Alpha ^Adrenoceptors in Human Corneal Epithelium

Total Page:16

File Type:pdf, Size:1020Kb

Alpha ^Adrenoceptors in Human Corneal Epithelium Investigative Ophthalmology & Visual Science, Vol. 32, No. 12, November 1991 Copyright © Association for Research in Vision and Ophthalmology Alpha ^Adrenoceptors in Human Corneal Epithelium Ronald J. Walkenbach,*t Guo-Sui Ye,* Peter 5. Reinach,^: and Frances Boney* Specific binding of the potent, selective alphaj-adrenoceptor antagonist 3H-prazosin was demonstrated in cultured human corneal epithelial cells. Specific binding of the radioligand was concentration-depen- dent between 0.5 and 6 nM, with apparent saturation of receptor sites seen at higher concentrations. The cells exhibited a maximum binding capacity for 3H-prazosin of 225 fmol/mg of cellular protein and a dissociation constant of 2 nM. The binding of 3H-prazosin was competitive with known alpha,-adren- oceptor ligands and was reversible. Epithelium of intact human corneas also exhibited specific 3H-pra- zosin binding, as did cultures of bovine and rabbit corneal epithelium. The alpha-adrenergic agonist methoxamine significantly stimulated phosphatidylinositol 4,5-bis- phosphate hydrolysis, measured as myoinositol trisphosphate accumulation in cultures of human cor- neal epithelium. This stimulation was inhibited by the presence of prazosin during the assays. These findings indicate the existence of specific, reversible, high-affinity receptors for alpha,-adre- noceptors that regulate inositol phosphate turnover in human, rabbit, and bovine corneal epithelial cells. Invest Ophthalmol Vis Sci 32:3067-3072,1991 The cornea is innervated by adrenergic nerve late inositol phosphate turnover in human corneal epi- fibers,1"3 but their role(s) in corneal physiology re- thelial cells, a finding analogous to that previously main poorly understood. The existence of beta-adren- reported in rabbit corneal epithelium. oceptors on corneal epithelial cells has been estab- 4 5 Methods and Materials lished ' and shown to be predominately of the beta2 subtype.6 Corneal epithelial beta-adrenoceptors have Rabbit and bovine eyes were obtained from local been associated with stimulation of adenylate cyclase slaughterhouses within 2 hr after the animals were 7 9 and cyclic AMP-dependent protein kinase, " chlo- killed. The eyes were kept on ice for up to 4 hr more, 10 14 ride secretion, " as well as inhibition of mitotic until further processing occurred. Human eyes were 15 8 rates and glycogen synthase activity. obtained from the Missouri Lions Eye Tissue Bank. The existence of alpha-adrenoceptors on corneal ep- The corneas of human eyes were dissected within 12 ithelial cells is less well understood. Some preliminary hr postmortem and stored in Dexsol (Chiron Ophthal- reports using broken cell tissue preparations have sug- mics, Irvine, CA) or a similar medium composed of gested the absence of alpha-adrenoceptors,1617 M-199 tissue culture medium supplemented with whereas other studies have used drugs with alpha- 1.35% chondroitin sulfate, 1% dextran (40,000 kDa), adrenoceptor agonist properties to demonstrate stimu- 17 raM Na bicarbonate, 20 mM HEPES buffer, 12 lation of ion transport in frog and inositol phosphate brought to a final pH of 7.4 with 1 N NaOH. Corneas 18 turnover in rabbit corneal epithelium. were stored at 4°C for up to 72 hr in one of these The direct radioligand binding studies shown here media before initiation of tissue fractionation, cell indicate that intact corneal epithelial cells from rab- culture, or binding experiments. bit, bovine, and human tissue exhibit high-affinity, Particulate fractions of native corneal epithelium specific alpha radrenoceptors. These receptors regu- from rabbit, bovine, or human corneas were prepared as previously described.19 Briefly, the corneas were rinsed with an ice-cold solution containing 10 mM From the *Missouri Lions Eye Research Foundation, Columbia, K2HPO4 in 0.9% NaCl (PBS), and the corneal epithe- Missouri; the f Departments of Ophthalmology and Pharmacology, University of Missouri, Columbia, Missouri; and the tDepartment lium was removed from the isolated cornea (human) of Physiology and Endocrinology, Medical College of Georgia, Au- or eye (bovine and rabbit) with a scalpel blade. Tissue gusta, Georgia. was homogenized in 1 ml per cornea of 25 mM gly- Supported by National Institutes of Health grants EY 02597 and cylglycine buffer (pH = 7.6) with a Teflon/glass tissue EY 04795. grinder in the cold. The homogenate was centrifuged Submitted for publication: March 20, 1991; accepted June 17, 1991. at 50,000 X g for 30 min at 4°C. The pellet was resus- Reprint requests: Ronald J. Walkenbach, PhD, The Missouri pended in fresh buffer, and the centrifugation and re- Lions Eye Research Foundation, 404 Portland Street, Columbia, suspension steps were repeated to produce each epithe- MO 65201. lial particulate fraction. 3067 Downloaded from iovs.arvojournals.org on 09/28/2021 3068 INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE / November 1991 Vol. 32 Rabbit, bovine, or human coraeal epithelial cells as the difference between the measured total 3H-pra- were cultured in six-well multiplates as described pre- zosin bound and nonspecific bound in each set of par- viously.19 Briefly, epithelial tissue pieces (with some allel assays. residual stroma) were placed in 5 ml per well as Ea- Binding studies with intact human corneas were gle's minimum essential medium (MEM) with D-va- performed analogously except that incubations were line to inhibit keratocyte contamination of the epithe- performed in culture media. After incubation, the lial cultures20 and 10% newborn calf serum. Media corneas were rinsed briefly with ice-cold PBS, and the were changed after 1 week of culture and twice weekly epithelium was removed quickly with a surgical scal- thereafter. Each well typically contained 150-200 ng pel blade and placed in 2 ml of 2 N NaOH. After of cellular protein when used for experiments after digestion, the samples were neutralized before mea- 3-4 weeks of culture. suring their protein and radioactivity. Paniculate fractions of cultured epithelium were Binding protocols using intact cultured cells were prepared as described except that a rubber spatula was identical except that 1 ml of 1 N NaOH was added to used to remove cells from the wells. each well after the final PBS rinse. The potent alphaj-adrenoceptor antagonist 3H- Inositol phosphate turnover experiments in cul- prazosin (87 Ci/mmol; NEN Research Products, Bos- tured human corneal epithelial cells were performed ton, MA) was used to assess receptor binding activity using the basic technique described by Martin.21 The in these tissue preparations. The protocol used for growth medium was removed and the cells washed binding to epithelial particulate fractions was analo- several times with inositol-free minimum essential gous to that described for 3H-quinuclidinyl benzilate medium (IFMEM). This medium was prepared by binding to muscarinic cholinoceptors in this tissue.19 mixing Hank's salt solution (Sigma Chemical Co., St. Briefly, total binding of the radioligand was assessed Louis, MO) with MEM amino acid mixture (Sigma) by incubating the particulate fractions with the indi- and adding the individual vitamins as listed by the cated concentration of 3H-prazosin in 25 mM glycylg- MEM formulation. The cells were cultured for 48 hr lycine buffer, pH = 7.6 at 37°C for 30 min (unless with 3 ml of fresh IFMEM, supplemented with 2% otherwise indicated). The assays were filtered and dialyzed sterile calf serum (Sigma) and 33 nM 3H- washed free of unbound radioligand with three 5-ml myoinositol (3H-inositol; 15.6 Ci/mmol, NEN Re- aliquots of ice-cold buffer. Each filter was placed in 10 search Products). The labeling medium was removed, ml of Scintiverse BOA cocktail (Fisher Scientific, and the cells were washed with PBS and preincubated Springfield, NJ), shaken for at least 1 hr in the dark, for 5 min at 37°C with serum-free IFMEM with 10 and counted by standard liquid scintillation tech- mM LiCl to block dephosphorylation of inositol-1- 3 22 niques. Nonspecific binding of H-prazosin was mea- PO4 to inositol. After the preincubation period, the sured by running parallel assays with 100 nM norepi- medium was replaced with fresh serum-free IFMEM nephrine added to the reaction mixtures during the containing the drugs indicated in Table 1 and incu- incubation. Specific binding of 3H-prazosih is defined bated for an additional 5 min. Reactions were termi- Table 1. Comparison of 3H-prazosin binding in different tissue preparations of corneal epithelium from the rabbit, bovine, and human 3H-prazosin bound (fmol/mg) Tissue preparation Total Nonspecific Specific Significance Rabbit Fresh, particulate fraction 435 ± 34 456 ± 33 <0 NS Cultured, particulate fraction 189 ±23 193 ± 15 <0 NS Cultured, intact cells 295 ± 15 259 ± 19 36 P < 0.05 Bovine Fresh, particulate fraction 243 ±31 238 ± 25 5 NS Cultured, particulate fraction 210 ± 17 201 ± 27 9 NS Cultured, intact cells 299 ± 25 154 ±20 145 P < 0.005 Human Fresh, particulate fraction 117± 13 126 ± 19 <0 NS Cultured, particulate fraction 165 ±21 155 ± 18 10 NS Cultured, intact cells 275 ± 36 182 ±33 93 P<0.01 Fresh, intact cornea 105 ± 7 64 ± 13 41 P < 0.01 Intact cells or particulate fractions were assayed using 2 nM 3H-prazosin 20 assays, using tissue from at least three different harvest dates. Statistical without or with 100 jtM norepinephrine. Each tissue preparation's total and significance was determined using the Student's t-test for unpaired samples. nonspecific 3H-prazosin binding value represents the mean ± SEM of 12 to Protein levels ranged from 75 to 100 ng per assay. Downloaded from iovs.arvojournals.org on 09/28/2021 No. 12 ALPHA,-ADRENOCEPTOR5 IN HUMAN CORNEAL EPITHELIUM / Wolkenboch er ol 3069 nated by aspirating the incubation medium and add- 200 ing 1 ml of ice-cold 10% HC1O4 to each well. The cells in the wells were frozen, thawed, and kept on ice for 30 min to complete the extraction of 3H-inositol phos- phates from the cells, then decanted.
Recommended publications
  • A Comparative Study of the Ultrastructure of Microvilli in the Epithelium of Small and Large Intestine of Mice
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central A COMPARATIVE STUDY OF THE ULTRASTRUCTURE OF MICROVILLI IN THE EPITHELIUM OF SMALL AND LARGE INTESTINE OF MICE T. M. MUKHERJEE and A. WYNN WILLIAMS From the Electron Microscope Laboratory, the Departlnent of Pathology, the University of Otago Medical School, Dunedin, New Zealand ABSTRACT A comparative analysis of the fine structure of the microvilli on jejunal and colonic epi- thelial cells of the mouse intestine has been made. The microvilli in these two locations demonstrate a remarkably similar fine structure with respect to the thickness of the plasma membrane, the extent of the filament-free zone, and the characteristics of the microfila- ments situated within the microvillous core. Some of the core microfilaments appear to continue across the plasma membrane limiting the tip of the microvillus. The main differ- ence between the microvilli of small intestine and colon is in the extent and organization of the surface coat. In the small intestine, in addition to the commonly observed thin surface "fuzz," occasional areas of the jejunal villus show a more conspicuous surface coat covering the tips of the microvilli. Evidence has been put forward which indicates that the surface coat is an integral part of the epithelial cells. In contrast to the jejunal epithelium, the colonic epithelium is endowed with a thicker surface coat. Variations in the organization of the surface coat at different levels of the colonic crypts have also been noted. The func- tional significance of these variations in the surface coat is discussed.
    [Show full text]
  • Cultivating a Cure for Blindness
    news and views were taken in a l-mm2 biopsy from the good eye, then they were cultured and, on second Cultivating a cure passage, they formed a tightly packed and communicating (confluent) monolayer of cells. For grafting, the conjunctiva! epi­ for blindness thelium was completely removed from the cornea and limbus of the recipient eye, and replaced with a slightly larger monolayer of Stuart Hodson cultured limbal epithelium. The eyes were Damaged corneas can often be repaired using donor grafts, but if the then covered with therapeutic soft contact damage is too great the graft wlll be rejected. This may change with the lenses, and tightly patched for several days. development of a method to Inhibit rejection which uses cultivated cells. The results after the limbal epithelial graft were very promising. The grafted epithelium he human cornea has a special proper­ epithelium can mould a smooth apical and was stable, transparent, multi-layered and Tty known as immune privilege, which basal surface, the limbal epithelial stem cells smooth. One of the patients had suffered an allows tissue grafts from donors to be do not form such a smooth surface. alkali burn to his left eye ten years earlier, and carried out without the usual problems of If the corneal epithelium is lost it can be had undergone three previous unsuccessful immune rejection. However, immune privi­ functionally regenerated by the limbal stem corneal grafts. Before the treatment he had lege is lost at the perimeter of the cornea - cells. But if both the corneal and limbal continual severe corneal vascularization the limb us of the eye - where the transpar­ epithelia are lost, the corneal surface is re­ ( development of blood vessels) and persis­ ent corneal stroma meets the opaque sclera colonized by the other neighbour of the tent ulceration, and the eye was painful and (Fig.
    [Show full text]
  • Quantitative Assessment of Central and Limbal Epithelium After Long
    Eye (2016) 30, 979–986 © 2016 Macmillan Publishers Limited All rights reserved 0950-222X/16 www.nature.com/eye 1,5 1,5 1 Quantitative RK Prakasam , BS Kowtharapu , K Falke , CLINICAL STUDY K Winter2,3, D Diedrich4, A Glass4, A Jünemann1, assessment of central RF Guthoff1 and O Stachs1 and limbal epithelium after long-term wear of soft contact lenses and in patients with dry eyes: a pilot study Abstract Purpose Analysis of microstructural Eye (2016) 30, 979–986; doi:10.1038/eye.2016.58; alterations of corneal and limbal epithelial published online 22 April 2016 cells in healthy human corneas and in other ocular conditions. Introduction Patients and methods Unilateral eyes of three groups of subjects include healthy The X, Y, Z hypothesis1 explains cell mechanism volunteers (G1, n = 5), contact lens wearers that is essential for the renewal and maintenance 1Department of (G2, n = 5), and patients with dry eyes of the corneal epithelium. This hypothesis Ophthalmology, University = proposes that the loss of corneal epithelial of Rostock, Rostock, (G3, n 5) were studied. Imaging of basal Germany (BC) and intermediate (IC) epithelial cells surface cells (Z) can be maintained by the from central cornea (CC), corneal limbus proliferation of basal epithelial cells (X), and the 2Faculty of Medicine, centripetal movements of the peripheral (CL) and scleral limbus (SL) was obtained by Institute of Anatomy, epithelial cells (Y). By utilizing this mechanism, University of Leipzig, in vivo confocal microscopy (IVCM). An it is also possible to categorize both disease and Leipzig, Germany appropriate image analysis algorithm was therapies according to the specific component 3 used to quantify morphometric parameters involved.1 Therefore it is vital to understand the Institute for Medical including mean cell area, compactness, Informatics, Statistics and cellular structures of both central and limbal Epidemiology (IMISE), solidity, major and minor diameter, and epithelial cells in normal and in various corneal University of Leipzig, maximum boundary distance.
    [Show full text]
  • Development of in Vitro Corneal Models: Opportunity for Pharmacological Testing
    Review Development of In Vitro Corneal Models: Opportunity for Pharmacological Testing Valentina Citi 1, Eugenia Piragine 1, Simone Brogi 1,* , Sara Ottino 2 and Vincenzo Calderone 1 1 Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; [email protected] (V.C.); [email protected] (E.P.); [email protected] (V.C.) 2 Farmigea S.p.A., Via G.B. Oliva 6/8, 56121 Pisa, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-050-2219-613 Received: 24 October 2020; Accepted: 30 October 2020; Published: 2 November 2020 Abstract: The human eye is a specialized organ with a complex anatomy and physiology, because it is characterized by different cell types with specific physiological functions. Given the complexity of the eye, ocular tissues are finely organized and orchestrated. In the last few years, many in vitro models have been developed in order to meet the 3Rs principle (Replacement, Reduction and Refinement) for eye toxicity testing. This procedure is highly necessary to ensure that the risks associated with ophthalmic products meet appropriate safety criteria. In vitro preclinical testing is now a well-established practice of significant importance for evaluating the efficacy and safety of cosmetic, pharmaceutical, and nutraceutical products. Along with in vitro testing, also computational procedures, herein described, for evaluating the pharmacological profile of potential ocular drug candidates including their toxicity, are in rapid expansion. In this review, the ocular cell types and functionality are described, providing an overview about the scientific challenge for the development of three-dimensional (3D) in vitro models.
    [Show full text]
  • Vocabulario De Morfoloxía, Anatomía E Citoloxía Veterinaria
    Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) Servizo de Normalización Lingüística Universidade de Santiago de Compostela COLECCIÓN VOCABULARIOS TEMÁTICOS N.º 4 SERVIZO DE NORMALIZACIÓN LINGÜÍSTICA Vocabulario de Morfoloxía, anatomía e citoloxía veterinaria (galego-español-inglés) 2008 UNIVERSIDADE DE SANTIAGO DE COMPOSTELA VOCABULARIO de morfoloxía, anatomía e citoloxía veterinaria : (galego-español- inglés) / coordinador Xusto A. Rodríguez Río, Servizo de Normalización Lingüística ; autores Matilde Lombardero Fernández ... [et al.]. – Santiago de Compostela : Universidade de Santiago de Compostela, Servizo de Publicacións e Intercambio Científico, 2008. – 369 p. ; 21 cm. – (Vocabularios temáticos ; 4). - D.L. C 2458-2008. – ISBN 978-84-9887-018-3 1.Medicina �������������������������������������������������������������������������veterinaria-Diccionarios�������������������������������������������������. 2.Galego (Lingua)-Glosarios, vocabularios, etc. políglotas. I.Lombardero Fernández, Matilde. II.Rodríguez Rio, Xusto A. coord. III. Universidade de Santiago de Compostela. Servizo de Normalización Lingüística, coord. IV.Universidade de Santiago de Compostela. Servizo de Publicacións e Intercambio Científico, ed. V.Serie. 591.4(038)=699=60=20 Coordinador Xusto A. Rodríguez Río (Área de Terminoloxía. Servizo de Normalización Lingüística. Universidade de Santiago de Compostela) Autoras/res Matilde Lombardero Fernández (doutora en Veterinaria e profesora do Departamento de Anatomía e Produción Animal.
    [Show full text]
  • Nucleus Cytoplasm Plasma Membrane (A) Generalized Animal
    Nucleus Cytoplasm Plasma membrane (a) Generalized animal cell © 2018 Pearson Education, Inc. 1 Nuclear envelope Chromatin Nucleus Nucleolus Nuclear pores (b) Nucleus 2 Extracellular fluid Glycoprotein Glycolipid (watery environment) Cholesterol Sugar group Polar heads of phospholipid molecules Bimolecular lipid layer containing proteins Channel Nonpolar tails of Proteins Filaments of phospholipid molecules cytoskeleton Cytoplasm (watery environment) 3 Microvilli Tight (impermeable) junction Desmosome (anchoring junction) Plasma membranes of adjacent cells Connexon Underlying Extracellular Gap basement space between (communicating) membrane cells junction 4 Chromatin Nuclear envelope Nucleolus Nucleus Plasma Smooth endoplasmic membrane reticulum Cytosol Lysosome Mitochondrion Rough endoplasmic reticulum Centrioles Ribosomes Golgi apparatus Secretion being released Microtubule from cell by exocytosis Peroxisome Intermediate filaments 5 Ribosome mRNA 1 As the protein is synthesized on the ribosome, Rough ER it migrates into the rough ER tunnel system. 2 1 3 2 In the tunnel, the protein folds into its functional shape. Short sugar chains may be attached to the protein (forming a glycoprotein). Protein 3 The protein is packaged in a tiny membranous sac called a transport vesicle. Transport 4 vesicle buds off 4 The transport vesicle buds from the rough ER and travels to the Golgi apparatus for further processing. Protein inside transport vesicle © 2018 Pearson Education, Inc. 6 Rough ER Tunnels Proteins in tunnels Membrane Lysosome fuses with ingested substances. Transport vesicle Golgi vesicle containing digestive enzymes becomes a lysosome. Pathway 3 Pathway 2 Golgi vesicle containing Golgi membrane components apparatus Secretory vesicles fuses with the plasma Pathway 1 membrane and is Proteins incorporated into it. Golgi vesicle containing proteins to be secreted Plasma membrane becomes a secretory Secretion by vesicle.
    [Show full text]
  • GLOSSARY of MEDICAL and ANATOMICAL TERMS
    GLOSSARY of MEDICAL and ANATOMICAL TERMS Abbreviations: • A. Arabic • abb. = abbreviation • c. circa = about • F. French • adj. adjective • G. Greek • Ge. German • cf. compare • L. Latin • dim. = diminutive • OF. Old French • ( ) plural form in brackets A-band abb. of anisotropic band G. anisos = unequal + tropos = turning; meaning having not equal properties in every direction; transverse bands in living skeletal muscle which rotate the plane of polarised light, cf. I-band. Abbé, Ernst. 1840-1905. German physicist; mathematical analysis of optics as a basis for constructing better microscopes; devised oil immersion lens; Abbé condenser. absorption L. absorbere = to suck up. acervulus L. = sand, gritty; brain sand (cf. psammoma body). acetylcholine an ester of choline found in many tissue, synapses & neuromuscular junctions, where it is a neural transmitter. acetylcholinesterase enzyme at motor end-plate responsible for rapid destruction of acetylcholine, a neurotransmitter. acidophilic adj. L. acidus = sour + G. philein = to love; affinity for an acidic dye, such as eosin staining cytoplasmic proteins. acinus (-i) L. = a juicy berry, a grape; applied to small, rounded terminal secretory units of compound exocrine glands that have a small lumen (adj. acinar). acrosome G. akron = extremity + soma = body; head of spermatozoon. actin polymer protein filament found in the intracellular cytoskeleton, particularly in the thin (I-) bands of striated muscle. adenohypophysis G. ade = an acorn + hypophyses = an undergrowth; anterior lobe of hypophysis (cf. pituitary). adenoid G. " + -oeides = in form of; in the form of a gland, glandular; the pharyngeal tonsil. adipocyte L. adeps = fat (of an animal) + G. kytos = a container; cells responsible for storage and metabolism of lipids, found in white fat and brown fat.
    [Show full text]
  • EPITHELIAL TISSUE Or EPITHELIUM • the Basic Tissue of the Body
    13.11.2014 Epithelium Dr. Archana Rani Associate Professor Department of Anatomy KGMU UP, Lucknow EPITHELIAL TISSUE or EPITHELIUM • The basic tissue of the body. • Cells are arranged as continuous sheets. • Single or multiple layers. • Cells are held tightly together by cell junctions. • Free surface • Basal surface adheres to basal lamina or basement membrane. • Avascular but supplied by nerves. • Has high capability to regenerate. Embryological aspect • Epithelia are derived from all the 3 germ layers: • Ectoderm- Epithelium of skin • Endoderm- Epithelium of gut • Mesoderm- Epithelium of pericardial, peritoneal and pleural cavities Functions – Protection – Absorption – Barrier – Excretion – Secretory – Function as sensory surfaces Classification According to shape, arrangement and the specialization of their free surface: • Simple • Stratified • Pseudostratified • Transitional Simple epithelium Simple Squamous Epithelium • Single layered • Flat cells • On surface view, like floor tiles • Elevated nuclei Squamous • Examples: cell - Lung alveoli Nucleus - Parietal layer of Bowman’s capsule of kidney Basement - Inner aspect of membrane tympanic membrane Function: Rapid transport of - Mesothelium substances, secretion of fluid, - Endothelium diffusion of gases and osmosis Simple Squamous Epithelium Simple Cuboidal Epithelium • Single layer of cuboidal shaped cells • On surface view, cells look like mosaic (hexagonal) • Examples: -Thyroid follicles -Tubules of nephrons - Pigmented layer of retina - Germinal layer of ovary - Inner layer of
    [Show full text]
  • A Technique for Obtaining Basal Corneal Epithelial Cells
    Reports A Technique for Obtaining Basal Corneal Epithelial Cells V. Trinkaus-Randall and I. K. Gipson A technique has been developed for obtaining a cell suspen- basal cells can be freed from the basal laminae after sion enriched (89%) in basal corneal epithelial cells. Eleven an incubation with Dispase II.8 millimeter corneal buttons were removed and placed in Materials and Methods. All investigations involving culture medium containing low (10 nM) calcium. The animals reported in this study conform to the ARVO posterior half of the stroma was removed with forceps. Resolution on the Use of Animals in Research. New Three superficial cuts were made with a Bard-Parker blade on the anterior half of the cornea, which was then incubated Zealand white rabbits were killed by administering 5 for 18 hr at 35°C. Nonadherent cells were brushed off after ml pentobarbital (325 mg) intravenously. An outline the incubation and basal cells were harvested after a 1-hr was made on the cornea with an 11-mm trephine incubation in Dispase II. Cell viability estimated by Eryth- and corneal buttons were cut free with scissors. The rocin /? exclusion was 90%. Further evidence of viability posterior half of the stroma then was pulled away was that the cells adhered to their native substrate, the from the cornea with jewelers' forceps. Three evenly denuded basal lamina. The authors protocol provides a spaced, superficial cuts (1 mm in length) were made method for analyzing the biochemistry of a known population on the cornea with a small scalpel to facilitate the of epithelial cells and makes available a defined source of penetration of the medium.
    [Show full text]
  • Formation of Primary Cilia in the Renal Epithelium Is Regulated by the Von Hippel-Lindau Tumor Suppressor Protein
    Fast Track Formation of Primary Cilia in the Renal Epithelium Is Regulated by the von Hippel-Lindau Tumor Suppressor Protein Miguel A. Esteban, Sarah K. Harten, Maxine G. Tran, and Patrick H. Maxwell Renal Laboratory, Imperial College London, Hammersmith Campus, London, United Kingdom Growing evidence points to defects in the primary cilium as a critical mechanism underlying renal cyst development. Inactivation of the VHL gene is responsible for the autosomal dominant condition von Hippel-Lindau (VHL) disease and is implicated in most sporadic clear cell renal carcinomas. Manifestations of VHL disease include cysts in several organs, particularly in the kidney. Here it is shown that VHL inactivation is associated with abrogation of the primary cilium in renal cysts of patients with VHL disease and in VHL-defective cell lines. Complementation of VHL-defective clear cell renal carcinoma cell lines with wild-type VHL restored primary cilia. Moreover, it is shown that the effects of VHL on the primary cilium are mediated substantially via hypoxia-inducible factor. The effect of VHL status on the primary cilium provides a potential mechanism for renal cyst development in VHL disease and may help in the understanding of how VHL acts as a tumor suppressor. J Am Soc Nephrol 17: 1801–1806, 2006. doi: 10.1681/ASN.2006020181 any different hereditary conditions are associated re-expression of VHL in cell lines that are derived from CCRCC with development of renal cysts, often with other suppresses their tumorigenicity in nude mice (11). In view of M clinical manifestations. These include autosomal the proposed role of the primary cilium in other kidney cystic dominant polycystic kidney disease, Bardet-Biedl syndrome, diseases, we hypothesized that the VHL protein (pVHL) may nephronophthisis, and oral-facial-digital type 1 syndrome.
    [Show full text]
  • Maintaining the Cornea and the General Physiological Environment in Visual Neurophysiology Experiments
    Journal of Neuroscience Methods 109 (2001) 153–166 www.elsevier.com/locate/jneumeth Maintaining the cornea and the general physiological environment in visual neurophysiology experiments Andrew B. Metha a, Alison M. Crane b , H. Grady Rylander III c, Sharon L. Thomsen d, Duane G. Albrecht b,* a Department of Optometry and Vision Sciences, The Uni6ersity of Melbourne, Carlton, Victoria 3053, Australia b Department of Psychology, Uni6ersity of Texas, Austin, TX 78712, USA c Department of Electrical and Computer Engineering, Uni6ersity of Texas, Austin, TX 78712, USA d Biomedical Engineering Program, Uni6ersity of Texas, Austin, TX 78712, USA Received 30 January 2001; received in revised form 4 June 2001; accepted 4 June 2001 Abstract Neurophysiologists have been investigating the responses of neurons in the visual system for the past half-century using monkeys and cats that are anesthetized and paralyzed, with the non-blinking eyelids open for prolonged periods of time. Impermeable plastic contact lenses have been used to prevent dehydration of the corneal epithelium, which would otherwise occur in minutes. Unfortunately, such lenses rapidly introduce a variety of abnormal states that lead to clouding of the cornea, degradation of the retinal image, and premature termination of the experiment. To extend the viability of such preparations, a new protocol for maintenance of corneal health has been developed. The protocol uses rigid gas permeable contact lenses designed to maximize gas transmission, rigorous sterile methods, and a variety of methods for sustaining and monitoring the overall physiology of the animal. The effectiveness of the protocol was evaluated clinically by ophthalmoscopy before, during, and after the experiments, which lasted 8–10 days.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]