2018 Program May 21-24, 2018 | Pittsburgh, Pa Pathologyinformatics.Org
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Validation of Digital Pathology in a Healthcare Environment 2011 Page 1
Validation of Digital Pathology In a Healthcare Environment 2011 Page 1 Validation of Digital Pathology In a Healthcare Environment Authors: Amanda Lowe (Digital Pathology Consultants, LLC), Elizabeth Chlipala (Premier Laboratory), Jesus Elin (Yuma Regional Medical Center), Yoshihiro Kawano (Olympus), Richard E. Long (Charles River Laboratories), Debbie Tillman (Omnyx) Contributors: Jared Schwartz MD, PhD (Aperio), Anil Parwani MD, PhD (College of American Pathologists) Digital Pathology Association | 2424 American Lane, Madison WI 53704 | Tel: 608.441.8600 | Fax: 608.443.2474 Web: http://www.digitalpathologyassociation.org/ Validation of Digital Pathology In a Healthcare Environment 2011 Page 2 Abstract Digital pathology is a dynamic, image-based environment that enables the acquisition, management and interpretation of pathology information generated from a digitized glass slide. The Digital Pathology System (DPS) includes a whole slide scanner (WSS), image acquisition software, image viewing and database software, image analysis software, and the necessary IT infrastructure to support the DPS. Validation is an ongoing process to establish documented evidence that provides a high degree of assurance, that a process or system will consistently perform according to predetermined specifications and quality attributes. To date, efforts to validate digital pathology systems in a clinical healthcare environment have been very limited. Therefore the strengths and weaknesses of validation are essentially unknown. Documentation from governing organizations such as the Food and Drug Administration (FDA), Centers for Medicare and Medicaid (CMS), and the College of American Pathologists (CAP) around validation practices is scarce. Attempts at validation of digital pathology systems are likely limited due to a lack of understanding on how to efficiently conduct a validation and how to navigate regulations that could have an impact on laboratory accreditation and healthcare compliance. -
Digital Pathology in Primary Diagnosis
LABORATORIES www.hospitalhealthcare.com Digital pathology in primary diagnosis Digital pathology has proved promising so far, and a full scale digitisation of pathology may not be as far in the future as originally thought Gordan Maras MD Department of Clinical Pathology and Cytology, Gävle Hospital, Gävle, Sweden he concept of telepathology was introduced in 1986 by the American pathologist T 1 Ronald S Weinstein and it has gained increasing attention ever since. However, it is only in the last decade that it has gained considerable ground, thanks to technological developments in parallel with the increased interest from pathologists around the world. Although the use of digital pathology for primary diagnosis is still limited in most laboratories, the technology has already proven highly beneficial in sparsely populated regions. A well- known example is the work from Eastern Quebec, Canada.2 More recently, studies have shown that digital pathology microscopic methods.4,5 The need for are very tempting. As for many other can be of great help when it comes to good and safe validation has led to the middle-sized, regional hospitals in quantitative assessments of tissue samples publication of validation guides for Sweden, it is difficult for us to recruit for greater standardisation and more laboratories that are willing to take the pathologists, especially with the overall objective and reliable interpretations of digital step,6 a sign that digital pathology pathologist shortage that exists in the various immunohistochemical analyses, is considered being of true importance. country. A major advantage that the new including the proliferation marker The continued progress and evaluation technology brings, in addition to all of Ki-67.3 With the advancement of digital of digital pathology has further shown the benefits of digital imaging, is the technology, the skepticism towards how it could bring great achievements for option for pathologists to work remotely. -
The Performance of Digital Microscopy for Primary Diagnosis in Human Pathology: a Systematic Review
Virchows Archiv (2019) 474:269–287 https://doi.org/10.1007/s00428-018-02519-z REVIEW AND PERSPECTIVES The performance of digital microscopy for primary diagnosis in human pathology: a systematic review Anna Luíza Damaceno Araújo1 & Lady Paola Aristizábal Arboleda1 & Natalia Rangel Palmier1 & Jéssica Montenegro Fonsêca1 & Mariana de Pauli Paglioni1 & Wagner Gomes-Silva1,2,3 & Ana Carolina Prado Ribeiro1,2,4 & Thaís Bianca Brandão2 & Luciana Estevam Simonato4 & Paul M. Speight5 & Felipe Paiva Fonseca1,6 & Marcio Ajudarte Lopes1 & Oslei Paes de Almeida1 & Pablo Agustin Vargas1 & Cristhian Camilo Madrid Troconis7 & Alan Roger Santos-Silva1 Received: 9 August 2018 /Revised: 25 December 2018 /Accepted: 28 December 2018 /Published online: 26 January 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Validation studies of whole slide imaging (WSI) systems produce evidence regarding digital microscopy (DM). This systematic review aimed to provide information about the performance of WSI devices by evaluating intraobserver agreement reported in previously published studies as the best evidence to elucidate whether DM is reliable for primary diagnostic purposes. In addition, this review delineates the reasons for the occurrence of discordant diagnoses. Scopus, MEDLINE/PubMed, and Embase were searched electronically. A total of 13 articles were included. The total sample of 2145 had a majority of 695 (32.4%) cases from dermatopathology, followed by 200 (9.3%) cases from gastrointestinal pathology. Intraobserver agreements showed an excellent concordance, with values ranging from 87% to 98.3% (κ coefficient range 0.8–0.98). Ten studies (77%) reported a total of 128 disagreements. The remaining three studies (23%) did not report the exact number and nature of disagreements. -
Barriers and Facilitators to the Introduction of Digital Pathology for Diagnostic Work
This is a repository copy of Barriers and facilitators to the introduction of digital pathology for diagnostic work. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/86602/ Version: Accepted Version Article: Randell, RS, Ruddle, RA and Treanor, D (2015) Barriers and facilitators to the introduction of digital pathology for diagnostic work. Studies in Health Technology and Informatics, 216. 443 - 447. ISSN 0926-9630 https://doi.org/10.3233/978-1-61499-564-7-443 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Barriers and facilitators to the introduction of digital pathology for diagnostic work Rebecca Randella, Roy A. Ruddleb, Darren Treanorc+d a School of Healthcare, University of Leeds, Leeds, UK b School of Computing, University of Leeds, Leeds, UK c Department of Histopathology, Leeds Teaching Hospitals NHS Trust, Leeds, UK d Leeds Institute of Cancer & Pathology, University of Leeds, Leeds, UK Abstract sections of human tissue. -
Review Article Emerging Advances to Transform Histopathology Using Virtual Staining
AAAS BME Frontiers Volume 2020, Article ID 9647163, 11 pages https://doi.org/10.34133/2020/9647163 Review Article Emerging Advances to Transform Histopathology Using Virtual Staining Yair Rivenson ,1,2,3 Kevin de Haan ,1,2,3 W. Dean Wallace ,4 and Aydogan Ozcan 1,2,3,5 1Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA 2Bioengineering Department, University of California, Los Angeles, CA, USA 3California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA 4Department of Pathology and Laboratory Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA 5Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA Correspondence should be addressed to Yair Rivenson; [email protected] and Aydogan Ozcan; [email protected] Received 15 June 2020; Accepted 28 July 2020; Published 25 August 2020 Copyright © 2020 Yair Rivenson et al. Exclusive Licensee Suzhou Institute of Biomedical Engineering and Technology, CAS. Distributed under a Creative Commons Attribution License (CC BY 4.0). In an age where digitization is widespread in clinical and preclinical workflows, pathology is still predominantly practiced by microscopic evaluation of stained tissue specimens affixed on glass slides. Over the last decade, new high throughput digital scanning microscopes have ushered in the era of digital pathology that, along with recent advances in machine vision, have opened up new possibilities for Computer-Aided-Diagnoses. Despite these advances, the high infrastructural costs related to digital pathology and the perception that the digitization process is an additional and nondirectly reimbursable step have challenged its widespread adoption. -
A Catalogue of the Fellows, Candidates, Licentiates [And Extra
MDCCCXXXVI. / Od- CATALOGUE OF THE FELLOWS, CANDIDATES, AND LICENTIATES, OF THE ftogal College of LONDON. STREET. PRINTED 1!Y G. WGOUFAM., ANGEL COURT, SKINNER A CATALOGUE OF THE FELLOWS, CANDIDATES, AND LICENTIATES, OF THE Ittojjal College of ^ijpstrtans, LONDON. FELLOWS. Sir Henry Halford, Bart., M.D., G.C.IL, President, Physician to their Majesties , Curzon-street . Devereux Mytton, M.D., Garth . John Latham, M.D., Bradwall-hall, Cheshire. Edward Roberts, M.D. George Paulet Morris, M.D., Prince s-court, St. James s-park. William Heberden, M.D., Elect, Pall Mall. Algernon Frampton, M.D., Elect, New Broad- street. Devey Fearon, M.D. Samuel Holland, M.D. James Franck, M.D., Bertford-street. Park- lane. Sir George Smith Gibbes, Knt., M.D. William Lambe, M.D., Elect, Kings-road, Bedford-row. John Johnstone, M.D., Birmingham. Sir James Fellowes, Knt., M.D., Brighton. Charles Price, M.D., Brighton. a 2 . 4 Thomas Turner, M.D., Elect, and Trea- Extraordinary to surer, Physician the Queen , Curzon-street Edward Nathaniel Bancroft, M.D., Jamaica. Charles Dalston Nevinson, M.D., Montagu- square. Robert Bree, M.D., Elect, Park-square , Regent’s-park. John Cooke, M.D., Gower-street Sir Arthur Brooke Faulkner, Knt., M.D., Cheltenham. Thomas Hume, M.D., Elect, South-street , Grosvenor-square. Peter Rainier, M.D., Albany. Tristram Whitter, M.D. Clement Hue, M.D., Elect, Guildford- street. John Bright, M.D., Manchester-square. James Cholmeley, M.D., Bridge-street Henry , Blackfriars. Sir Thomas Charles Morgan, Knt., M.D., Dublin. Richard Simmons, M.D. Joseph Ager, M.D., Great Portland-st. -
Transactions
M,EDICO - CHIRURGICAL TRANSACTIONS, PIUBLISHED BY THE ROYAL MEDICAL AND CHIRURGICAL SOCIETY OF It{en LONDON. VOLUME THE THIRTY-FIRST. LONDON: PRINTED FOR LONGMAN, BROWN, GREEN, AND LONGMANS, PATERNOSTER-ROW. 1848. RICtARDIOUERT , AILNTER, GREE.N ARtIlUB CO1URT, OLD IBAILEY, LOqDON. MEDICO - CHIRURGICAI TRANSACTIONS, PUBLISHED BY THE ROYAL MEDICAL AND CHIRURGICAL SOCIETY OF LONDON. SECOND SERIES. VOLUME THE THIRTEENTH. LONDON: PRJNTED POR LONGMAN, BROWN, GREEN AND LONGMANS, PATERNOSTER-ROW. 1848. RICHARD KINDER, PRINTER, GREEN ARHOUR COURT, OLD BAILEY, LONDON. ROYAL MEDICAL AND CHIRURGICAL SOCIETY OF LONDON. PATRON, THE QUEEN. OFFICERS AND COUNCIL, ELECTED MARCH 1, 1848. PRESIDENT. JAMES MONCRIEFF ARNOTT, F.R.S. rHENRY DAVIES, M.D. JONATHAN M.D., F.R.S. VICE-PRESIDENTS.<V PEREIRA, GEORGE MACILWAIN. LRICHARD PARTRIDGE, F.R.S. { BENJAMIN GUY BABINGTON, M.D., F.R.S. TREASURERS. BENJAMIN PHILLIPS, F.R.S. f WILLIAM BALY, M.D., F.R.S. SECRETARIES. FRED. LE GROS CLARK. { JOHN HENNEN, M.D. LIBRARIANS. l_RICHARD QUAIN, F.R.S. JAMES ALDERSON, M.D., F.R.S. THOMAS MAYO, M.D., F.R.S. ROBERT NAIRNE, M.D. WILLIAM SHARPEY, M.D., F.R.S. OTHER MEMBERS LEONARD STEWART, M.D. OF THE COUNCIL. HENRY ANCELL RICHARD BLAGDEN. GEORGE BUSK. JOHN DALRYMPLE. JAMES PAGET. TRUSTEES OF THE SOCIETY. JAMES M. ARNOTT, F.R.S. JOHN CLENDINNING, M.D., F.R.S. EDWARD STANLEY, F.R.S. a2 FELLOWS OF THE SOCIETY APPOINTED BY THE COUNCIL AS REFEREES OF PAPERS, FOR THE SESSION OF 1847-8. BABINGTON, BENJAMIN G., M.D., F.R.S. BOWMAN, WILLIAM, F.RIS. BUDD, GEORGE, M.D., F.R.S. -
Chipman Family a Genealogy Of
THE CHIPMAN FAMILY A GENEALOGY OF THE CHIPMANS IN AMERICA 1631-1920 BY BERT LEE CHIPMAN BERT L. CHIPMAN. PUBLISHER WINSTON-SALEM. N. C. COPYRIGHT 1920 BERT L. CHIPMAN MONOTYPED BY THE WINSTON PRINTING COMPANY WrN9TON-SALEM, N. C, Introduction Many hours have been spent in gathering and compiling the data that makes up this genealogy of the Chipman family; a correspondence has been carried on extending to every part of the United States and Canada, requiring several thousand letters; but it has been a pleasant task. What is proposed by genealogical research is not to laud individuals, nor to glorify such families as would other wise remain without glory. Heraldic arms have as little worth as military aside from the worth of those bearing them. Not the armor but the army merits and should best repay describing. It has been my earnest desire to make this work as complete and accurate as possible. In this connection I wish to acknowledge the valuable aid in research work rendered by Mr. W. A. Chipman (1788), Mr. S. L. Chip man (1959), Mrs. B. W. Gillespie (see 753) and Mrs. Margaret T. Reger (see 920). C Orgin THE NAME CHIPMAN is of English otjgin, early existing in various forms such as,-Chipenham, Chippenham, Chiepman and Chipnam. The name is to be found quite frequently in the books prepared by the Record Commis sion appointed by the British Parliament, and from i085 to 1350 it usually appears with the prefix de, as,~e Chippenham. Several towns in England bear the name in one of its f onns, for instance: Chippenham, Buckingham Co., twenty-two miles from London, is "a Liberty in the Parish and Hundred of Burnham, forming a part of the ancient demesnes of the crown and said to be the site of a palace of the Mercian kings." Chippenham, Cambridge Co., sixty-one miles from London, is '' a Parish in the Hundred of Staplehou, a dis charged Vicarage in the Archdeaconry of Suffolk and Diocese of Norwich." Chippenham, Wilts Co., ninety-three miles from London, is "a Borough, Market-town and Parish in the Hundred of Chippenham and a place of great antiquity. -
Laboratory Economics
Jondavid Klipp, Editor, [email protected] Volume 14, No. 7 July 2019 New Bill Calls For 1-Year Delay In PAMA Reporting C ONTENTS new bill introduced by Rep. Scott Peters (D-CA) would delay the next Around of PAMA data reporting by one year so that more laboratories HEADLINE NEWS that are required to report their private payer data to CMS have more time Headline News to do so. The Laboratory Access for Beneficiaries Act (H.R. 3584, “The New Bill Calls For 1-Year Delay LAB Act”) was introduced by Rep. Peters on June 27, and has been referred In PAMA Reporting ...........................1, 9 to the House Committee on Energy and Commerce, as well as the House Northwell Health Labs Committee on Ways and Means. However, the bill won’t prevent the next Posts Strong Revenue Growth .......1, 11 AMCA Files for Bankruptcy 10% rate cut for most tests on the Medicare CLFS from happening on After Data Hack ................................1-2 January 1, 2020, and it faces an uphill battle in getting passed into law, notes Dennis Weissman, President of Dennis Weissman & Associates LLC. DIGITAL PATHOLOGY Continued on page 9. Mount Sinai Pathology Dept. Transitioning To Digital Pathology ....3-4 Northwell Health Leads In Growth MERGERS & ACQUISITIONS Among Large Hospital-Owned Labs Eurofins Buys Transplant Genomics .....4 orthwell Health Laboratories (Long Island, NY) grew its Medicare LE LAB & PATHOLOGY TRENDS NPart B fee-for-service revenue by 13.9% per year during the five-year SURVEY period, 2012-2017, according to an LE analysis of newly released Medicare Declining Reimbursement payment data. -
Subject Categories
Subject Categories Click on a Subject Category below: Anthropology Archaeology Astronomy and Astrophysics Atmospheric Sciences and Oceanography Biochemistry and Molecular Biology Business and Finance Cellular and Developmental Biology and Genetics Chemistry Communications, Journalism, Editing, and Publishing Computer Sciences and Technology Economics Educational, Scientific, Cultural, and Philanthropic Administration (Nongovernmental) Engineering and Technology Geology and Mineralogy Geophysics, Geography, and Other Earth Sciences History Law and Jurisprudence Literary Scholarship and Criticism and Language Literature (Creative Writing) Mathematics and Statistics Medicine and Health Microbiology and Immunology Natural History and Ecology; Evolutionary and Population Biology Neurosciences, Cognitive Sciences, and Behavioral Biology Performing Arts and Music – Criticism and Practice Philosophy Physics Physiology and Pharmacology Plant Sciences Political Science / International Relations Psychology / Education Public Affairs, Administration, and Policy (Governmental and Intergovernmental) Sociology / Demography Theology and Ministerial Practice Visual Arts, Art History, and Architecture Zoology Subject Categories of the American Academy of Arts & Sciences, 1780–2019 Das, Veena Gellner, Ernest Andre Leach, Edmund Ronald Anthropology Davis, Allison (William Gluckman, Max (Herman Leakey, Mary Douglas Allison) Max) Nicol Adams, Robert Descola, Philippe Goddard, Pliny Earle Leakey, Richard Erskine McCormick DeVore, Irven (Boyd Goodenough, Ward Hunt Frere Adler-Lomnitz, Larissa Irven) Goody, John Rankine Lee, Richard Borshay Appadurai, Arjun Dillehay, Tom D. Grayson, Donald K. LeVine, Robert Alan Bailey, Frederick George Dixon, Roland Burrage Greenberg, Joseph Levi-Strauss, Claude Barth, Fredrik Dodge, Ernest Stanley Harold Levy, Robert Isaac Bateson, Gregory Donnan, Christopher B. Greenhouse, Carol J. Levy, Thomas Evan Beall, Cynthia M. Douglas, Mary Margaret Grove, David C. Lewis, Oscar Benedict, Ruth Fulton Du Bois, Cora Alice Gumperz, John J. -
Digital Pathology
Digital Pathology: Data-Intensive Frontier in Medical Imaging Lee Cooper, Emory University Alexis Carter, Emory University Alton Farris III, Emory University Fusheng Wang, Emory University Jun Kong, Emory University David Gutman, Emory University Patrick Widener, Emory University Tony C. Pan, Emory University Sharath R. Cholleti, Emory University Ashish Sharma, Emory University Only first 10 authors above; see publication for full author list. Journal Title: Proceedings of the IEEE Volume: Volume 100, Number 4 Publisher: Institute of Electrical and Electronics Engineers (IEEE) | 2012-04-01, Pages 991-1003 Type of Work: Article | Post-print: After Peer Review Publisher DOI: 10.1109/JPROC.2011.2182074 Permanent URL: https://pid.emory.edu/ark:/25593/tzzn8 Final published version: http://dx.doi.org/10.1109/JPROC.2011.2182074 Copyright information: © 2012 IEEE. Accessed September 29, 2021 3:49 AM EDT NIH Public Access Author Manuscript Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2014 October 15. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Proc IEEE Inst Electr Electron Eng. 2012 April ; 100(4): 991–1003. doi:10.1109/JPROC.2011.2182074. Digital Pathology: Data-Intensive Frontier in Medical Imaging Lee A. D. Cooper [Member IEEE], Center for Comprehensive Informatics, Emory University, Atlanta, GA 30306 USA Alexis B. Carter, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30306 USA Alton B. Farris, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30306 USA Fusheng Wang, Center for Comprehensive Informatics, Emory University, Atlanta, GA 30306 USA Jun Kong [Member IEEE], Center for Comprehensive Informatics, Emory University, Atlanta, GA 30306 USA David A. -
Medical Videography Using a Mobile App: Retrospective Analysis
JMIR MHEALTH AND UHEALTH Cambron et al Original Paper Medical Videography Using a Mobile App: Retrospective Analysis Julia C Cambron1, BS; Kirk D Wyatt2, MD; Christine M Lohse3, MS; Page Y Underwood4, JD; Thomas R Hellmich5, MD 1Mayo Clinic Alix School of Medicine, Mayo Clinic, Rochester, MN, United States 2Division of Pediatric Hematology/Oncology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States 3Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, United States 4Legal Department, Mayo Clinic, Scottsdale, AZ, United States 5Department of Emergency Medicine, Mayo Clinic, Rochester, MN, United States Corresponding Author: Thomas R Hellmich, MD Department of Emergency Medicine Mayo Clinic 200 First Street Southwest Rochester, MN, 55905 United States Phone: 1 507 255 2216 Email: [email protected] Abstract Background: As mobile devices and apps grow in popularity, they are increasingly being used by health care providers to aid clinical care. At our institution, we developed and implemented a point-of-care clinical photography app that also permitted the capture of video recordings; however, the clinical findings it was used to capture and the outcomes that resulted following video recording were unclear. Objective: The study aimed to assess the use of a mobile clinical video recording app at our institution and its impact on clinical care. Methods: A single reviewer retrospectively reviewed video recordings captured between April 2016 and July 2017, associated metadata, and patient records. Results: We identified 362 video recordings that were eligible for inclusion. Most video recordings (54.1%; 190/351) were captured by attending physicians. Specialties recording a high number of video recordings included orthopedic surgery (33.7%; 122/362), neurology (21.3%; 77/362), and ophthalmology (15.2%; 55/362).