Digital Pathology in Primary Diagnosis

Total Page:16

File Type:pdf, Size:1020Kb

Digital Pathology in Primary Diagnosis LABORATORIES www.hospitalhealthcare.com Digital pathology in primary diagnosis Digital pathology has proved promising so far, and a full scale digitisation of pathology may not be as far in the future as originally thought Gordan Maras MD Department of Clinical Pathology and Cytology, Gävle Hospital, Gävle, Sweden he concept of telepathology was introduced in 1986 by the American pathologist T 1 Ronald S Weinstein and it has gained increasing attention ever since. However, it is only in the last decade that it has gained considerable ground, thanks to technological developments in parallel with the increased interest from pathologists around the world. Although the use of digital pathology for primary diagnosis is still limited in most laboratories, the technology has already proven highly beneficial in sparsely populated regions. A well- known example is the work from Eastern Quebec, Canada.2 More recently, studies have shown that digital pathology microscopic methods.4,5 The need for are very tempting. As for many other can be of great help when it comes to good and safe validation has led to the middle-sized, regional hospitals in quantitative assessments of tissue samples publication of validation guides for Sweden, it is difficult for us to recruit for greater standardisation and more laboratories that are willing to take the pathologists, especially with the overall objective and reliable interpretations of digital step,6 a sign that digital pathology pathologist shortage that exists in the various immunohistochemical analyses, is considered being of true importance. country. A major advantage that the new including the proliferation marker The continued progress and evaluation technology brings, in addition to all of Ki-67.3 With the advancement of digital of digital pathology has further shown the benefits of digital imaging, is the technology, the skepticism towards how it could bring great achievements for option for pathologists to work remotely. digitisation has also declined greatly, not education, research and archiving.7 It would be particularly useful for small least in view of the numerous validation and remote laboratories to recruit a studies that have good results and good Remote work pathologist independent of where he agreement comparing diagnosis made In our laboratory at Gävle Hospital, the or she currently resides, and who works digitally on screen versus conventional possibilities that digitisation opens up for the hospital without having to be HHE 2015 | 191 LABORATORIES www.hospitalhealthcare.com physically present. The working situation offers the possibility to work for multiple thus becomes much more flexible for the laboratories at the same time, where and diagnostician, both in terms of working when needed. place and working hours. Switching from the microscope to the digital screen is not A digital pathology network that difficult, and recent studies show that The implementation of a digital pathology little training is required for pathologists network is the next step in the digitisation to diagnose digitally at an acceptable process at Gävle hospital, as well as level.8 In our daily work at the laboratory, for certain other laboratories around we have seen that interested pathologists Sweden. Although the technology yields were able to quickly assimilate the a good outcome at the local level, it is in knowledge required for working with collaboration with other hospitals that the digital images. Today, one of our full potential is realised. With a number pathologists works part-time from home, of labs in Sweden implementing digital diagnosing digitally. In addition to the pathology, such a collaboration will soon benefit of remote work for the pathologist be possible. A network interaction would in question, the digitisation has also made be useful in many ways. Today, glass slides our delivery of glass slides to her much are sent between laboratories by mail. easier and quicker, which, in turn, has led This leads to extended response times to shortened turnaround time for some and high delivery costs and, above all, the of the cases. Moreover, consultations have risk of glass slides being damaged or lost. been greatly enhanced as the pathologists To build the routine that digitisation of Sending a digital version of the glass slide working in the laboratory have been able pathology requires in daily work takes would eliminate these inconveniences to view digital images simultaneously time, and the sort of positive attitude and risks for both sender and receiver. with her via direct link, for a fast and safe that our pathologists in Gävle display is However a prerequisite for establishing statement. For us, this has resulted in a of course essential for the forthcoming a network is optimisation of the digital more convenient workflow as a whole. development. workflow within every laboratory. A Dutch At our lab, we also stain with team has shown what aspects to bear in Digitisation at Gävle fluorescence for some skin preparations. mind when facing a transition to digital, The digitisation process in Gävle began These stainings are delicate and quickly and the importance of doing it right from in earnest in 2012 with the purchase of fade, which is why a pathologist must be the beginning.11 scanners and software needed for the present physically to assess the sample. As mentioned earlier, the work and workstation. Since May 2013, we have Even these types of samples will benefit development of telepathology in Eastern scanned glass slides in increasing amounts from digital technology because the Quebec has shown very good results. With and today we scan almost all of our scanned digital image is not affected by a primary focus on diagnosis of frozen produced material. At the moment, our fading colouration. Also, with the image sections, it was noticed that pathologists focus lies especially on how to organise scanned, the diagnosing pathologist does working in remote and isolated places and integrate the procedure of scanning not need to be physically present in the were well disposed to the fact that contact acute samples. Right from the start, we lab but can receive the scanned image and consultation with colleagues in other have been working to improve both the seconds after the procedure.9 A further parts of the region was quick and easy. quality of the scanned images and the advantage for the pathologist working In parallel, the surgeons working in the efficiency of the scanning procedure so as remotely is operating multidisciplinary smaller remote hospitals were more likely to avoid unnecessary time loss. In order to rounds digitally, although not yet a to remain there, knowing they could achieve this we have, for example, trained reality at our hospital. When it comes to perform more complete surgery thanks to special medical laboratory scientists who multidisciplinary rounds, it has been seen the increased availability of pathologists.2 are responsible for scanning and the in Linköping, Sweden, that the efficiency Similar demographics to Eastern quality assurance of the scanned result. of the rounds increase when the screening Quebec can be found in the northland Additionally, we have a working group is made digitally instead of conventionally of Sweden, although on a smaller scale. consisting of a group leader, pathologists, with a microscope.10 This, in turn, leads to The promising effects described above IT consultants and others who collaborate additional patients being reviewed every are worth pursuing given the current and discuss the digital work regularly. given session and an earlier initiation of distribution of both pathologists and A number of our pathologists use the treatment. surgeons in Sweden. One obvious impact digital image for primary diagnosis with We believe that the sort of telework would be faster and more accessible increasing frequency. Others, not yet described above is promising in the sense health care for patients in the sparsely primarily diagnosing on the digital screen, that more pathologists will choose to work populated parts of the country. are instead utilising the morphometric for smaller sized laboratories, such as Digital pathology also offers the functions that the technology offers. ours. For the individual pathologist, this prospect of sharing interesting cases for HHE 2015 | 192 LABORATORIES www.hospitalhealthcare.com educational purposes. In Gävle, we have patients. Also, a fully digitised laboratory 4. Buck TP et al. Validation of a whole begun extracting such cases and adding is not required. Today, there are mobile slide imaging system for primary them to a database. A national network, phone applications that enable digital diagnosis in surgical pathology: and by extension perhaps an international pathology images to be shared and viewed A community hospital experience. network, would simplify the exchange from facilities that cannot afford the J Pathol Informat 2014;5:43. of knowledge, making it an invaluable costly equipment required for digitisation 5. Houghton JP et al. Concordance source for new resident pathologists, of the workflow.13 With mobile apps between digital pathology and among others. As another example, it like these, there are already ways to light microscopy in general surgical would be easy to organise digital-based interconnect regions where the digital pathology: a pilot study of 100 cases. pathology courses for participants from evolution of pathology would probably J Clin Pathol 2014;67:1052–5. all around the world, who may not have take additional time. 6. Pantanowitz L et al. Validating whole the time or the finances to travel long slide imaging for diagnostic purposes distances to assimilate the knowledge they Conclusions in pathology: Guideline from the need for their further development. This The ongoing technological improvements College of American Pathologists would indeed be of exceptional benefit in digital pathology have all the makings Pathology and Laboratory Quality for both residents in training, as well as of a flexible, more standardised and Center. Arch Pathol Lab Med for experienced professionals who need interconnected way of working, both 2013;137:1710–22.
Recommended publications
  • Validation of Digital Pathology in a Healthcare Environment 2011 Page 1
    Validation of Digital Pathology In a Healthcare Environment 2011 Page 1 Validation of Digital Pathology In a Healthcare Environment Authors: Amanda Lowe (Digital Pathology Consultants, LLC), Elizabeth Chlipala (Premier Laboratory), Jesus Elin (Yuma Regional Medical Center), Yoshihiro Kawano (Olympus), Richard E. Long (Charles River Laboratories), Debbie Tillman (Omnyx) Contributors: Jared Schwartz MD, PhD (Aperio), Anil Parwani MD, PhD (College of American Pathologists) Digital Pathology Association | 2424 American Lane, Madison WI 53704 | Tel: 608.441.8600 | Fax: 608.443.2474 Web: http://www.digitalpathologyassociation.org/ Validation of Digital Pathology In a Healthcare Environment 2011 Page 2 Abstract Digital pathology is a dynamic, image-based environment that enables the acquisition, management and interpretation of pathology information generated from a digitized glass slide. The Digital Pathology System (DPS) includes a whole slide scanner (WSS), image acquisition software, image viewing and database software, image analysis software, and the necessary IT infrastructure to support the DPS. Validation is an ongoing process to establish documented evidence that provides a high degree of assurance, that a process or system will consistently perform according to predetermined specifications and quality attributes. To date, efforts to validate digital pathology systems in a clinical healthcare environment have been very limited. Therefore the strengths and weaknesses of validation are essentially unknown. Documentation from governing organizations such as the Food and Drug Administration (FDA), Centers for Medicare and Medicaid (CMS), and the College of American Pathologists (CAP) around validation practices is scarce. Attempts at validation of digital pathology systems are likely limited due to a lack of understanding on how to efficiently conduct a validation and how to navigate regulations that could have an impact on laboratory accreditation and healthcare compliance.
    [Show full text]
  • The Performance of Digital Microscopy for Primary Diagnosis in Human Pathology: a Systematic Review
    Virchows Archiv (2019) 474:269–287 https://doi.org/10.1007/s00428-018-02519-z REVIEW AND PERSPECTIVES The performance of digital microscopy for primary diagnosis in human pathology: a systematic review Anna Luíza Damaceno Araújo1 & Lady Paola Aristizábal Arboleda1 & Natalia Rangel Palmier1 & Jéssica Montenegro Fonsêca1 & Mariana de Pauli Paglioni1 & Wagner Gomes-Silva1,2,3 & Ana Carolina Prado Ribeiro1,2,4 & Thaís Bianca Brandão2 & Luciana Estevam Simonato4 & Paul M. Speight5 & Felipe Paiva Fonseca1,6 & Marcio Ajudarte Lopes1 & Oslei Paes de Almeida1 & Pablo Agustin Vargas1 & Cristhian Camilo Madrid Troconis7 & Alan Roger Santos-Silva1 Received: 9 August 2018 /Revised: 25 December 2018 /Accepted: 28 December 2018 /Published online: 26 January 2019 # Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract Validation studies of whole slide imaging (WSI) systems produce evidence regarding digital microscopy (DM). This systematic review aimed to provide information about the performance of WSI devices by evaluating intraobserver agreement reported in previously published studies as the best evidence to elucidate whether DM is reliable for primary diagnostic purposes. In addition, this review delineates the reasons for the occurrence of discordant diagnoses. Scopus, MEDLINE/PubMed, and Embase were searched electronically. A total of 13 articles were included. The total sample of 2145 had a majority of 695 (32.4%) cases from dermatopathology, followed by 200 (9.3%) cases from gastrointestinal pathology. Intraobserver agreements showed an excellent concordance, with values ranging from 87% to 98.3% (κ coefficient range 0.8–0.98). Ten studies (77%) reported a total of 128 disagreements. The remaining three studies (23%) did not report the exact number and nature of disagreements.
    [Show full text]
  • Barriers and Facilitators to the Introduction of Digital Pathology for Diagnostic Work
    This is a repository copy of Barriers and facilitators to the introduction of digital pathology for diagnostic work. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/86602/ Version: Accepted Version Article: Randell, RS, Ruddle, RA and Treanor, D (2015) Barriers and facilitators to the introduction of digital pathology for diagnostic work. Studies in Health Technology and Informatics, 216. 443 - 447. ISSN 0926-9630 https://doi.org/10.3233/978-1-61499-564-7-443 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Barriers and facilitators to the introduction of digital pathology for diagnostic work Rebecca Randella, Roy A. Ruddleb, Darren Treanorc+d a School of Healthcare, University of Leeds, Leeds, UK b School of Computing, University of Leeds, Leeds, UK c Department of Histopathology, Leeds Teaching Hospitals NHS Trust, Leeds, UK d Leeds Institute of Cancer & Pathology, University of Leeds, Leeds, UK Abstract sections of human tissue.
    [Show full text]
  • Review Article Emerging Advances to Transform Histopathology Using Virtual Staining
    AAAS BME Frontiers Volume 2020, Article ID 9647163, 11 pages https://doi.org/10.34133/2020/9647163 Review Article Emerging Advances to Transform Histopathology Using Virtual Staining Yair Rivenson ,1,2,3 Kevin de Haan ,1,2,3 W. Dean Wallace ,4 and Aydogan Ozcan 1,2,3,5 1Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA 2Bioengineering Department, University of California, Los Angeles, CA, USA 3California NanoSystems Institute (CNSI), University of California, Los Angeles, CA, USA 4Department of Pathology and Laboratory Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA 5Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, CA, USA Correspondence should be addressed to Yair Rivenson; [email protected] and Aydogan Ozcan; [email protected] Received 15 June 2020; Accepted 28 July 2020; Published 25 August 2020 Copyright © 2020 Yair Rivenson et al. Exclusive Licensee Suzhou Institute of Biomedical Engineering and Technology, CAS. Distributed under a Creative Commons Attribution License (CC BY 4.0). In an age where digitization is widespread in clinical and preclinical workflows, pathology is still predominantly practiced by microscopic evaluation of stained tissue specimens affixed on glass slides. Over the last decade, new high throughput digital scanning microscopes have ushered in the era of digital pathology that, along with recent advances in machine vision, have opened up new possibilities for Computer-Aided-Diagnoses. Despite these advances, the high infrastructural costs related to digital pathology and the perception that the digitization process is an additional and nondirectly reimbursable step have challenged its widespread adoption.
    [Show full text]
  • Laboratory Economics
    Jondavid Klipp, Editor, [email protected] Volume 14, No. 7 July 2019 New Bill Calls For 1-Year Delay In PAMA Reporting C ONTENTS new bill introduced by Rep. Scott Peters (D-CA) would delay the next Around of PAMA data reporting by one year so that more laboratories HEADLINE NEWS that are required to report their private payer data to CMS have more time Headline News to do so. The Laboratory Access for Beneficiaries Act (H.R. 3584, “The New Bill Calls For 1-Year Delay LAB Act”) was introduced by Rep. Peters on June 27, and has been referred In PAMA Reporting ...........................1, 9 to the House Committee on Energy and Commerce, as well as the House Northwell Health Labs Committee on Ways and Means. However, the bill won’t prevent the next Posts Strong Revenue Growth .......1, 11 AMCA Files for Bankruptcy 10% rate cut for most tests on the Medicare CLFS from happening on After Data Hack ................................1-2 January 1, 2020, and it faces an uphill battle in getting passed into law, notes Dennis Weissman, President of Dennis Weissman & Associates LLC. DIGITAL PATHOLOGY Continued on page 9. Mount Sinai Pathology Dept. Transitioning To Digital Pathology ....3-4 Northwell Health Leads In Growth MERGERS & ACQUISITIONS Among Large Hospital-Owned Labs Eurofins Buys Transplant Genomics .....4 orthwell Health Laboratories (Long Island, NY) grew its Medicare LE LAB & PATHOLOGY TRENDS NPart B fee-for-service revenue by 13.9% per year during the five-year SURVEY period, 2012-2017, according to an LE analysis of newly released Medicare Declining Reimbursement payment data.
    [Show full text]
  • 2018 Program May 21-24, 2018 | Pittsburgh, Pa Pathologyinformatics.Org
    DIGITAL PATHOLOGY REALIZED 2018 PROGRAM MAY 21-24, 2018 | PITTSBURGH, PA PATHOLOGYINFORMATICS.ORG Brought to you by the Association for Pathology Informatics. Greetings and welcome to all of you. Thank you for joining us! The Pathology Informatics Summit 2018 is the 28th sequential year of a “...over 40 combined years of conference legacy resulting from the merger of two long-standing and successful previous conference excellence in Pathology Informatics series: APIII and Lab InfoTech Summit/AIMCL. All together, these two prior meetings, along with the instruction and scholarly exchange PI-Summit series, have offered over 40 combined years of excellence in Pathology Informatics instruction and for the pathology specialty.” scholarly exchange for the pathology specialty. Over these four decades, our specialty has witnessed a progressive succession from coverage of the Refreshment and lunch breaks will provide you with ample time to browse the exhibitor ballroom, fundamentals of computing and information technology, to increasingly sophisticated exemplars with displays by 23 exhibitors with IT-related products and services. This represents one of the where cogent use of information technology can be seen to greatly enhance both patient safety as largest assemblages of pathology informatics vendors available at any conference in the country. well and the diagnostic and predictive utility of the primary data generated by the collective fields We guarantee that you will gain a host of new ideas and solutions from all of these resources. of Anatomic Pathology and Laboratory Medicine. In consonance with the continuing evolution of the specialty, this year is particularly auspicious in that several watershed events—FDA clearance of All of the faculty PowerPoint lectures, along with synchronized audio, will be posted on the whole slide imaging for primary diagnosis, and the explosive growth in understanding of the utility conference website (PathologyInformatics.org) shortly after the conference adjournment.
    [Show full text]
  • Digital Pathology
    Digital Pathology: Data-Intensive Frontier in Medical Imaging Lee Cooper, Emory University Alexis Carter, Emory University Alton Farris III, Emory University Fusheng Wang, Emory University Jun Kong, Emory University David Gutman, Emory University Patrick Widener, Emory University Tony C. Pan, Emory University Sharath R. Cholleti, Emory University Ashish Sharma, Emory University Only first 10 authors above; see publication for full author list. Journal Title: Proceedings of the IEEE Volume: Volume 100, Number 4 Publisher: Institute of Electrical and Electronics Engineers (IEEE) | 2012-04-01, Pages 991-1003 Type of Work: Article | Post-print: After Peer Review Publisher DOI: 10.1109/JPROC.2011.2182074 Permanent URL: https://pid.emory.edu/ark:/25593/tzzn8 Final published version: http://dx.doi.org/10.1109/JPROC.2011.2182074 Copyright information: © 2012 IEEE. Accessed September 29, 2021 3:49 AM EDT NIH Public Access Author Manuscript Proc IEEE Inst Electr Electron Eng. Author manuscript; available in PMC 2014 October 15. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Proc IEEE Inst Electr Electron Eng. 2012 April ; 100(4): 991–1003. doi:10.1109/JPROC.2011.2182074. Digital Pathology: Data-Intensive Frontier in Medical Imaging Lee A. D. Cooper [Member IEEE], Center for Comprehensive Informatics, Emory University, Atlanta, GA 30306 USA Alexis B. Carter, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30306 USA Alton B. Farris, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30306 USA Fusheng Wang, Center for Comprehensive Informatics, Emory University, Atlanta, GA 30306 USA Jun Kong [Member IEEE], Center for Comprehensive Informatics, Emory University, Atlanta, GA 30306 USA David A.
    [Show full text]
  • Evolution of Telepathology: a Comprehensive Analysis of Global Telepathology Literature Between 1986 and 2017
    Original Article doi: 10.5146/tjpath.2019.01484 Evolution of Telepathology: A Comprehensive Analysis of Global Telepathology Literature Between 1986 and 2017 Engin ŞENEL1 , Yılmaz BAŞ2 Department of 1Dermatology and 2Pathology, Hitit University Faculty of Medicine, ÇORUM, TURKEY ABSTRACT Objective: Telepathology is an application of telemedicine providing remote evaluation and consultation of digital pathology images and can be used for educational or experimental purposes. Bibliometrics is a statistical discipline investigating publication patterns and trends in a certain academic field. Although bibliometric and scientometric studies are becoming increasingly popular, the relevant literature contains only one limited article related to telepathology. The aim of our study was to perform a holistic bibliometric analysis of the telepathology literature. Material and Method: Since the first article on telepathology was published in 1986, we included all indexed articles retrieved from Web of Science databases between 1986 and 2017. Results: We found that the USA covering 43.01% of all literature was the leading country in the telepathology field and was followed by Germany, Italy and the UK (n=120, 90 and 83, respectively). The countries with the most contributions were located in the continents of Europe and North America. The most productive source titles were Human Pathology, Journal of Telemedicine and Telecare, and Modern Pathology. Harvard University ranked first with 59 articles. The most commonly used keywords of the telepathology literature were “telepathology”, “telemedicine”, “digital pathology”, “virtual microscopy” and “telecytology”. We noted that all of the ten countries with the most contributions were in the developed category of UN classification and all twenty of the most productive institutions were from developed countries.
    [Show full text]
  • Pathology AI (Artificial Intelligence) Reference Guide by Holger Lange and Cris Luengo, Flagship Biosciences Inc
    Pathology AI (Artificial Intelligence) Reference Guide by Holger Lange and Cris Luengo, Flagship Biosciences Inc. Over the past few years, Deep Learning has created quite a hype about Artificial Intelligence (AI) and Healthcare AI has become a hot topic. We at Flagship Biosciences www.flagshipbio.com have been developing our own Pathology AI system over the last 8 years to solve the most challenging real-world tissue analysis problems across the entire Pharma industry. You can see a short demonstration of our Pathology AI system for Immuno-Oncology (IO) on YouTube: https://www.linkedin.com/pulse/how-pathology-ai-works-immuno-oncology-short-demo-video-holger- lange/ This reference guide is organized as a collection of independent chapters that each discusses a different key aspect, allowing the reader to select the subject she or he is interested in. 1. Background We introduce Pathology AI step by step, starting with an introduction to Pathology, going to Digital Pathology and then focusing on machine learning as the key component of a Pathology AI system. 1.1 Pathology Pathology is the discipline of diagnosing a disease mostly through analysis of tissue, cell and body fluid samples. We focus here on the analysis of tissue. The examination starts with a biopsy. Chemical fixatives, like formalin, are used to preserve the tissue from degradation until the specimen gets to the histology lab. The histology lab processes, embeds, sections, and stains the specimen. Tissue processing removes the water from the tissue and replaces it with a medium, like paraffin wax, that solidifies to create tissue blocks.
    [Show full text]
  • Pursuit of an Optimized Surgical Pathology Workflow with Digital Pathology Integration
    Pursuit of an Optimized Surgical Pathology Workflow with Digital Pathology Integration J. Mark Tuthill, MD Division of Pathology Informatics Henry Ford Hospital Detroit, MI 48202 [email protected] Digital Pathology and AI Workshop Pittsburgh, PA December 13-14, 2019 Objectives 1. Understand digital integration prerequisites and opportunities 2. Present examples of operational systems used and digitally integrated at HFHS 3. Highlight common strategies the lead to success 4. Describe the integration of WSI 5. Recognize challenges and points of failure in digitial workflow and WSI Philosophical Hypothesis • “We can integrate AP workflow so that it models efficiency of the clinical laboratory” – What are the pre-requisites? – What is the low hanging fruit? • Sequence – What are the technology gaps? • Advanced robotics and pipeline development – Automation of manual processes Operational Systems Digital Integration Information Technology Lab Information System PATHOLOGISTS TECHNICAL & SUPPORT STAFF Epic Wired Sunquest : Lab and CoPath Histotrak HLA MAS POC Syapse Aqueduct Hematology Lane Faxing LAB PORTAL SCANNING APOLLO Digital Pathology Atlas ARCC Roche Scantron MikroScan − Surg Path Reqs − Store AP Req Scans Digital Cameras − Cytopath Reqs − Store Clin Path Req Scans − Clin Path Reqs − Integrate External AP Results − Outreach Documents − Telepath Integration HEALTHSTREAM − Associate Imaging to Reports Training (HFHS U) − Interface to acquisition devices Competency Cameras (1-2 M records/yr) - Gels LAB USER’S Molecular Pathology and NGS
    [Show full text]
  • Digital Pathology: Hype Vs Reality Who Am I? I AM NOT STEPHEN HEWITT
    Digital Pathology: Hype vs Reality Who Am I? I AM NOT STEPHEN HEWITT... DISCLOSURES Session Goals ARE THEY JUST HYPE? OR… ARE THEY SIMPLY REALITY? HYPE!! Digital Pathology = Whole Slide Imaging? Imaging Modalities in Pathology Generic Surg Path Workflow – with Imaging Specimen TAKE A Accessioning Grossing triage PICTURE? TAKE A Microtomy Embedding Processing PICTURE? Staining Case Microscopic SCAN/TAKE coverslipping post-processing analysis A PICTURE? & labeling and archival Generic Surg Path Workflow – with Imaging Specimen TAKE A Accessioning Grossing triage PICTURE? TAKE A Microtomy Embedding Processing PICTURE? Staining Case Microscopic SCAN/TAKE coverslipping post-processing analysis A PICTURE? and archival & labeling Generic Surg Path Workflow – with Imaging Specimen TAKE A Accessioning Grossing triage PICTURE? TAKE A Microtomy Embedding Processing PICTURE? Staining Case SCAN/TAKE Microscopic coverslipping post-processing A PICTURE? analysis and archival & labeling Telepathology is Digital Pathology Too! → REALITY! HYPE!! Pathology Informatics Publications and Digital Pathology Publication Year Digital Pathology Other Informatics Total 2018 23 20 43 2017 30 21 51 2016 35 21 56 Total 88 62 150 15 From: McClintock DS et. al. A core curriculum for clinical fellowship training in pathology informatics. J Pathol Inform 2012;3:31 16 From: McClintock DS et. al. A core curriculum for clinical fellowship training in pathology informatics. J Pathol Inform 2012;3:31 Digital Pathology and Pathology Informatics REALITY! HYPE!! 20 From: McClintock DS et. al. A core curriculum for clinical fellowship training in pathology informatics. J Pathol Inform 2012;3:31 To properly implement Digital Pathology, you should be familiar with at least 61 of the 92 topics in this list!! “XYZ” Informatics YOU MUST UNDERSTAND BOTH FIELDS!!! Prime Example!! OSU could not go digital without the proper expertise!! REALITY! HYPE!! Digital Pathology and the FDA → → Comparison of FDA Device Submissions From: Abels E, Pantanowitz L.
    [Show full text]
  • Guidelines for Digital Microscopy in Anatomical Pathology and Cytology
    THE ROYAL COLLEGE OF PATHOLOGISTS OF AUSTRALASIA (RCPA) Guidelines for Digital Microscopy in Anatomical Pathology and Cytology February 2020 (version 2.0) Online copyright © RCPA 2015 www.rcpa.edu.au Table of contents REVISION HISTORY ........................................................................................................................................... 2 SCOPE .............................................................................................................................................................. 3 ABBREVIATIONS .............................................................................................................................................. 4 DEFINITIONS .................................................................................................................................................... 5 INTRODUCTION ............................................................................................................................................... 6 BACKGROUND ................................................................................................................................................. 6 1 TECHNICAL SPECIFICATIONS .................................................................................................................... 8 1.1 BACKGROUND SET-UP REQUIREMENTS ............................................................................................................ 8 1.2 IMAGE ACQUISITION ..................................................................................................................................
    [Show full text]