THÔNG TIN TOÁN HỌC Tháng 7 Năm 2008 Tập 12 Số 2

Total Page:16

File Type:pdf, Size:1020Kb

THÔNG TIN TOÁN HỌC Tháng 7 Năm 2008 Tập 12 Số 2 Hội Toán Học Việt Nam THÔNG TIN TOÁN HỌC Tháng 7 Năm 2008 Tập 12 Số 2 Lưu hành nội bộ Th«ng Tin To¸n Häc to¸n häc. Bµi viÕt xin göi vÒ toµ so¹n. NÕu bµi ®−îc ®¸nh m¸y tÝnh, xin göi kÌm theo file (chñ yÕu theo ph«ng ch÷ unicode, • Tæng biªn tËp: hoÆc .VnTime). Lª TuÊn Hoa • Ban biªn tËp: • Mäi liªn hÖ víi b¶n tin xin göi Ph¹m Trµ ¢n vÒ: NguyÔn H÷u D− Lª MËu H¶i B¶n tin: Th«ng Tin To¸n Häc NguyÔn Lª H−¬ng ViÖn To¸n Häc NguyÔn Th¸i S¬n 18 Hoµng Quèc ViÖt, 10307 Hµ Néi Lª V¨n ThuyÕt §ç Long V©n e-mail: NguyÔn §«ng Yªn [email protected] • B¶n tin Th«ng Tin To¸n Häc nh»m môc ®Ých ph¶n ¸nh c¸c sinh ho¹t chuyªn m«n trong céng ®ång to¸n häc ViÖt nam vµ quèc tÕ. B¶n tin ra th−êng k× 4- 6 sè trong mét n¨m. • ThÓ lÖ göi bµi: Bµi viÕt b»ng tiÕng viÖt. TÊt c¶ c¸c bµi, th«ng tin vÒ sinh ho¹t to¸n häc ë c¸c khoa (bé m«n) to¸n, vÒ h−íng nghiªn cøu hoÆc trao ®æi vÒ ph−¬ng ph¸p nghiªn cøu vµ gi¶ng d¹y ®Òu ®−îc hoan nghªnh. B¶n tin còng nhËn ®¨ng © Héi To¸n Häc ViÖt Nam c¸c bµi giíi thiÖu tiÒm n¨ng khoa häc cña c¸c c¬ së còng nh− c¸c bµi giíi thiÖu c¸c nhµ Chào mừng ĐẠI HỘI TOÁN HỌC VIỆT NAM LẦN THỨ VII Quy Nhơn – 04-08/08/2008 Sau một thời gian tích cực chuẩn bị, phát triển nghiên cứu Toán học của nước Đại hội Toán học Toàn quốc lần thứ VII ta giai đoạn vừa qua trước khi bước vào sẽ diễn ra, từ ngày 4 đến 8 tháng Tám tại Đại hội đại biểu. Đại hội đại biểu sẽ bầu ĐH Quy Nhơn. Đại hội Toán học Việt ra BCH khóa 6 để lãnh đạo Hội Toán Nam lần thứ VII bao gồm hai phần: Hội học. Hội được thành lập năm 1966. Cho nghị khoa học và Đại hội đại biểu Hội đến nay, lãnh đạo của các BCH khóa Toán học Việt Nam. Có tất cả 790 đại trước là: biểu đăng kí tham dự Hội nghị với 281 • Khóa 1 (1966 – 1988): Chủ tịch: GS báo cáo. Lê Văn Thiêm, Tổng thư kí: GS Các hội nghị Toán học toàn quốc đã Hoàng Tụy diễn ra trước đó là: HNTH toàn Miền • Khóa 2 (1988 – 1994): Chủ tịch: GS Bắc lần thứ 1 năm 1971, HNTH toàn Nguyễn Đình Trí, Tổng thư kí: GS Đỗ quốc lần thứ 2 năm 1977, HNTH toàn Long Vân quốc lần thứ 3 năm 1985, HNTH toàn • Khóa 3 + 4 (1994 - 1999 và 1999 – quốc lần thứ 4 năm 1990, HNTH toàn 2004): Chủ tịch: GS Đỗ Long Vân, Việt Nam lần thứ 5 năm 1997 và HNTH Tổng thư kí: GS Phạm Thế Long toàn quốc lần thứ 6 năm 2002. Năm hội nghị đầu được tổ chức tại Hà Nội, còn • Khóa 5 (2004 – 2008): Chủ tịch: GS Hội nghị lần thứ 6 được tổ chức tại Huế. Phạm Thế Long, Tổng thư kí GS Lê Tuấn Đây là lần thứ hai, Hội nghị Toán học Hoa. Các ủy viên khác của BCH là: GS toàn quốc được tổ chức xa Hà Nội. Đại Nguyễn Hữu Anh (ĐHKHTN - ĐHQG Tp. hội được sự quan tâm đặc biệt của Bộ HCM): Phó CT, GS Nguyễn Quý Hỷ Khoa học và Công nghệ, Ủy ban nhân (ĐHKH TN - ĐHQG HN): Phó CT, GS dân tỉnh Bình Định và Viện Khoa học và Hà Huy Khoái (Viện Toán học): Phó CT, Công nghệ Việt Nam. GS Lê Ngọc Lăng (ĐH Mỏ - Địa chất): Phó CT, GS Nguyễn Văn Mậu (ĐHKHTN Các cơ quan tài trợ chính của Đại hội - ĐHQG HN): Phó CT, GS Lê Mậu Hải lần này là: Bộ Khoa học và Công nghệ (ĐHSP HN): Phó TTK, PGS Tống Đình (thông qua Chương trình nghiên cứu cơ Quỳ (ĐHBK HN): Phó TTK và các ủy bản), Đại học Quy Nhơn, Ủy ban nhân viên: GS Nguyễn Hữu Việt Hưng dân tỉnh Bình Định, Viện Khoa học và (ĐHKHTN - ĐHQG HN), GS Phan Quốc Công nghệ Việt Nam và Viện Toán học. Khánh (ĐH Quốc tế, ĐHQG Tp. HCM), Điều đặc biệt ở Đại hội lần này là lần PGS Lê Hải Khôi (Viện CNTT), GS Trần đầu tiên có sự kết hợp giữa Hội nghị và Văn Nhung (Bộ GD & ĐT), GS Lê Hùng Đại hội đại biểu Hội Toán học Việt Nam. Sơn (ĐHBK HN), GS Nguyễn Khoa Sơn Đây là Đại hội đại biểu lần thứ 6 của (Viện KH & CN VN), TS Nguyễn Thái Hội Toán học. Nhiệm vụ chính của Đại Sơn (ĐHSP Tp. HCM), GS Lê Văn Thuyết hội là đánh giá, tổng kết những thành tựu (ĐH Huế), GS Nguyễn Duy Tiến phát triển Toán học trong 4 năm qua, (ĐHKHTN-ĐHQG HN). đồng thời vạch ra đề cương phát triển Thông Tin Toán Học xin chào mừng Toán học trong 5 năm tới. Việc kết hợp và xin chúc Đại hội Toán học Toàn quốc với Hội nghị khoa học trước đó là một lần thứ 7 thành công tốt đẹp. cơ hội tốt để các đại biểu có một cái nhìn toàn diện và sâu sắc hơn về tình hình 1 E8 - mët d÷ luªn bòng nê é Ngåc Di»p (Vi»n To¡n håc) Email: [email protected] E8 l mët nhâm Lie °c bi»t, mët To¡n håc trong th¸ k¿ 19 ÷ñc chùng ¤i sè Lie °c bi»t, mët h» nghi»m °c ki¸n sü ra íi cõa l½ thuy¸t nhâm Lie bi»t, .... mët ch÷ìng tr¼nh t½nh to¡n v ¤i sè Lie nh÷ l mët t÷ìng tü li¶n khêng lç ¡ng ÷ñc nhi·u ng÷íi quan töc cõa lþ thuy¸t Galois. Elie Cartan t¥m. Möc ½ch cõa b i l giîi thi»u ¢ ÷a v o c¡c ma trªn c§u tróc cõa æi i·u v· tr÷íng hñp hy húu n y ¤i sè Lie, m ng y nay ÷ñc gåi l trong ¤i sè, trong tæpæ, trong cæng ma trªn Cartan. Nhí â m ng÷íi ta ngh» t½nh to¡n. x¥y düng ÷ñc h» nghi»m li¶n k¸t v sì ç Dynkin cho mët h¼nh dung v· c§u Thæng tin To¡n håc sè 3 Tªp 11, tróc cõa c¡c h» nghi»m li¶n quan. H» Th¡ng 9 n«m 2007, trong möc tin nghi»m công ÷ñc x¡c ành bði mët To¡n håc th¸ giîi, câ ÷a tin v· nhâm c§u tróc polytope cõa h» nghi»m. Lie E8 v nhúng i·u ang ÷ñc sü quan t¥m cõa giîi to¡n håc th¸ giîi. Trong bèi c£nh â, E8 ÷ñc bi¸t Ban Bi¶n tªp Thæng tin To¡n håc câ ¸n nh÷ nhúng èi t÷ñng to¡n håc °c °t h ng vi¸t b i chi ti¸t hìn v· c§u bi»t, c¡c c§u tróc li¶n quan mªt thi¸t tróc to¡n håc E8 °c bi»t n y. Chóng vîi nhau nh÷: nhâm Lie ìn °c bi»t, tæi hy vång ¡p ùng mët ph¦n þ muèn ¤i sè Lie ìn °c bi»t, h» nghi»m °c n y. Nhúng ëc gi£ quan t¥m chi ti¸t bi»t, v.v.... Nâ ÷ñc Whilhelm Killing hìn câ thº tham kh£o th¶m trong c¡c ÷a ra giúa nhúng n«n 1888 v 1890. t i li»u d¨n ð cuèi b i. W. Killing l mët nh to¡n håc câ nhi·u âng gâp trong lþ thuy¸t ph¥n 1 Ph¥n lo¤i c¡c nhâm lo¤i c¡c nhâm Lie v ¤i sè Lie ìn. Lie v ¤i sè Lie ¤i sè Lie e8 câ h¤ng (tùc l sè ìn v l g¼? chi·u cõa ¤i sè Lie con giao ho¡n cüc E8 ¤i) 8 v chi·u (nh÷ khæng gian v²ctì) l 248. C¡c v²ctì cõa h» nghi»m lªp 2 th nh mët l÷îi câ chi·u l 8. Nhâm ¤i sè Lie e8 câ ¤i sè Lie con so(16) c¡c ph²p ph£n x¤ t÷ìng ùng ch½nh l vîi 120 chi·u thüc v nâ câ 128 ph¦n nhâm Weyl cõa e8 công ch½nh l nhâm tû sinh thäa m¢n c¡c h» thùc Weyl- èi xùng cõa xuy¸n cüc ¤i t÷ìng ùng Majorana spinor cõa spin(16) cho t½ch v câ bªc l 696, 729, 600. Nhâm Lie Lie E8 l nhâm Lie ìn duy nh§t m biºu di¹n khæng t¦m th÷íng chi·u b² nh§t [Jij,Jk`] = δjkJi`−δj`Jik−δikJj`+δi`Jjk ch½nh l biºu di¹n phö hñp 248 chi·u çng thíi trong ch½nh ¤i sè Lie E8. 1 Nhâm Lie phùc , tùc l bao [Jij,Qa] = (γiγj − γjγi)abQb, (E8)C 4 phùc cõa nhâm Lie E8 thüc, câ sè chi·u thüc g§p æi, tùc l 496, m nâ còng vîi c¡c h» thùc cán l¤i (khæng kº câ 3 d¤ng thüc (real form) 248 chi·u ph£n-ho¡n tû) thüc l : [i j] [Qa,Qb] = γacγcbJij.
Recommended publications
  • Interview with Mikio Sato
    Interview with Mikio Sato Mikio Sato is a mathematician of great depth and originality. He was born in Japan in 1928 and re- ceived his Ph.D. from the University of Tokyo in 1963. He was a professor at Osaka University and the University of Tokyo before moving to the Research Institute for Mathematical Sciences (RIMS) at Ky- oto University in 1970. He served as the director of RIMS from 1987 to 1991. He is now a professor emeritus at Kyoto University. Among Sato’s many honors are the Asahi Prize of Science (1969), the Japan Academy Prize (1976), the Person of Cultural Merit Award of the Japanese Education Ministry (1984), the Fujiwara Prize (1987), the Schock Prize of the Royal Swedish Academy of Sciences (1997), and the Wolf Prize (2003). This interview was conducted in August 1990 by the late Emmanuel Andronikof; a brief account of his life appears in the sidebar. Sato’s contributions to mathematics are described in the article “Mikio Sato, a visionary of mathematics” by Pierre Schapira, in this issue of the Notices. Andronikof prepared the interview transcript, which was edited by Andrea D’Agnolo of the Univer- sità degli Studi di Padova. Masaki Kashiwara of RIMS and Tetsuji Miwa of Kyoto University helped in various ways, including checking the interview text and assembling the list of papers by Sato. The Notices gratefully acknowledges all of these contributions. —Allyn Jackson Learning Mathematics in Post-War Japan When I entered the middle school in Tokyo in Andronikof: What was it like, learning mathemat- 1941, I was already lagging behind: in Japan, the ics in post-war Japan? school year starts in early April, and I was born in Sato: You know, there is a saying that goes like late April 1928.
    [Show full text]
  • Tate Receives 2010 Abel Prize
    Tate Receives 2010 Abel Prize The Norwegian Academy of Science and Letters John Tate is a prime architect of this has awarded the Abel Prize for 2010 to John development. Torrence Tate, University of Texas at Austin, Tate’s 1950 thesis on Fourier analy- for “his vast and lasting impact on the theory of sis in number fields paved the way numbers.” The Abel Prize recognizes contributions for the modern theory of automor- of extraordinary depth and influence to the math- phic forms and their L-functions. ematical sciences and has been awarded annually He revolutionized global class field since 2003. It carries a cash award of 6,000,000 theory with Emil Artin, using novel Norwegian kroner (approximately US$1 million). techniques of group cohomology. John Tate received the Abel Prize from His Majesty With Jonathan Lubin, he recast local King Harald at an award ceremony in Oslo, Norway, class field theory by the ingenious on May 25, 2010. use of formal groups. Tate’s invention of rigid analytic spaces spawned the John Tate Biographical Sketch whole field of rigid analytic geometry. John Torrence Tate was born on March 13, 1925, He found a p-adic analogue of Hodge theory, now in Minneapolis, Minnesota. He received his B.A. in called Hodge-Tate theory, which has blossomed mathematics from Harvard University in 1946 and into another central technique of modern algebraic his Ph.D. in 1950 from Princeton University under number theory. the direction of Emil Artin. He was affiliated with A wealth of further essential mathematical ideas Princeton University from 1950 to 1953 and with and constructions were initiated by Tate, includ- Columbia University from 1953 to 1954.
    [Show full text]
  • Elliptic Curves and Modularity
    Elliptic curves and modularity Manami Roy Fordham University July 30, 2021 PRiME (Pomona Research in Mathematics Experience) Manami Roy Elliptic curves and modularity Outline elliptic curves reduction of elliptic curves over finite fields the modularity theorem with an explicit example some applications of the modularity theorem generalization the modularity theorem Elliptic curves Elliptic curves Over Q, we can write an elliptic curve E as 2 3 2 E : y + a1xy + a3y = x + a2x + a4x + a6 or more commonly E : y 2 = x3 + Ax + B 3 2 where ai ; A; B 2 Q and ∆(E) = −16(4A + 27B ) 6= 0. ∆(E) is called the discriminant of E. The conductor NE of a rational elliptic curve is a product of the form Y fp NE = p : pj∆ Example The elliptic curve E : y 2 = x3 − 432x + 8208 12 12 has discriminant ∆ = −2 · 3 · 11 and conductor NE = 11. A minimal model of E is 2 3 2 Emin : y + y = x − x with discriminant ∆min = −11. Example Elliptic curves of finite fields 2 3 2 E : y + y = x − x over F113 Elliptic curves of finite fields Let us consider E~ : y 2 + y = x3 − x2 ¯ ¯ ¯ over the finite field of p elements Fp = Z=pZ = f0; 1; 2 ··· ; p − 1g. ~ Specifically, we consider the solution of E over Fp. Let ~ 2 2 3 2 #E(Fp) = 1 + #f(x; y) 2 Fp : y + y ≡ x − x (mod p)g and ~ ap(E) = p + 1 − #E(Fp): Elliptic curves of finite fields E~ : y 2 − y = x3 − x2 ~ ~ p #E(Fp) ap(E) = p + 1 − #E(Fp) 2 5 −2 3 5 −1 5 5 1 7 10 −2 13 10 4 .
    [Show full text]
  • Stratified Spaces: Joining Analysis, Topology and Geometry
    Mathematisches Forschungsinstitut Oberwolfach Report No. 56/2011 DOI: 10.4171/OWR/2011/56 Stratified Spaces: Joining Analysis, Topology and Geometry Organised by Markus Banagl, Heidelberg Ulrich Bunke, Regensburg Shmuel Weinberger, Chicago December 11th – December 17th, 2011 Abstract. For manifolds, topological properties such as Poincar´eduality and invariants such as the signature and characteristic classes, results and techniques from complex algebraic geometry such as the Hirzebruch-Riemann- Roch theorem, and results from global analysis such as the Atiyah-Singer in- dex theorem, worked hand in hand in the past to weave a tight web of knowl- edge. Individually, many of the above results are in the meantime available for singular stratified spaces as well. The 2011 Oberwolfach workshop “Strat- ified Spaces: Joining Analysis, Topology and Geometry” discussed these with the specific aim of cross-fertilization in the three contributing fields. Mathematics Subject Classification (2000): 57N80, 58A35, 32S60, 55N33, 57R20. Introduction by the Organisers The workshop Stratified Spaces: Joining Analysis, Topology and Geometry, or- ganised by Markus Banagl (Heidelberg), Ulrich Bunke (Regensburg) and Shmuel Weinberger (Chicago) was held December 11th – 17th, 2011. It had three main components: 1) Three special introductory lectures by Jonathan Woolf (Liver- pool), Shoji Yokura (Kagoshima) and Eric Leichtnam (Paris); 2) 20 research talks, each 60 minutes; and 3) a problem session, led by Shmuel Weinberger. In total, this international meeting was attended by 45 participants from Canada, China, England, France, Germany, Italy, Japan, the Netherlands, Spain and the USA. The “Oberwolfach Leibniz Graduate Students” grants enabled five advanced doctoral students from Germany and the USA to attend the meeting.
    [Show full text]
  • Mathematical Sciences Meetings and Conferences Section
    OTICES OF THE AMERICAN MATHEMATICAL SOCIETY Richard M. Schoen Awarded 1989 Bacher Prize page 225 Everybody Counts Summary page 227 MARCH 1989, VOLUME 36, NUMBER 3 Providence, Rhode Island, USA ISSN 0002-9920 Calendar of AMS Meetings and Conferences This calendar lists all meetings which have been approved prior to Mathematical Society in the issue corresponding to that of the Notices the date this issue of Notices was sent to the press. The summer which contains the program of the meeting. Abstracts should be sub­ and annual meetings are joint meetings of the Mathematical Associ­ mitted on special forms which are available in many departments of ation of America and the American Mathematical Society. The meet­ mathematics and from the headquarters office of the Society. Ab­ ing dates which fall rather far in the future are subject to change; this stracts of papers to be presented at the meeting must be received is particularly true of meetings to which no numbers have been as­ at the headquarters of the Society in Providence, Rhode Island, on signed. Programs of the meetings will appear in the issues indicated or before the deadline given below for the meeting. Note that the below. First and supplementary announcements of the meetings will deadline for abstracts for consideration for presentation at special have appeared in earlier issues. sessions is usually three weeks earlier than that specified below. For Abstracts of papers presented at a meeting of the Society are pub­ additional information, consult the meeting announcements and the lished in the journal Abstracts of papers presented to the American list of organizers of special sessions.
    [Show full text]
  • Major Awards Winners in Mathematics: A
    International Journal of Advanced Information Science and Technology (IJAIST) ISSN: 2319:2682 Vol.3, No.10, October 2014 DOI:10.15693/ijaist/2014.v3i10.81-92 Major Awards Winners in Mathematics: A Bibliometric Study Rajani. S Dr. Ravi. B Research Scholar, Rani Channamma University, Deputy Librarian Belagavi & Professional Assistant, Bangalore University of Hyderabad, Hyderabad University Library, Bangalore II. MATHEMATICS AS A DISCIPLINE Abstract— The purpose of this paper is to study the bibliometric analysis of major awards like Fields Medal, Wolf Prize and Abel Mathematics is the discipline; it deals with concepts such Prize in Mathematics, as a discipline since 1936 to 2014. Totally as quantity, structure, space and change. It is use of abstraction there are 120 nominees of major awards are received in these and logical reasoning, from counting, calculation, honors. The data allow us to observe the evolution of the profiles of measurement and the study of the shapes and motions of winners and nominations during every year. The analysis shows physical objects. According to the Aristotle defined that top ranking of the author’s productivity in mathematics mathematics as "the science of quantity", and this definition discipline and also that would be the highest nominees received the prevailed until the 18th century. Benjamin Peirce called it "the award at Institutional wise and Country wise. competitors. The science that draws necessary conclusions". United States of America awardees got the highest percentage of about 50% in mathematics prize. According to David Hilbert said that "We are not speaking Index terms –Bibliometric, Mathematics, Awards and Nobel here of arbitrariness in any sense.
    [Show full text]
  • Arxiv:1605.00138V2 [Math.RT] 14 Feb 2017 Rnedsklvreduction
    INTRODUCTION TO W-ALGEBRAS AND THEIR REPRESENTATION THEORY TOMOYUKI ARAKAWA Abstract. These are lecture notes from author’s mini-course during Session 1: “Vertex algebras, W-algebras, and application” of INdAM Intensive research period “Perspectives in Lie Theory”, at the Centro di Ricerca Matematica Ennio De Giorgi, Pisa, Italy. December 9, 2014 – February 28, 2015. 1. Introduction This note is based on lectures given at the Centro di Ricerca Matematica Ennio De Giorgi, Pisa, in Winter of 2014–2015. They are aimed as an introduction to W -algebras and their representation theory. Since W -algebras appear in many areas of mathematics and physics there are certainly many other important topics untouched in the note, partly due to the limitation of the space and partly due to the author’s incapability. The W -algebras can be regarded as generalizations of affine Kac-Moody algebras and the Virasoro algebra. They appeared [Zam, FL, LF] in the study of the classifi- cation of two-dimensional rational conformal field theories. There are several ways to define W -algebras, but it was Feigin and Frenkel [FF1] who found the most con- ceptual definition of principal W -algebras that uses the quantized Drinfeld-Sokolov reduction, which is a version of Hamiltonian reduction. There are a lot of works on W -algebras (see [BS] and references therein) mostly by physicists in 1980’s and 1990’s, but they were mostly on principal W -algebras, that is, the W -algebras as- sociated with principal nilpotent elements. It was quite recent that Kac, Roan and Wakimoto [KRW] defined the W -algebra Wk(g,f) associated with a simple Lie al- gebra and its arbitrary nilpotent element f by generalizing the method of quantized arXiv:1605.00138v2 [math.RT] 14 Feb 2017 Drinfeld-Sokolov reduction.
    [Show full text]
  • Arxiv:0704.3783V1 [Math.HO]
    Congruent numbers, elliptic curves, and the passage from the local to the global Chandan Singh Dalawat The ancient unsolved problem of congruent numbers has been reduced to one of the major questions of contemporary arithmetic : the finiteness of the number of curves over Q which become isomorphic at every place to a given curve. We give an elementary introduction to congruent numbers and their conjectural characterisation, discuss local-to-global issues leading to the finiteness problem, and list a few results and conjectures in the arithmetic theory of elliptic curves. The area α of a right triangle with sides a,b,c (so that a2 + b2 = c2) is given by 2α = ab. If a,b,c are rational, then so is α. Conversely, which rational numbers α arise as the area of a rational right triangle a,b,c ? This problem of characterising “congruent numbers” — areas of rational right triangles — is perhaps the oldest unsolved problem in all of Mathematics. It dates back to more than a thousand years and has been variously attributed to the Arabs, the Chinese, and the Indians. Three excellent accounts of the problem are available on the Web : Right triangles and elliptic curves by Karl Rubin, Le probl`eme des nombres congruents by Pierre Colmez, which also appears in the October 2006 issue arXiv:0704.3783v1 [math.HO] 28 Apr 2007 of the Gazette des math´ematiciens, and Franz Lemmermeyer’s translation Congruent numbers, elliptic curves, and modular forms of an article in French by Guy Henniart. A more elementary introduction is provided by the notes of a lecture in Hong Kong by John Coates, which have appeared in the August 2005 issue of the Quaterly journal of pure and applied mathematics.
    [Show full text]
  • Curriculum Vitae Notarization. I Have Read the Following and Certify That This Curriculum Vitae Is a Current and Accurate Statement of My Professional Record
    Curriculum Vitae Notarization. I have read the following and certify that this curriculum vitae is a current and accurate statement of my professional record. Signature Date I. Personal Information I.A. UID, Last Name, First Name, Middle Name, Contact Information Novikov Sergei Petrovich, tel 3017797472 (h), 3014054836 (o), e-mail [email protected] I.B. Academic Appointments at UMD Distinguished Professor since 1997, Date of Appointment to current T/TT rank 8/17 1996 I.C. Administrative Appointments at UMD I.D. Other Employment Junior researcher in the Steklov Math Institute (Moscow) since December 1963, Senior researcher in the same Institute since December 1965 Head of Math Group at the Landau Institute for The- oretical Physics (Moscow) since January 1976 Principal researcher at the same institute since 1992 Head of Geometry/Topology group in the Steklov Math Institute since 1983 Professor at the Moscow State University since 1967 (After 1996 these affiliations are preserved as secondary for the periods of visiting Moscow) Additional Employments: Visiting professor at the Ec. Normal Superior de Paris, Laboratory of Theoretical Physisc in February 1991{August 1991; Visiting Distinguished professor at the Korean Institute for advenced studies{KIAS, Seoul, June 200, June 2001, November 2002; Visiting professor at the Maryland University at College Park in the Years 1992, 1993, 1994, 1995, 1996, Spring Semesters, visiting Newton International Math Institute in Cambridge, UK, Spring 2009. I.E. Educational Background Moscow State University, Mech/Math Depertment 1955-1960, University diploma issued at 1960 (Soviet equivalent of Master degree) Aspirantura (like graduate studentship) at the Steklov Math Institute 1960-1963, advisor professor M.M.Postnikov.
    [Show full text]
  • Shintani Zeta Functions and Weyl Group Multiple Dirichlet Series
    Shintani Zeta Functions and Weyl Group Multiple Dirichlet Series A Dissertation presented by Jun Wen to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Mathematics Stony Brook University May 2014 Stony Brook University The Graduate School Jun Wen We, the dissertation committe for the above candidate for the Doctor of Philosophy degree, hereby recommend acceptance of this dissertation Leon Takhtajan - Dissertation Advisor Professor, Department of Mathematics Anthony Knapp - Chairperson of Defense Emeritus Professor, Department of Mathematics Jason Starr Associate Professor, Department of Mathematics Gautam Chinta Professor, Department of Mathematics, The City College of New York This dissertation is accepted by the Graduate School Charles Taber Dean of the Graduate School ii Abstract of the Dissertation Shintani Zeta Functions and Weyl Group Multiple Dirichlet Series by Jun Wen Doctor of Philosophy in Mathematics Stony Brook University 2014 In recent years, substantial progresses have been made towards the de- velopment of a general theory of multiple Dirichlet series with functional equations. In this dissertation, we investigate the Shintani zeta function as- sociated to a prehomogeneous vector space and identify it with a Weyl group multiple Dirichlet series. The example under consideration is the set of 2 by 2 by 2 integer cubes, that is the integral lattice in a certain prehomoge- neous vector space acted on by three copies of GL(2). One of M. Bhargava's achievements is the determination of the corresponding integral orbits and the discovery of an extension of the Gauss's composition law for integral bi- nary quadratic forms.
    [Show full text]
  • Comparison of Chinese and Japanese Developments In
    Comparison of Chinese and Japanese Developments in Mathematics during the Late 19th and Early 20th Centuries by Shing-Tung Yau Department of Mathematics, Harvard University J. Dirichlet (1805-1859) W. Hamilton (1805-1865) 1 Foreword H. Grassmann (1809-1877) After the invention of calculus by I. Newton and G. J. Liouville (1809-1892) Leibniz much fundamental progress in science has oc- E. Kummer (1810-1893) curred. There were a large number of outstanding E. Galois (1811-1832) mathematicians in Europe in the period of the eighteenth G. Boole (1815-1864) and the nineteenth centuries. I list here the names of K. Weierstrass (1815-1897) some of the most famous ones according to their birth G. Stokes (1819-1903) years in the eighteenth and nineteenth centuries. P. Chebyshev (1821-1894) A. Cayley (1821-1895) D. Bernoulli (1700-1782) C. Hermite (1822-1901) G. Cramer (1704-1752) G. Eisenstein (1823-1852) L. Euler (1707-1783) L. Kronecker (1823-1891) A. Clairaut (1713-1765) W. Kelvin (1824-1907) J. d’Alembert (1717-1783) B. Riemann (1826-1866) J. Lambert (1728-1777) J. Maxwell (1831-1879) A. Vandermonde (1735-1796) L. Fuchs (1833-1902) E. Waring (1736-1798) E. Beltrami (1835-1900) J. Lagrange (1736-1814) S. Lie (1842-1899) G. Monge (1746-1818) J. Darboux (1842-1917) P. Laplace (1749-1827) H. Schwarz (1843-1921) A. Legendre (1752-1833) G. Cantor (1845-1918) J. Argand (1768-1822) F. Frobenius (1849-1917) J. Fourier (1768-1830) F. Klein (1849-1925) C. Gauss (1777-1855) G. Ricci (1853-1925) A. Cauchy (1789-1857) H. Poincare (1854-1912) A.
    [Show full text]
  • The Work of John Tate
    The Work of John Tate J.S. Milne March 18, 2012/September 23, 2012 Tate helped shape the great reformulation of arithmetic and geometry which has taken place since the 1950s Andrew Wiles.1 This is my article on Tate’s work for the second volume in the book series on the Abel Prize winners. True to the epigraph, I have attempted to explain it in the context of the “great reformulation”. Contents 1 Hecke L-series and the cohomology of number fields 3 1.1 Background.................................. 3 1.2 Tate’s thesis and the local constants . ..... 5 1.3 The cohomology of number fields . 8 1.4 The cohomology of profinite groups . 11 1.5 Dualitytheorems ............................... 12 1.6 Expositions .................................. 14 2 Abelian varieties and curves 15 2.1 The Riemann hypothesis for curves . 15 2.2 Heights on abelian varieties . 16 2.3 The cohomology of abelian varieties . 18 2.4 Serre-Tate liftings of abelian varieties . ........ 21 arXiv:1210.7459v1 [math.HO] 28 Oct 2012 2.5 Mumford-Tate groups and the Mumford-Tate conjecture . ........ 22 2.6 Abelian varieties over finite fields (Weil, Tate, Honda theory) . 23 2.7 Good reduction of Abelian Varieties . 24 2.8 CM abelian varieties and Hilbert’s twelfth problem . ......... 25 3 Rigid analytic spaces 26 3.1 TheTatecurve ................................ 27 3.2 Rigidanalyticspaces .... ...... ..... ...... ...... .. 28 1 Introduction to Tate’s talk at the conference on the Millenium Prizes, 2000. 1 CONTENTS 2 4 The Tate conjecture 30 4.1 Beginnings .................................. 30 4.2 Statement of the Tate conjecture . 31 4.3 Homomorphisms of abelian varieties .
    [Show full text]