fisheries Science Partnership 2004/05 Final Report. Blegvad, H. (1934). Omplantering af rødspætter fra Nordsøen til Bæltfarvanene 1928-1933. Beretning fra den Danske Biologiske Station XXXIX:9-83 Boje, J and Nielsen, E. (2006). 0-group survey for plaice in Kattegat (IIIaS) 1985-2005. Working paper #12 for WGNSSK 2006. [WD12] Boje, J. and Nielsen, E. (2006). 0-group survey for plaice in Kattegat (IIIaS) 1985-2005. [WD12] Borges, L., Kraak, S. B. M. and Machiels, M. A. M. (2006). Stock assessment of North Sea plaice using a Bayesian catch-at-age model. -
Atlas of North Sea Fishes
ICES COOPERATIVE RESEARCH REPORT RAPPORT DES RECHERCHES COLLECTIVES NO. 194 Atlas of North Sea Fishes Based on bottom-trawl survey data for the years 1985—1987 Ruud J. Knijn1, Trevor W. Boon2, Henk J. L. Heessen1, and John R. G. Hislop3 'Netherlands Institute for Fisheries Research, Haringkade 1, PO Box 6 8 , 1970 AB Umuiden, The Netherlands 2MAFF, Fisheries Laboratory, Lowestoft, Suffolk NR33 OHT, England 3Marine Laboratory, PO Box 101, Victoria Road, Aberdeen AB9 8 DB, Scotland Fish illustrations by Peter Stebbing International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer Palægade 2—4, DK-1261 Copenhagen K, Denmark September 1993 Copyright ® 1993 All rights reserved No part of this book may be reproduced in any form by photostat or microfilm or stored in a storage system or retrieval system or by any other means without written permission from the authors and the International Council for the Exploration of the Sea Illustrations ® 1993 Peter Stebbing Published with financial support from the Directorate-General for Fisheries, AIR Programme, of the Commission of the European Communities ICES Cooperative Research Report No. 194 Atlas of North Sea Fishes ISSN 1017-6195 Printed in Denmark Contents 1. Introduction............................................................................................................... 1 2. Recruit surveys.................................................................................. 3 2.1 General purpose of the surveys..................................................................... -
Little Fish, Big Impact: Managing a Crucial Link in Ocean Food Webs
little fish BIG IMPACT Managing a crucial link in ocean food webs A report from the Lenfest Forage Fish Task Force The Lenfest Ocean Program invests in scientific research on the environmental, economic, and social impacts of fishing, fisheries management, and aquaculture. Supported research projects result in peer-reviewed publications in leading scientific journals. The Program works with the scientists to ensure that research results are delivered effectively to decision makers and the public, who can take action based on the findings. The program was established in 2004 by the Lenfest Foundation and is managed by the Pew Charitable Trusts (www.lenfestocean.org, Twitter handle: @LenfestOcean). The Institute for Ocean Conservation Science (IOCS) is part of the Stony Brook University School of Marine and Atmospheric Sciences. It is dedicated to advancing ocean conservation through science. IOCS conducts world-class scientific research that increases knowledge about critical threats to oceans and their inhabitants, provides the foundation for smarter ocean policy, and establishes new frameworks for improved ocean conservation. Suggested citation: Pikitch, E., Boersma, P.D., Boyd, I.L., Conover, D.O., Cury, P., Essington, T., Heppell, S.S., Houde, E.D., Mangel, M., Pauly, D., Plagányi, É., Sainsbury, K., and Steneck, R.S. 2012. Little Fish, Big Impact: Managing a Crucial Link in Ocean Food Webs. Lenfest Ocean Program. Washington, DC. 108 pp. Cover photo illustration: shoal of forage fish (center), surrounded by (clockwise from top), humpback whale, Cape gannet, Steller sea lions, Atlantic puffins, sardines and black-legged kittiwake. Credits Cover (center) and title page: © Jason Pickering/SeaPics.com Banner, pages ii–1: © Brandon Cole Design: Janin/Cliff Design Inc. -
Marine Fishes from Galicia (NW Spain): an Updated Checklist
1 2 Marine fishes from Galicia (NW Spain): an updated checklist 3 4 5 RAFAEL BAÑON1, DAVID VILLEGAS-RÍOS2, ALBERTO SERRANO3, 6 GONZALO MUCIENTES2,4 & JUAN CARLOS ARRONTE3 7 8 9 10 1 Servizo de Planificación, Dirección Xeral de Recursos Mariños, Consellería de Pesca 11 e Asuntos Marítimos, Rúa do Valiño 63-65, 15703 Santiago de Compostela, Spain. E- 12 mail: [email protected] 13 2 CSIC. Instituto de Investigaciones Marinas. Eduardo Cabello 6, 36208 Vigo 14 (Pontevedra), Spain. E-mail: [email protected] (D. V-R); [email protected] 15 (G.M.). 16 3 Instituto Español de Oceanografía, C.O. de Santander, Santander, Spain. E-mail: 17 [email protected] (A.S); [email protected] (J.-C. A). 18 4Centro Tecnológico del Mar, CETMAR. Eduardo Cabello s.n., 36208. Vigo 19 (Pontevedra), Spain. 20 21 Abstract 22 23 An annotated checklist of the marine fishes from Galician waters is presented. The list 24 is based on historical literature records and new revisions. The ichthyofauna list is 25 composed by 397 species very diversified in 2 superclass, 3 class, 35 orders, 139 1 1 families and 288 genus. The order Perciformes is the most diverse one with 37 families, 2 91 genus and 135 species. Gobiidae (19 species) and Sparidae (19 species) are the 3 richest families. Biogeographically, the Lusitanian group includes 203 species (51.1%), 4 followed by 149 species of the Atlantic (37.5%), then 28 of the Boreal (7.1%), and 17 5 of the African (4.3%) groups. We have recognized 41 new records, and 3 other records 6 have been identified as doubtful. -
Evolutionary History of the Genus Trisopterus Q ⇑ Elena G
Molecular Phylogenetics and Evolution 62 (2012) 1013–1018 Contents lists available at SciVerse ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Short Communication Evolutionary history of the genus Trisopterus q ⇑ Elena G. Gonzalez a, , Regina L. Cunha b, Rafael G. Sevilla a,1, Hamid R. Ghanavi a,1, Grigorios Krey c,1, ⇑ José M. Bautista a, ,1 a Departmento de Bioquímica y Biología Molecular IV, Universidad Complutense de Madrid (UCM), Facultad de Veterinaria, Av. Puerta de Hierro s/n, 28040 Madrid, Spain b CCMAR, Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal c National Agricultural Research Foundation, Fisheries Research Institute, Nea Peramos, Kavala, GR 64007, Greece article info abstract Article history: The group of small poor cods and pouts from the genus Trisopterus, belonging to the Gadidae family, com- Received 26 October 2011 prises four described benthopelagic species that occur across the North-eastern Atlantic, from the Baltic Accepted 30 November 2011 Sea to the coast of Morocco, and the Mediterranean. Here, we combined molecular data from mitochon- Available online 8 December 2011 drial (cytochrome b) and nuclear (rhodopsin) genes to confirm the taxonomic status of the described spe- cies and to disentangle the evolutionary history of the genus. Our analyses supported the monophyly of Keywords: the genus Trisopterus and confirmed the recently described species Trisopterus capelanus. A relaxed Gadidae molecular clock analysis estimated an Oligocene origin for the group (30 million years ago; mya) indi- Trisopterus cating this genus as one of the most ancestral within the Gadidae family. The closure and re-opening of Cytochrome b Rhodopsin the Strait of Gibraltar after the Messinian Salinity Crisis (MSC) probably triggered the speciation process Historical demography that resulted in the recently described T. -
ICES CH 1986/G:58 Ref. Pelagic Fish Committee FISH COHHUNITIES OF
ICES C.H. 1986/G:58 Ref. Pelagic Fish Committee FISH COHHUNITIES OF THE NORWEGIAN OEEPS: SPEelES COHPOSITION ANO OISTRIBUTIONAl PATTERNS. by Odd Aksel Bergstad Department of fisheries biology. University of Bergen. Norway. \ P.O.Bo~ 1839. N-5011 Bergen-Nordnes / ABSTRACT Preliminary results from studies of the fishes inhabiting the Norwegian Oeeps and bordering slopes are presented. including accounts of species composition and distributional patterns. The Norwegian Oeeps proper is a nursery and feeding area for a number of species. mainly species which are abundant along the upper continental slopes of the North Atlantic and the deep fjord environments. The more abundant include the greater argentine. Argentina silus. blue whiting. Hicromesistius poutassou. and in the Skagerrak. roundnose grenadier. Coryphaenoides rupestris. Above the 200m isobath the species composition resembles the one found in adjacent coastal areas or on the North Sea plateau. The more abundant demersal species are Norway pout. Trisopterus esmarkii. saithe, Pollachius virens, and haddock, Helanogrammus aeglefinus. Data from hydroacoustic surveys and bottom trawl surveys suggest pronounced seasonal changes in distributional patterns of some species, notably the greater argentine and blue whiting. • INTRODUCTIOH The Norwegian Deeps, with depths in the range 275-700 m, represents a major topographical feature of the comparatively shallow and even North Sea (Fig.1). As such, it has a pronounced influence on watermass distributions and current patterns in the eastern Horth Sea, the Skagerrak and in the Norwegian Coastal waters (Furnes et al. 1986). From fishery data and a few regional studies it is known that the Horwegian Deeps is inhabited by a .fish fauna differing rather markedly from the one found in the bordering shallow waters (Hjort and Ruud 1938; Sahrhage 1964, Aker et Al. -
Trisopterus Esmarkii
Downloaded from orbit.dtu.dk on: Sep 30, 2021 Do Norway pout (Trisopterus esmarkii) die from spawning stress? Mortality of Norway pout in relation to growth, maturity and density in the North Sea, Skagerrak and Kattegat Nielsen, J. Rasmus; Lambert, G.; Bastardie, Francois; Sparholt, H.; Vinther, Morten Published in: ICES Journal of Marine Science Link to article, DOI: 10.1093/icesjms/fss001 Publication date: 2012 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Nielsen, J. R., Lambert, G., Bastardie, F., Sparholt, H., & Vinther, M. (2012). Do Norway pout (Trisopterus esmarkii) die from spawning stress? Mortality of Norway pout in relation to growth, maturity and density in the North Sea, Skagerrak and Kattegat. ICES Journal of Marine Science, 69(2), 197-207. https://doi.org/10.1093/icesjms/fss001 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.