Curriculum Vitae Notarization. I Have Read the Following and Certify That This Curriculum Vitae Is a Current and Accurate Statement of My Professional Record
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Homotopy Properties of Thom Complexes (English Translation with the Author’S Comments) S.P.Novikov1
Homotopy Properties of Thom Complexes (English translation with the author’s comments) S.P.Novikov1 Contents Introduction 2 1. Thom Spaces 3 1.1. G-framed submanifolds. Classes of L-equivalent submanifolds 3 1.2. Thom spaces. The classifying properties of Thom spaces 4 1.3. The cohomologies of Thom spaces modulo p for p > 2 6 1.4. Cohomologies of Thom spaces modulo 2 8 1.5. Diagonal Homomorphisms 11 2. Inner Homology Rings 13 2.1. Modules with One Generator 13 2.2. Modules over the Steenrod Algebra. The Case of a Prime p > 2 16 2.3. Modules over the Steenrod Algebra. The Case of p = 2 17 1The author’s comments: As it is well-known, calculation of the multiplicative structure of the orientable cobordism ring modulo 2-torsion was announced in the works of J.Milnor (see [18]) and of the present author (see [19]) in 1960. In the same works the ideas of cobordisms were extended. In particular, very important unitary (”complex’) cobordism ring was invented and calculated; many results were obtained also by the present author studying special unitary and symplectic cobordisms. Some western topologists (in particular, F.Adams) claimed on the basis of private communication that J.Milnor in fact knew the above mentioned results on the orientable and unitary cobordism rings earlier but nothing was written. F.Hirzebruch announced some Milnors results in the volume of Edinburgh Congress lectures published in 1960. Anyway, no written information about that was available till 1960; nothing was known in the Soviet Union, so the results published in 1960 were obtained completely independently. -
E Modules for Abelian Hopf Algebras 1974: [Papers]/ IMPRINT Mexico, D.F
llr ~ 1?J STATUS TYPE OCLC# Submitted 02/26/2019 Copy 28784366 IIIIIII IIIII IIIII IIIII IIIII IIIII IIIII IIIII IIIII IIII IIII SOURCE REQUEST DATE NEED BEFORE 193985894 ILLiad 02/26/2019 03/28/2019 BORROWER RECEIVE DATE DUE DATE RRR LENDERS 'ZAP, CUY, CGU BIBLIOGRAPHIC INFORMATION LOCAL ID AUTHOR ARTICLE AUTHOR Ravenel, Douglas TITLE Conference on Homotopy Theory: Evanston, Ill., ARTICLE TITLE Dieudonne modules for abelian Hopf algebras 1974: [papers]/ IMPRINT Mexico, D.F. : Sociedad Matematica Mexicana, FORMAT Book 1975. EDITION ISBN VOLUME NUMBER DATE 1975 SERIES NOTE Notas de matematica y simposia ; nr. 1. PAGES 177-183 INTERLIBRARY LOAN INFORMATION ALERT AFFILIATION ARL; RRLC; CRL; NYLINK; IDS; EAST COPYRIGHT US:CCG VERIFIED <TN:1067325><0DYSSEY:216.54.119.128/RRR> MAX COST OCLC IFM - 100.00 USD SHIPPED DATE LEND CHARGES FAX NUMBER LEND RESTRICTIONS EMAIL BORROWER NOTES We loan for free. Members of East, RRLC, and IDS. ODYSSEY 216.54.119.128/RRR ARIEL FTP ARIEL EMAIL BILL TO ILL UNIVERSITY OF ROCHESTER LIBRARY 755 LIBRARY RD, BOX 270055 ROCHESTER, NY, US 14627-0055 SHIPPING INFORMATION SHIPVIA LM RETURN VIA SHIP TO ILL RETURN TO UNIVERSITY OF ROCHESTER LIBRARY 755 LIBRARY RD, BOX 270055 ROCHESTER, NY, US 14627-0055 ? ,I _.- l lf;j( T ,J / I/) r;·l'J L, I \" (.' ."i' •.. .. NOTAS DE MATEMATICAS Y SIMPOSIA NUMERO 1 COMITE EDITORIAL CONFERENCE ON HOMOTOPY THEORY IGNACIO CANALS N. SAMUEL GITLER H. FRANCISCO GONZALU ACUNA LUIS G. GOROSTIZA Evanston, Illinois, 1974 Con este volwnen, la Sociedad Matematica Mexicana inicia su nueva aerie NOTAS DE MATEMATICAS Y SIMPOSIA Editado por Donald M. -
Subalgebras of the Z/2-Equivariant Steenrod Algebra
Homology, Homotopy and Applications, vol. 17(1), 2015, pp.281–305 SUBALGEBRAS OF THE Z/2-EQUIVARIANT STEENROD ALGEBRA NICOLAS RICKA (communicated by Daniel Dugger) Abstract The aim of this paper is to study subalgebras of the Z/2- equivariant Steenrod algebra (for cohomology with coefficients in the constant Mackey functor F2) that come from quotient Hopf algebroids of the Z/2-equivariant dual Steenrod algebra. In particular, we study the equivariant counterpart of profile functions, exhibit the equivariant analogues of the classical A(n) and E(n), and show that the Steenrod algebra is free as a module over these. 1. Introduction It is a truism to say that the classical modulo 2 Steenrod algebra and its dual are powerful tools to study homology in particular and homotopy theory in general. In [2], Adams and Margolis have shown that sub-Hopf algebras of the modulo p Steenrod algebra, or dually quotient Hopf algebras of the dual modulo p Steenrod algebra have a very particular form. This allows an explicit study of the structure of the Steenrod algebra via so-called profile functions. These facts have both a profound and meaningful consequences in stable homotopy theory and concrete, amazing applications (see [13] for many beautiful results strongly relating to the structure of the Steenrod algebra). Using the determination of the structure of the Z/2-equivariant dual Steenrod algebra as an RO(Z/2)-graded Hopf algebroid by Hu and Kriz in [10], we show two kind of results: 1. One that parallels [2], characterizing families of sub-Hopf algebroids of the Z/2- equivariant dual Steenrod algebra, showing how to adapt classical methods to overcome the difficulties inherent to the equivariant world. -
Interview with Mikio Sato
Interview with Mikio Sato Mikio Sato is a mathematician of great depth and originality. He was born in Japan in 1928 and re- ceived his Ph.D. from the University of Tokyo in 1963. He was a professor at Osaka University and the University of Tokyo before moving to the Research Institute for Mathematical Sciences (RIMS) at Ky- oto University in 1970. He served as the director of RIMS from 1987 to 1991. He is now a professor emeritus at Kyoto University. Among Sato’s many honors are the Asahi Prize of Science (1969), the Japan Academy Prize (1976), the Person of Cultural Merit Award of the Japanese Education Ministry (1984), the Fujiwara Prize (1987), the Schock Prize of the Royal Swedish Academy of Sciences (1997), and the Wolf Prize (2003). This interview was conducted in August 1990 by the late Emmanuel Andronikof; a brief account of his life appears in the sidebar. Sato’s contributions to mathematics are described in the article “Mikio Sato, a visionary of mathematics” by Pierre Schapira, in this issue of the Notices. Andronikof prepared the interview transcript, which was edited by Andrea D’Agnolo of the Univer- sità degli Studi di Padova. Masaki Kashiwara of RIMS and Tetsuji Miwa of Kyoto University helped in various ways, including checking the interview text and assembling the list of papers by Sato. The Notices gratefully acknowledges all of these contributions. —Allyn Jackson Learning Mathematics in Post-War Japan When I entered the middle school in Tokyo in Andronikof: What was it like, learning mathemat- 1941, I was already lagging behind: in Japan, the ics in post-war Japan? school year starts in early April, and I was born in Sato: You know, there is a saying that goes like late April 1928. -
Tate Receives 2010 Abel Prize
Tate Receives 2010 Abel Prize The Norwegian Academy of Science and Letters John Tate is a prime architect of this has awarded the Abel Prize for 2010 to John development. Torrence Tate, University of Texas at Austin, Tate’s 1950 thesis on Fourier analy- for “his vast and lasting impact on the theory of sis in number fields paved the way numbers.” The Abel Prize recognizes contributions for the modern theory of automor- of extraordinary depth and influence to the math- phic forms and their L-functions. ematical sciences and has been awarded annually He revolutionized global class field since 2003. It carries a cash award of 6,000,000 theory with Emil Artin, using novel Norwegian kroner (approximately US$1 million). techniques of group cohomology. John Tate received the Abel Prize from His Majesty With Jonathan Lubin, he recast local King Harald at an award ceremony in Oslo, Norway, class field theory by the ingenious on May 25, 2010. use of formal groups. Tate’s invention of rigid analytic spaces spawned the John Tate Biographical Sketch whole field of rigid analytic geometry. John Torrence Tate was born on March 13, 1925, He found a p-adic analogue of Hodge theory, now in Minneapolis, Minnesota. He received his B.A. in called Hodge-Tate theory, which has blossomed mathematics from Harvard University in 1946 and into another central technique of modern algebraic his Ph.D. in 1950 from Princeton University under number theory. the direction of Emil Artin. He was affiliated with A wealth of further essential mathematical ideas Princeton University from 1950 to 1953 and with and constructions were initiated by Tate, includ- Columbia University from 1953 to 1954. -
On Relations Between Adams Spectral Sequences, with an Application to the Stable Homotopy of a Moore Space
Journal of Pure and Applied Algebra 20 (1981) 287-312 0 North-Holland Publishing Company ON RELATIONS BETWEEN ADAMS SPECTRAL SEQUENCES, WITH AN APPLICATION TO THE STABLE HOMOTOPY OF A MOORE SPACE Haynes R. MILLER* Harvard University, Cambridge, MA 02130, UsA Communicated by J.F. Adams Received 24 May 1978 0. Introduction A ring-spectrum B determines an Adams spectral sequence Ez(X; B) = n,(X) abutting to the stable homotopy of X. It has long been recognized that a map A +B of ring-spectra gives rise to information about the differentials in this spectral sequence. The main purpose of this paper is to prove a systematic theorem in this direction, and give some applications. To fix ideas, let p be a prime number, and take B to be the modp Eilenberg- MacLane spectrum H and A to be the Brown-Peterson spectrum BP at p. For p odd, and X torsion-free (or for example X a Moore-space V= So Up e’), the classical Adams E2-term E2(X;H) may be trigraded; and as such it is E2 of a spectral sequence (which we call the May spectral sequence) converging to the Adams- Novikov Ez-term E2(X; BP). One may say that the classical Adams spectral sequence has been broken in half, with all the “BP-primary” differentials evaluated first. There is in fact a precise relationship between the May spectral sequence and the H-Adams spectral sequence. In a certain sense, the May differentials are the Adams differentials modulo higher BP-filtration. One may say the same for p=2, but in a more attenuated sense. -
Unstable Modules Over the Steenrod Algebra Revisited 1 Introduction
Geometry & Topology Monographs 11 (2007) 245–288 245 arXiv version: fonts, pagination and layout may vary from GTM published version Unstable modules over the Steenrod algebra revisited GEOFFREY MLPOWELL A new and natural description of the category of unstable modules over the Steenrod algebra as a category of comodules over a bialgebra is given; the theory extends and unifies the work of Carlsson, Kuhn, Lannes, Miller, Schwartz, Zarati and others. Related categories of comodules are studied, which shed light upon the structure of the category of unstable modules at odd primes. In particular, a category of bigraded unstable modules is introduced; this is related to the study of modules over the motivic Steenrod algebra. 55S10; 18E10 1 Introduction The Steenrod algebra A over a prime field F of characteristic p is a fundamental mathematical object; it is defined in algebraic topology to be the algebra of stable cohomology operations for singular cohomology with coefficients in F. The algebra A is graded and acts on the cohomology ring of a space; the underlying graded A–module is unstable, a condition which is usually defined in terms of the Steenrod reduced power operations and the Bockstein operator. This paper shows that the well-known description of the dual of the Steenrod algebra, which is due to Milnor, has an extension which leads to an entirely algebraic description of the category U of unstable modules over the Steenrod algebra as a category of comodules (defined with respect to a completed tensor product) over a bialgebra, without imposing an external instability condition. The existence of such a description is implied by the general theory of tensor abelian categories at the prime two; in the odd prime case, the method requires the super-algebra setting, namely using Z=2–gradings to introduce the necessary sign conventions for commutativity. -
Elliptic Curves and Modularity
Elliptic curves and modularity Manami Roy Fordham University July 30, 2021 PRiME (Pomona Research in Mathematics Experience) Manami Roy Elliptic curves and modularity Outline elliptic curves reduction of elliptic curves over finite fields the modularity theorem with an explicit example some applications of the modularity theorem generalization the modularity theorem Elliptic curves Elliptic curves Over Q, we can write an elliptic curve E as 2 3 2 E : y + a1xy + a3y = x + a2x + a4x + a6 or more commonly E : y 2 = x3 + Ax + B 3 2 where ai ; A; B 2 Q and ∆(E) = −16(4A + 27B ) 6= 0. ∆(E) is called the discriminant of E. The conductor NE of a rational elliptic curve is a product of the form Y fp NE = p : pj∆ Example The elliptic curve E : y 2 = x3 − 432x + 8208 12 12 has discriminant ∆ = −2 · 3 · 11 and conductor NE = 11. A minimal model of E is 2 3 2 Emin : y + y = x − x with discriminant ∆min = −11. Example Elliptic curves of finite fields 2 3 2 E : y + y = x − x over F113 Elliptic curves of finite fields Let us consider E~ : y 2 + y = x3 − x2 ¯ ¯ ¯ over the finite field of p elements Fp = Z=pZ = f0; 1; 2 ··· ; p − 1g. ~ Specifically, we consider the solution of E over Fp. Let ~ 2 2 3 2 #E(Fp) = 1 + #f(x; y) 2 Fp : y + y ≡ x − x (mod p)g and ~ ap(E) = p + 1 − #E(Fp): Elliptic curves of finite fields E~ : y 2 − y = x3 − x2 ~ ~ p #E(Fp) ap(E) = p + 1 − #E(Fp) 2 5 −2 3 5 −1 5 5 1 7 10 −2 13 10 4 . -
THÔNG TIN TOÁN HỌC Tháng 7 Năm 2008 Tập 12 Số 2
Hội Toán Học Việt Nam THÔNG TIN TOÁN HỌC Tháng 7 Năm 2008 Tập 12 Số 2 Lưu hành nội bộ Th«ng Tin To¸n Häc to¸n häc. Bµi viÕt xin göi vÒ toµ so¹n. NÕu bµi ®−îc ®¸nh m¸y tÝnh, xin göi kÌm theo file (chñ yÕu theo ph«ng ch÷ unicode, • Tæng biªn tËp: hoÆc .VnTime). Lª TuÊn Hoa • Ban biªn tËp: • Mäi liªn hÖ víi b¶n tin xin göi Ph¹m Trµ ¢n vÒ: NguyÔn H÷u D− Lª MËu H¶i B¶n tin: Th«ng Tin To¸n Häc NguyÔn Lª H−¬ng ViÖn To¸n Häc NguyÔn Th¸i S¬n 18 Hoµng Quèc ViÖt, 10307 Hµ Néi Lª V¨n ThuyÕt §ç Long V©n e-mail: NguyÔn §«ng Yªn [email protected] • B¶n tin Th«ng Tin To¸n Häc nh»m môc ®Ých ph¶n ¸nh c¸c sinh ho¹t chuyªn m«n trong céng ®ång to¸n häc ViÖt nam vµ quèc tÕ. B¶n tin ra th−êng k× 4- 6 sè trong mét n¨m. • ThÓ lÖ göi bµi: Bµi viÕt b»ng tiÕng viÖt. TÊt c¶ c¸c bµi, th«ng tin vÒ sinh ho¹t to¸n häc ë c¸c khoa (bé m«n) to¸n, vÒ h−íng nghiªn cøu hoÆc trao ®æi vÒ ph−¬ng ph¸p nghiªn cøu vµ gi¶ng d¹y ®Òu ®−îc hoan nghªnh. B¶n tin còng nhËn ®¨ng © Héi To¸n Häc ViÖt Nam c¸c bµi giíi thiÖu tiÒm n¨ng khoa häc cña c¸c c¬ së còng nh− c¸c bµi giíi thiÖu c¸c nhµ Chào mừng ĐẠI HỘI TOÁN HỌC VIỆT NAM LẦN THỨ VII Quy Nhơn – 04-08/08/2008 Sau một thời gian tích cực chuẩn bị, phát triển nghiên cứu Toán học của nước Đại hội Toán học Toàn quốc lần thứ VII ta giai đoạn vừa qua trước khi bước vào sẽ diễn ra, từ ngày 4 đến 8 tháng Tám tại Đại hội đại biểu. -
Stratified Spaces: Joining Analysis, Topology and Geometry
Mathematisches Forschungsinstitut Oberwolfach Report No. 56/2011 DOI: 10.4171/OWR/2011/56 Stratified Spaces: Joining Analysis, Topology and Geometry Organised by Markus Banagl, Heidelberg Ulrich Bunke, Regensburg Shmuel Weinberger, Chicago December 11th – December 17th, 2011 Abstract. For manifolds, topological properties such as Poincar´eduality and invariants such as the signature and characteristic classes, results and techniques from complex algebraic geometry such as the Hirzebruch-Riemann- Roch theorem, and results from global analysis such as the Atiyah-Singer in- dex theorem, worked hand in hand in the past to weave a tight web of knowl- edge. Individually, many of the above results are in the meantime available for singular stratified spaces as well. The 2011 Oberwolfach workshop “Strat- ified Spaces: Joining Analysis, Topology and Geometry” discussed these with the specific aim of cross-fertilization in the three contributing fields. Mathematics Subject Classification (2000): 57N80, 58A35, 32S60, 55N33, 57R20. Introduction by the Organisers The workshop Stratified Spaces: Joining Analysis, Topology and Geometry, or- ganised by Markus Banagl (Heidelberg), Ulrich Bunke (Regensburg) and Shmuel Weinberger (Chicago) was held December 11th – 17th, 2011. It had three main components: 1) Three special introductory lectures by Jonathan Woolf (Liver- pool), Shoji Yokura (Kagoshima) and Eric Leichtnam (Paris); 2) 20 research talks, each 60 minutes; and 3) a problem session, led by Shmuel Weinberger. In total, this international meeting was attended by 45 participants from Canada, China, England, France, Germany, Italy, Japan, the Netherlands, Spain and the USA. The “Oberwolfach Leibniz Graduate Students” grants enabled five advanced doctoral students from Germany and the USA to attend the meeting. -
Mathematical Sciences Meetings and Conferences Section
OTICES OF THE AMERICAN MATHEMATICAL SOCIETY Richard M. Schoen Awarded 1989 Bacher Prize page 225 Everybody Counts Summary page 227 MARCH 1989, VOLUME 36, NUMBER 3 Providence, Rhode Island, USA ISSN 0002-9920 Calendar of AMS Meetings and Conferences This calendar lists all meetings which have been approved prior to Mathematical Society in the issue corresponding to that of the Notices the date this issue of Notices was sent to the press. The summer which contains the program of the meeting. Abstracts should be sub and annual meetings are joint meetings of the Mathematical Associ mitted on special forms which are available in many departments of ation of America and the American Mathematical Society. The meet mathematics and from the headquarters office of the Society. Ab ing dates which fall rather far in the future are subject to change; this stracts of papers to be presented at the meeting must be received is particularly true of meetings to which no numbers have been as at the headquarters of the Society in Providence, Rhode Island, on signed. Programs of the meetings will appear in the issues indicated or before the deadline given below for the meeting. Note that the below. First and supplementary announcements of the meetings will deadline for abstracts for consideration for presentation at special have appeared in earlier issues. sessions is usually three weeks earlier than that specified below. For Abstracts of papers presented at a meeting of the Society are pub additional information, consult the meeting announcements and the lished in the journal Abstracts of papers presented to the American list of organizers of special sessions. -
Memoir About Frank Adams
JOHN FRANK ADAMS 5 November 1930-7 January 1989 Elected F.R.S. 1964 By I.M. JAMES,F.R.S. FRANK ADAMS* was bor in Woolwich on 5 November 1930. His home was in New Eltham, about ten miles east of the centre of London. Both his parents were graduates of King's College London, which was where they had met. They had one other child - Frank's younger brotherMichael - who rose to the rankof Air Vice-Marshal in the Royal Air Force. In his creative gifts and practical sense, Franktook after his father, a civil engineer, who worked for the government on road building in peace-time and airfield construction in war-time. In his exceptional capacity for hard work, Frank took after his mother, who was a biologist active in the educational field. In 1939, at the outbreakof World War II, the Adams family was evacuated first to Devon, for a year, and then to Bedford, where Frankbecame a day pupil at Bedford School; one of a group of independent schools in that city. Those who recall him at school describe him as socially somewhat gauche and quite a daredevil; indeed there were traces of this even when he was much older. In 1946, at the end of the war, the rest of the family returnedto London while Frank stayed on at school to take the usual examinations, including the Cambridge Entrance Scholarship examination at which he won an Open Scholarship to Trinity College. The Head of Mathematics at Bedford, L.H. Clarke, was a schoolmaster whose pupils won countless open awards, especially at Trinity.