The Biosynthesis of Free Glycine and Serine by Tumors*

Total Page:16

File Type:pdf, Size:1020Kb

The Biosynthesis of Free Glycine and Serine by Tumors* The Biosynthesis of Free Glycine and Serine by Tumors* SAULKIT (University of Texas M. D. Anderson Hospital and Tumor Institute, Department of Biochemistry, Houston, Texas) When cell suspensions of the Gardner lympho- Tissues and incubation procedure.—TheGardnerand Mecca sarcoma were incubated with acetate-2-C14, ap lymphosarcomas, previously transplanted to grow as solid tumors, were transformed into ascites tumors. It was observed preciable radioactivity was observed in the alpha that less total radioactivity was found in Gardner ascites carbon of free glycine (4). There are described be tumor glycine after incubations with labeled acetate than in low experiments showing that the methyl carbon the earlier experiments (4), which were carried out with cell of acetate may also be utilized in the formation of suspensions made from the solid tumors. The preparation of free serine. The incorporation of radioactivity cellular suspensions from the solid tumors involves a rather thorough extraction of soluble proteins and endogenous from labeled glucose into both amino acids and of metabolites. Possibly, the difference is partly attributable labeled ribose into glycine is also demonstrated to this factor. (Note, in this connection, Table 4 and Table 5, (5). The latter conversions take place in tumors experiment 1.) However, the observed conversion by the other than the Gardner lymphosarcoma. ascites cells was deemed adequate for our purposes, so that ascites cells were used thereafter. The author proposes the following scheme as a Tumor-bearing animals were sacrificed 7-10 days after basis for discussion : the intraperitoneal inoculation of 0.1-0.2 cc. of ascites fluid. Acetate —»oxalacetate<->pyruvate I ? Glucose—>hexosephosphate <->phosphoglycerate —>(phosphohydroxypyruvate) Ribose glycine «-»serine<— (phosphoserine) It will be noted that serine is formed prior to In the acetate, ribose, and formate experiments, tumor cells glycine and that phosphoglycerate is suggested as were twice washed with modified Krebs-Ringer-phosphate buffer (6), a refrigerated centrifuge being used to sediment an intermediate common to all three substrates. the cells between washes. In the experiments with labeled The results presented in this paper are consistent glucose, the ascites plasma was decanted after the tumor cells with the above scheme. A number of other hypo were sedimented. The cells were then resuspended in 2 volumes thetical pathways were also considered, but in of Krebs-Ringer-phosphate buffer and used without further most instances were at variance with the data. washing. To obviate possible bacterial contamination, streptomycin Examples are to be found in the discussion. The sulfate and potassium penicillinate were incorporated into the inclusion of phosphohydroxypyruvate and phos incubation medium in some experiments. No effect upon phoserine is as yet purely speculative. amino acid biosynthesis resulted from these additions. The absence of bacterial contamination from the Gardner ascites EXPERIMENTAL tumor was also verified through the kindness of Dr. E. Staten Labeled substrates.—Acetate-2-C14and formate-C14 were Wynne, Department of Pathology of this Institution. purchased from Tracerlab Inc.; glucose-1-C14 from Nuclear The general methods were those described previously (8). Instrument and Chemical Co.; glucose-6-C14, glucose-2-C14, Details concerning protocols are to be found with the tables. and ribose-1-C14 from the National Bureau of Standards; all RESULTS AND DISCUSSION on allocation from the Atomic Energy Commission. Uniformly labeled D-ribose, as supplied by Schwartz Laboratories, was Formation of labeled serine and glycine from glu dissolved in 75 per cent ethanol; the alcohol was evaporated in coselabeledwith C14.—-Whencellsuspensions of the tacuo before the cells were added to the Warburg vessels. Gardner, Mecca, or Ehrlich ascites tumors were * Aided in part by grants from the National Cancer Insti incubated with glucose-1-C14 or glucose-6-C14, ap tute, Department of Health, Education and Welfare, and by preciable radioactivity was found in free alanine the American Cancer Society. The author is indebted to and serine (Table 1). Somewhat less radioactivity Odette Graham, with whose assistance the experiments de was found in aspartic acid, glutamic acid, and pro- scribed below were performed. line, but none was detected in glycine. By the re Received for publication June 21, 1955. actions of glycolysis, glucose-1-C14or glucose-6-C14 715 Downloaded from cancerres.aacrjournals.org on September 29, 2021. © 1955 American Association for Cancer Research. 716 Cancer Research is metabolized to phosphoglyceric acid-3-C14. The CC>2when glucose is metabolized via the shunt. latter would presumably give rise to serine-3-Cu The results also indicate that labeled serine may and unlabeled glycine. No amino acid biosynthesis be formed from glucose- 1-C14 by a mechanism not was observed when trichloroacetie acid was added involving glyoxalate as an intermediate, since no at the start of the experiment. radioactivity was found in glycine. It has been The addition of nonlabeled serine to the incuba shown that glyoxalate is a glycine precursor (12). tion medium increased serine radioactivity. In the When glucose-2-C14 was the substrate, the label absence of oxygen, there was a marked reduction ing of glycine as well as serine was observed of radioactivity in serine, glutamic acid, or aspar- (Table 2). As alpha-labeled phosphoglyceric acid tic acid, but that of alanine was reduced to a lesser would be formed in this case, the radioactivity extent. Anaerobically, the reoxidation of Coen- found in glycine is in accord with expectation. zyme I, which is reduced by trióse phosphate de- Although the incorporation of carbon from la hydrogenase, takes place at the level of lactate. beled glucose into free serine by various normal The inhibition of serine labeling probably indicates tissues of adult rodents was also studied, relatively that the serine precursor does not effectively com little radioactivity was observed in the serine. A pete for oxidized Coenzyme I. comparison of free amino acid biosynthesis of nor- TABLE1 AMINOACIDBIOSYNTHESISFROMGuicosE-6-C"ORGLUCOSE-I-C"BYTUMORS Flask contents: 2.45 cc. including 0.1 mg. potassium penicillinate, 0.1 mg. streptomycin sulfate, unlabeled serine as indicated, Krebs-Ringer-phosphate buffer, pH 7.4, 0.01 M. Glucose-1-C14:10 yuM/flask(216,000 counts/min/juM). Glu- cose-6-C14:5 ^M/flask (424,000 counts/min/juM). Krebs-Ringer-bicarbonate buffer (0.028 M) used in anaerobic experi ments. Exp. 2: 10 jiM fluoride, 5 /aMpyruvate/flask. Exp. 8: 15 juMfluoride, 15 /¿Mpyruvate.Exp. 4: 30 /iM pyruvate, 15 ¡Mfluoride. Time: 60 minutes. Temp.: 38°C.Atmosphere: air, except where indicated by asterisk. TOTAL CODNTB/MINX10~* Aspartic Glutamic EXP. TUMORGardnerGardnerMeccaGardnerGardner*EhrlichEhrlich*EhrlichGardnerGardnerEhrlichEhrlichGLUCOSE-C"666666661111SERINE(CM)none33111115622TUMOR C14 (>IM) ADDITIONS acid acid Serine Alanine none 2.35 14.2 38.2 80.5 1 Gardner 6 3 none 3.61 18.6 96.0 90.5 none 2.45 9.4 94.2 94.4 none 2.17 19.3 35.7 70.5 none 0.49 5.8 5.6 42.8 none 1.71 17.6 10.9 102 none 4.3 1.4 83.0 F-Pyruvate 34.2 36.7 none 1.46 7.08 43.3 29.5 F-Pyruvate 1.34 5.00 90.5 11.2 none 3.91 5.70 14.1 46.5 F-Pyruvate 1.36 3.95 42.6 18.3 * Atmosphere: 95 per cent Nt-5 per cent COi. To establish the nature of the proximal serine mal tissues with that of tumors will be dealt with precursor, tumor cells were incubated in the pres in a separate communication. ence of potassium fluoride, an enolase inhibitor. A Formation of serine from formate and glycine.— pool of nonlabeled pyruvate was added to dilute Evidence that serine and glycine are intercon any radioactive pyruvate formed despite the vertible in the tumors as in other tissues (9) was block. The radioactivity of alanine, glutamic, and obtained by experiments with formate-C14 and aspartic acids was markedly reduced, demonstrat nonlabeled glycine. The free serine which was ing that the metabolic block was effective. Never isolated contained appreciable radioactivity (Table theless, the radioactivity of serine was increased 3). (Table 1). It must, therefore, be concluded that Experiments with ribose labeled with C'14.—-Ho- serine is not formed from pyruvate by a reversal recker et al. (2) have observed the transformation of the serine dehydrase reaction (10) but that of l-C14-ribose-5-phosphate to l,3-C14-hexose phos phosphoglyceric acid is a more likely precursor. phate by rat liver enzymes. "Active glycolalde- It should be noted that the results with glucose- hyde," derived from the first two carbons, and 1-C14 (Table 1, Exps. 3 and 4) indicate that appre trióse phosphate, derived from carbons 3-5 of the ciable labeled serine may be formed by tumors pentose, are presumed intermediates (1, 7). En without the necessary participation of the hexose zymes capable of effecting this transformation are monophosphate shunt. The first carbon is lost as widely distributed in mammalian tissues (7), in- Downloaded from cancerres.aacrjournals.org on September 29, 2021. © 1955 American Association for Cancer Research. KIT—Glycine and Serine Biosynthesis by Tumors 717 eluding the Gardner lymphosarcoma (11). It is, found in serine was one-third that of glycine, the therefore, apparent that all five pentose carbons ratio could be reversed by adding nonlabeled serine are potential sources of glycine and serine. To test to the medium and thus increasing the size of the this possibility, cell suspensions were incubated serine pool. As a result, radioactivity of glycine with uniformly labeled ribose-C14 and also with was reduced, although that of glutamic acid was ribose-1-C14. Relatively little exogenous ribose was not affected. oxidized to C14O2or converted to amino acids The labeling of glycine and of aspartic acid from (Table 3).
Recommended publications
  • The Role of Agmatine and Arginine Decarboxylase in Ischemic Tolerance After Transient Cerebral Ischemia in Rat Models
    The role of agmatine and arginine decarboxylase in ischemic tolerance after transient cerebral ischemia in rat models Jin Young Jung Department of Medicine The Graduate School, Yonsei University The role of agmatine and arginine decarboxylase in ischemic tolerance after transient cerebral ischemia in rat models Directed by Professor Seung Kon Huh The Doctoral Dissertation submitted to the Department of Medicine, the Graduate School of Yonsei University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Jin Young Jung May 2007 This certifies that the Doctoral Dissertation of Jin Young Jung is approved. __________________________________ Thesis Supervisor: Seung Kon Huh __________________________________ Jong Eun Lee: Thesis Committee Member #1 __________________________________ Jin Woo Chang: Thesis Committee Member #2 __________________________________ Duck Sun Ahn: Thesis Committee Member #3 __________________________________ Ji Cheol Shin: Thesis Committee Member #4 The Graduate School Yonsei University May 2007 Acknowledgements Some may consider this short section of the thesis trivial but for me it is a chance to express my sincerest gratitude to those that I am truly thankful. First of all, I would like to express my deepest gratitude to my thesis supervisor and mentor Professor Seung Kon Huh. He has inspired me when I was troubled and always gave me a warm heart. I would also like to thank Professor Jong Eun Lee who shared her valuable time on the execution and interpretation of this study, Professor Jin Woo Chang who always inspiring me with passion and discerning insight. Professor Duck Sun Ahn whose insightful comments were essential in completing this thesis, Professor Ji Cheol Shin for the excellent suggestion for improvement in this thesis.
    [Show full text]
  • Amino Acid Chemistry
    Handout 4 Amino Acid and Protein Chemistry ANSC 619 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIES Amino Acid Chemistry I. Chemistry of amino acids A. General amino acid structure + HN3- 1. All amino acids are carboxylic acids, i.e., they have a –COOH group at the #1 carbon. 2. All amino acids contain an amino group at the #2 carbon (may amino acids have a second amino group). 3. All amino acids are zwitterions – they contain both positive and negative charges at physiological pH. II. Essential and nonessential amino acids A. Nonessential amino acids: can make the carbon skeleton 1. From glycolysis. 2. From the TCA cycle. B. Nonessential if it can be made from an essential amino acid. 1. Amino acid "sparing". 2. May still be essential under some conditions. C. Essential amino acids 1. Branched chain amino acids (isoleucine, leucine and valine) 2. Lysine 3. Methionine 4. Phenyalanine 5. Threonine 6. Tryptophan 1 Handout 4 Amino Acid and Protein Chemistry D. Essential during rapid growth or for optimal health 1. Arginine 2. Histidine E. Nonessential amino acids 1. Alanine (from pyruvate) 2. Aspartate, asparagine (from oxaloacetate) 3. Cysteine (from serine and methionine) 4. Glutamate, glutamine (from α-ketoglutarate) 5. Glycine (from serine) 6. Proline (from glutamate) 7. Serine (from 3-phosphoglycerate) 8. Tyrosine (from phenylalanine) E. Nonessential and not required for protein synthesis 1. Hydroxyproline (made postranslationally from proline) 2. Hydroxylysine (made postranslationally from lysine) III. Acidic, basic, polar, and hydrophobic amino acids A. Acidic amino acids: amino acids that can donate a hydrogen ion (proton) and thereby decrease pH in an aqueous solution 1.
    [Show full text]
  • Insights Into the Mn Binding Site in the Agmatinase-Like Protein (ALP): A
    International Journal of Molecular Sciences Article Insights into the Mn2+ Binding Site in the Agmatinase-Like Protein (ALP): A Critical Enzyme for the Regulation of Agmatine Levels in Mammals María-Belen Reyes 1, José Martínez-Oyanedel 1,*, Camila Navarrete 1, Erika Mardones 1, Ignacio Martínez 1,Mónica Salas 2, Vasthi López 3, María García-Robles 4, Estefania Tarifeño-Saldivia 1, Maximiliano Figueroa 1, David García 1 and Elena Uribe 1,* 1 Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 4070386, Chile; [email protected] (M.-B.R.); [email protected] (C.N.); [email protected] (E.M.); [email protected] (I.M.); [email protected] (E.T.-S.); [email protected] (M.F.); [email protected] (D.G.) 2 Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 5110566, Chile; [email protected] 3 Departamento de Ciencias Biomédicas, Universidad Católica del Norte, Coquimbo 1781421, Chile; [email protected] 4 Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción 3349001, Chile; [email protected] * Correspondence: [email protected] (J.M.-O.); [email protected] (E.U.) Received: 28 April 2020; Accepted: 5 June 2020; Published: 10 June 2020 Abstract: Agmatine is a neurotransmitter with anticonvulsant, anti-neurotoxic and antidepressant-like effects, in addition it has hypoglycemic actions. Agmatine is converted to putrescine and urea by agmatinase (AGM) and by an agmatinase-like protein (ALP), a new type of enzyme which is present in human and rodent brain tissues. Recombinant rat brain ALP is the only mammalian protein that exhibits significant agmatinase activity in vitro and generates putrescine under in vivo conditions.
    [Show full text]
  • Solutions to 7.012 Problem Set 1
    MIT Biology Department 7.012: Introductory Biology - Fall 2004 Instructors: Professor Eric Lander, Professor Robert A. Weinberg, Dr. Claudette Gardel Solutions to 7.012 Problem Set 1 Question 1 Bob, a student taking 7.012, looks at a long-standing puddle outside his dorm window. Curious as to what was growing in the cloudy water, he takes a sample to his TA, Brad Student. He wanted to know whether the organisms in the sample were prokaryotic or eukaryotic. a) Give an example of a prokaryotic and a eukaryotic organism. Prokaryotic: Eukaryotic: All bacteria Yeast, fungi, any animial or plant b) Using a light microscope, how could he tell the difference between a prokaryotic organism and a eukaryotic one? The resolution of the light microscope would allow you to see if the cell had a true nucleus or organelles. A cell with a true nucleus and organelles would be eukaryotic. You could also determine size, but that may not be sufficient to establish whether a cell is prokaryotic or eukaryotic. c) What additional differences exist between prokaryotic and eukaryotic organisms? Any answer from above also fine here. In addition, prokaryotic and eukaryotic organisms differ at the DNA level. Eukaryotes have more complex genomes than prokaryotes do. Question 2 A new startup company hires you to help with their product development. Your task is to find a protein that interacts with a polysaccharide. a) You find a large protein that has a single binding site for the polysaccharide cellulose. Which amino acids might you expect to find in the binding pocket of the protein? What is the strongest type of interaction possible between these amino acids and the cellulose? Cellulose is a polymer of glucose and as such has many free hydroxyl groups.
    [Show full text]
  • Proposal of the Annotation of Phosphorylated Amino Acids and Peptides Using Biological and Chemical Codes
    molecules Article Proposal of the Annotation of Phosphorylated Amino Acids and Peptides Using Biological and Chemical Codes Piotr Minkiewicz * , Małgorzata Darewicz , Anna Iwaniak and Marta Turło Department of Food Biochemistry, University of Warmia and Mazury in Olsztyn, Plac Cieszy´nski1, 10-726 Olsztyn-Kortowo, Poland; [email protected] (M.D.); [email protected] (A.I.); [email protected] (M.T.) * Correspondence: [email protected]; Tel.: +48-89-523-3715 Abstract: Phosphorylation represents one of the most important modifications of amino acids, peptides, and proteins. By modifying the latter, it is useful in improving the functional properties of foods. Although all these substances are broadly annotated in internet databases, there is no unified code for their annotation. The present publication aims to describe a simple code for the annotation of phosphopeptide sequences. The proposed code describes the location of phosphate residues in amino acid side chains (including new rules of atom numbering in amino acids) and the diversity of phosphate residues (e.g., di- and triphosphate residues and phosphate amidation). This article also includes translating the proposed biological code into SMILES, being the most commonly used chemical code. Finally, it discusses possible errors associated with applying the proposed code and in the resulting SMILES representations of phosphopeptides. The proposed code can be extended to describe other modifications in the future. Keywords: amino acids; peptides; phosphorylation; phosphate groups; databases; code; bioinformatics; cheminformatics; SMILES Citation: Minkiewicz, P.; Darewicz, M.; Iwaniak, A.; Turło, M. Proposal of the Annotation of Phosphorylated Amino Acids and Peptides Using 1. Introduction Biological and Chemical Codes.
    [Show full text]
  • Amino Acid Degradation
    BI/CH 422/622 OUTLINE: OUTLINE: Protein Degradation (Catabolism) Digestion Amino-Acid Degradation Inside of cells Protein turnover Dealing with the carbon Ubiquitin Fates of the 29 Activation-E1 Seven Families Conjugation-E2 nitrogen atoms in 20 1. ADENQ Ligation-E3 AA: Proteosome 2. RPH 9 ammonia oxidase Amino-Acid Degradation 18 transamination Ammonia 2 urea one-carbon metabolism free transamination-mechanism to know THF Urea Cycle – dealing with the nitrogen SAM 5 Steps Carbamoyl-phosphate synthetase 3. GSC Ornithine transcarbamylase PLP uses Arginino-succinate synthetase Arginino-succinase 4. MT – one carbon metabolism Arginase 5. FY – oxidase vs oxygenase Energetics Urea Bi-cycle 6. KW – Urea Cycle – dealing with the nitrogen 7. BCAA – VIL Feeding the Urea Cycle Glucose-Alanine Cycle Convergence with Fatty acid-odd chain Free Ammonia Overview Glutamine Glutamate dehydrogenase Overall energetics Amino Acid A. Concepts 1. ConvergentDegradation 2. ketogenic/glucogenic 3. Reactions seen before The SEVEN (7) Families B. Transaminase (A,D,E) / Deaminase (Q,N) Family C. Related to biosynthesis (R,P,H; C,G,S; M,T) 1.Glu Family a. Introduce oxidases/oxygenases b. Introduce one-carbon metabolism (1C) 2.Pyruvate Family a. PLP reactions 3. a-Ketobutyric Family (M,T) a. 1-C metabolism D. Dedicated 1. Aromatic Family (F,Y) a. oxidases/oxygenases 2. a-Ketoadipic Family (K,W) 3. Branched-chain Family (V,I,L) E. Convergence with Fatty Acids: propionyl-CoA 29 N 1 Amino Acid Degradation • Intermediates of the central metabolic pathway • Some amino acids result in more than one intermediate. • Ketogenic amino acids can be converted to ketone bodies.
    [Show full text]
  • Amino Acid Catabolism
    Amino Acid Catabolism • Dietary Proteins • Turnover of Protein • Cellular protein • Deamination • Urea cycle • Carbon skeletons of amino acids Amino Acid Metabolism •Metabolism of the 20 common amino acids is considered from the origins and fates of their: (1) Nitrogen atoms (2) Carbon skeletons •For mammals: Essential amino acids must be obtained from diet Nonessential amino acids - can be synthesized Amino Acid Catabolism • Amino acids from degraded proteins or from diet can be used for the biosynthesis of new proteins • During starvation proteins are degraded to amino acids to support glucose formation • First step is often removal of the α-amino group • Carbon chains are altered for entry into central pathways of carbon metabolism Dietary Proteins • Digested in intestine • by peptidases • transport of amino acids • active transport coupled with Na+ Protein Turnover • Proteins are continuously synthesized and degraded (turnover) (half-lives minutes to weeks) • Lysosomal hydrolysis degrades some proteins • Some proteins are targeted for degradation by a covalent attachment (through lysine residues) of ubiquitin (C terminus) • Proteasome hydrolyzes ubiquitinated proteins Turnover of Protein • Cellular protein • Proteasome degrades protein with Ub tags • T 1/2 determined by amino terminus residue • stable: ala, pro, gly, met greater than 20h • unstable: arg, lys, his, phe 2-30 min Ubibiquitin • Ubiquitin protein, 8.5 kD • highly conserved in yeast/humans • carboxy terminal attaches to ε-lysine amino group • Chains of 4 or more Ub molecules
    [Show full text]
  • Cobalamins and Nitrous Oxide: a Review
    J Clin Pathol: first published as 10.1136/jcp.33.10.909 on 1 October 1980. Downloaded from J Clin Pathol 1980;33:909-916 Cobalamins and nitrous oxide: a review I CHANARIN From the Department of Haematology, MRC Clinical Research Centre, Harrow, Middlesex, UK The anaesthetic gas, nitrous oxide (N20), once is not more rapid if B12 is supplied, suggesting that regarded as chemically inert, oxidises some forms of new apoenzyme needs to be synthesised. vitamin B12. It does this both when used clinically and in the test tube, and the action is remarkably Clinical observations selective. As far as we know, no other pathway or substance is affected except as a result of damage to The first clinical report of toxicity that could be vitamin B12. Vitamin B12 that has been oxidised in ascribed to N20 was that of Lassen et al. in 1956,3 this way no longer functions as a coenzyme. Thus who used a 50% N20/oxygen mixture as well as other the effect of N20 presents the biochemist and agents to control the spasms in patients with tetanus. haematologist with a remarkable tool with which Treatment was continued for up to six days. Two of to explore the mode of action of vitamin B12. the patients died, and pancytopenias appeared in It presents the neurologist and neuropathologist most of the patients accompanied by megaloblastic with a new probe into the mechanism of vitamin B12 haemopoiesis demonstrated by marrow aspiration. neuropathy, and finally it is a new tool with which The marrow, indeed, was indistinguishable from that to explore the complex field of vitamin B12-folate in untreated pernicious anaemia.
    [Show full text]
  • Oral Population Modeling of L-Serine in Humans
    ORIGINAL RESEARCH published: 13 May 2021 doi: 10.3389/fphar.2021.643179 Informing Pharmacokinetic Models With Physiological Data: Oral Population Modeling of L-Serine in Humans J. R. Bosley 1*, Elias Björnson 2,3, Cheng Zhang 4, Hasan Turkez 5, Jens Nielsen 3, Mathias Uhlen 4, Jan Borén 2 and Adil Mardinoglu 4,6* 1Clermont Bosley LLC, Philadelphia, PA, United States, 2Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden, 3Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden, 4Science for Life Laboratory, KTH—Royal Institute of Technology, Stockholm, Sweden, 5Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey, 6Centre for Host–Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King’s College London, London, United Kingdom To determine how to set optimal oral L-serine (serine) dose levels for a clinical trial, existing literature was surveyed. Data sufficient to set the dose was inadequate, and so an (n 10) Edited by: George D Loizou, phase I-A calibration trial was performed, administering serine with and without other oral Health and Safety Laboratory, agents. We analyzed the trial and the literature data using pharmacokinetic (PK) modeling United Kingdom and statistical analysis. The therapeutic goal is to modulate specific serine-related Reviewed by: metabolic pathways in the liver using the lowest possible dose which gives the desired José Augusto Guimarães Morais, Universidade de Lisboa, Portugal effect since the upper bound was expected to be limited by toxicity. A standard PK Amir Sadeghi, approach, in which a common model structure was selected using a fit to data, yielded a University of Eastern Finland, Finland model with a single central compartment corresponding to plasma, clearance from that *Correspondence: J.
    [Show full text]
  • The Emerging Role of Amino Acids of the Brain Microenvironment in the Process of Metastasis Formation
    cancers Review The Emerging Role of Amino Acids of the Brain Microenvironment in the Process of Metastasis Formation Francesca Cutruzzolà †, Amani Bouzidi †, Francesca Romana Liberati, Sharon Spizzichino, Giovanna Boumis, Alberto Macone , Serena Rinaldo , Giorgio Giardina and Alessio Paone * Laboratory Affiliated to Istituto Pasteur Italia, Department of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; [email protected] (F.C.); [email protected] (A.B.); [email protected] (F.R.L.); [email protected] (S.S.); [email protected] (G.B.); [email protected] (A.M.); [email protected] (S.R.); [email protected] (G.G.) * Correspondence: [email protected]; Tel.: +39-0649910713 † These authors contributed equally to the work. Simple Summary: Why some cancers choose to form metastases in one organ rather than another is still largely unknown. In this review, we summarized the available information on the possible mechanisms controlling this choice. In particular, we tried to understand how some molecules, especially amino acids, released into the environment outside the cells, participate in selecting the brain as a target organ for the formation of metastases by specific types of aggressive tumors such as melanoma, breast, and lung cancer. Abstract: Brain metastases are the most severe clinical manifestation of aggressive tumors. Melanoma, Citation: Cutruzzolà, F.; Bouzidi, A.; breast, and lung cancers are the types that prefer the brain as a site of metastasis formation, even if the Liberati, F.R.; Spizzichino, S.; Boumis, reasons for this phenomenon still remain to be clarified. One of the main characteristics that makes a G.; Macone, A.; Rinaldo, S.; Giardina, cancer cell able to form metastases in the brain is the ability to interact with the endothelial cells of the G.; Paone, A.
    [Show full text]
  • Studies of Glycine Metabolism and Transport in Fibroblasts from Patients with Nonketotic Hyperglycinemia
    Pediatr. Res. 14: 932-934 (1980) fibroblasts nonketotic hyperglycinemia glycine serine metabolism, amino acids valine Na+ transport system Studies of Glycine Metabolism and Transport in Fibroblasts from Patients with Nonketotic Hyperglycinemia DAVID M. HALTON"" AND INGEBORG KRIEGER Wa,vne State Universirv School of Medicine. The Metabolic Service, Department of Pediatrics. Children's Hospital of Michigan, Detroit. Michigan, USA Summary coverslips were rinsed twice with phosphate-buffered saline glu- cose (PBSG) [I30 mM NaCI, 5 mM KCI, 1.2 mM MgS04, 1 mM Glycine transport in both normal and nonketotic hyperglycine- CaC12, 5 mM glucose. and 10 mM Na2HP04(pH 7.4)]. In a final mia fibroblasts was shown to occur by a sodium-dependent system. wash, the coverslips were left for one hr in PBSG at 37OC to No significant difference could be detected in either the Km's (1.4 minimize endogenous glycine levels. to 2.0 mM) or the Vm,'s (6.2 to 16 nmole per mg protein per min) The incubation procedure was similar to that of Foster and of the three control and three patient cell lines. Valine was a weak Pardee (3). Four yl of [2-L4C]glycine (15) were added per ml of competitive inhibitor of glycine uptake. Ki's from both groups fell incubation medium containing PBSG, unlabeled glycine, and, in into the 5.6 to 5.8 mM range. Plasma levels of valine of one patient some studies, valine. Incubations were camed out for 2 min at reached a maximum of 0.6 mM following a valine load. Glycine 37°C.
    [Show full text]
  • Shear Stress and RBC-NOS Serine1177 Phosphorylation in Humans: a Dose Response
    life Article Shear Stress and RBC-NOS Serine1177 Phosphorylation in Humans: A Dose Response Jarod T. Horobin 1,2,* , Surendran Sabapathy 1, Lennart Kuck 1,2 and Michael J. Simmonds 1,2 1 Menzies Health Institute Queensland, Griffith University, 4222 Gold Coast, Australia; s.sabapathy@griffith.edu.au (S.S.); lennart.kuck@griffithuni.edu.au (L.K.); m.simmonds@griffith.edu.au (M.J.S.) 2 Biorheology Research Laboratory, Griffith University, 4222 Gold Coast, Australia * Correspondence: [email protected] or j.horobin@griffith.edu.au Abstract: Red blood cells (RBC) express a nitric oxide synthase isoform (RBC-NOS) that appears dependent on shear stress for Serine1177 phosphorylation. Whether this protein is equally activated by varied shears in the physiological range is less described. Here, we explored RBC-NOS Serine1177 phosphorylation in response to shear stress levels reflective of in vivo conditions. Whole blood samples were exposed to specific magnitudes of shear stress (0.5, 1.5, 4.5, 13.5 Pa) for discrete exposure times (1, 10, 30 min). Thereafter, RBC-NOS Serine1177 phosphorylation was measured utilising immunofluorescence labelling. Shear stress exposure at 0.5, 1.5, and 13.5 Pa significantly increased RBC-NOS Serine1177 phosphorylation following 1 min (p < 0.0001); exposure to 4.5 Pa had no effect after 1 min. RBC-NOS Serine1177 phosphorylation was significantly increased following 10 min at each magnitude of shear stress (0.5, 1.5, 13.5 Pa, p < 0.0001; 4.5 Pa, p = 0.0042). Shear stress exposure for 30 min significantly increased RBC-NOS Serine1177 phosphorylation at 0.5 Pa and 13.5 Pa (p < 0.0001).
    [Show full text]