International Bear News Spring 2021 Vol
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Baylisascariasis
Baylisascariasis Importance Baylisascaris procyonis, an intestinal nematode of raccoons, can cause severe neurological and ocular signs when its larvae migrate in humans, other mammals and birds. Although clinical cases seem to be rare in people, most reported cases have been Last Updated: December 2013 serious and difficult to treat. Severe disease has also been reported in other mammals and birds. Other species of Baylisascaris, particularly B. melis of European badgers and B. columnaris of skunks, can also cause neural and ocular larva migrans in animals, and are potential human pathogens. Etiology Baylisascariasis is caused by intestinal nematodes (family Ascarididae) in the genus Baylisascaris. The three most pathogenic species are Baylisascaris procyonis, B. melis and B. columnaris. The larvae of these three species can cause extensive damage in intermediate/paratenic hosts: they migrate extensively, continue to grow considerably within these hosts, and sometimes invade the CNS or the eye. Their larvae are very similar in appearance, which can make it very difficult to identify the causative agent in some clinical cases. Other species of Baylisascaris including B. transfuga, B. devos, B. schroeder and B. tasmaniensis may also cause larva migrans. In general, the latter organisms are smaller and tend to invade the muscles, intestines and mesentery; however, B. transfuga has been shown to cause ocular and neural larva migrans in some animals. Species Affected Raccoons (Procyon lotor) are usually the definitive hosts for B. procyonis. Other species known to serve as definitive hosts include dogs (which can be both definitive and intermediate hosts) and kinkajous. Coatimundis and ringtails, which are closely related to kinkajous, might also be able to harbor B. -
Boselaphus Tragocamelus</I>
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2008 Boselaphus tragocamelus (Artiodactyla: Bovidae) David M. Leslie Jr. U.S. Geological Survey, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Leslie, David M. Jr., "Boselaphus tragocamelus (Artiodactyla: Bovidae)" (2008). USGS Staff -- Published Research. 723. https://digitalcommons.unl.edu/usgsstaffpub/723 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. MAMMALIAN SPECIES 813:1–16 Boselaphus tragocamelus (Artiodactyla: Bovidae) DAVID M. LESLIE,JR. United States Geological Survey, Oklahoma Cooperative Fish and Wildlife Research Unit and Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK 74078-3051, USA; [email protected] Abstract: Boselaphus tragocamelus (Pallas, 1766) is a bovid commonly called the nilgai or blue bull and is Asia’s largest antelope. A sexually dimorphic ungulate of large stature and unique coloration, it is the only species in the genus Boselaphus. It is endemic to peninsular India and small parts of Pakistan and Nepal, has been extirpated from Bangladesh, and has been introduced in the United States (Texas), Mexico, South Africa, and Italy. It prefers open grassland and savannas and locally is a significant agricultural pest in India. It is not of special conservation concern and is well represented in zoos and private collections throughout the world. DOI: 10.1644/813.1. -
Integrating Black Bear Behavior, Spatial Ecology, and Population Dynamics in a Human-Dominated Landscape: Implications for Management
Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 8-2017 Integrating Black Bear Behavior, Spatial Ecology, and Population Dynamics in a Human-Dominated Landscape: Implications for Management Jarod D. Raithel Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Ecology and Evolutionary Biology Commons Recommended Citation Raithel, Jarod D., "Integrating Black Bear Behavior, Spatial Ecology, and Population Dynamics in a Human- Dominated Landscape: Implications for Management" (2017). All Graduate Theses and Dissertations. 6633. https://digitalcommons.usu.edu/etd/6633 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. INTEGRATING BLACK BEAR BEHAVIOR, SPATIAL ECOLOGY, AND POPULATION DYNAMICS IN A HUMAN-DOMINATED LANDSCAPE: IMPLICATIONS FOR MANAGEMENT by Jarod D. Raithel A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Ecology Approved: _______________________ _______________________ Lise M. Aubry, Ph.D. Melissa J. Reynolds-Hogland, Ph.D. Major Professor Committee Member _______________________ _______________________ David N. Koons, Ph.D. Eric M. Gese, Ph.D. Committee Member Committee Member _______________________ _______________________ Joseph M. Wheaton, Ph.D. Mark R. McLellan, Ph.D. Committee Member Vice President for Research and Dean of the School of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2017 ii Copyright Jarod Raithel 2017 All Rights Reserved iii ABSTRACT Integrating Black Bear Behavior, Spatial Ecology, and Population Dynamics in a Human-Dominated Landscape: Implications for Management by Jarod D. -
Brown Bear Conservation Action Plan for Europe
Chapter 6 Brown Bear Conservation Action Plan for Europe IUCN Category: Lower Risk, least concern CITES Listing: Appendix II Scientific Name: Ursus arctos Common Name: brown bear Figure 6.1. General brown bear (Ursus arctos) distribution in Europe. European Brown Bear Action Plan (Swenson, J., et al., 1998). 250 km ICELAND 250 miles Original distribution Current distribution SWEDEN FINLAND NORWAY ESTONIA RUSSIA LATVIA DENMARK IRELAND LITHUANIA UK BELARUS NETH. GERMANY POLAND BELGIUM UKRAINE LUX. CZECH SLOVAKIA MOLDOVA FRANCE AUSTRIA SWITZERLAND HUNGARY SLOVENIA CROATIA ROMANIA BOSNIA HERZ. THE YUGOSL. FEDER. ANDORRA BULGARIA PORTUGAL ITALY MACEDONIA SPAIN ALBANIA TURKEY GREECE CYPRUS 55 Introduction assumed to live in southwestern Carinthia, representing an outpost of the southern Slovenian population expanding In Europe the brown bear (Ursus arctos) once occupied into the border area with Austria and Italy (Gutleb 1993a most of the continent including Scandinavia, but since and b). The second population is located in the Limestone about 1850 has been restricted to a more reduced range Alps of Styria and Lower Austria and comprises 8–10 (Servheen 1990), see Figure 6.1. individuals; it is the result of a reintroduction project started by WWF-Austria in 1989. In addition to these populations, the Alps of Styria and Carinthia and to a lesser Status and management of the extent also of Salzburg and Upper Austria, are visited by brown bear in Austria migrating individuals with increasing frequency. A third Georg Rauer center of bear distribution is emerging in northwestern Styria and the bordering areas of Upper Austria (Dachstein, Distribution and current status Totes Gebirge, and Sengsengebirge) where, since 1990, 1–3 bears have been present almost continuously (Frei, J., At present, there are just a few brown bears living in Bodner, M., Sorger, H.P. -
The Role of Wild and Domestic Ungulates in Forming the Helminth Fauna of European Bison in Belarus
Sviatlana Polaz et al. European Bison Conservation Newsletter Vol 10 (2017) pp: 79–86 The role of wild and domestic ungulates in forming the helminth fauna of European bison in Belarus Sviatlana Polaz, Alena Anisimova, Palina Labanouskaya, Aksana Viarbitskaya, Vasili Kudzelich The State Research-Production Association “The Scientifically-Practical Centre of the National Academy of Sciences of Belarus for bio-resources”, Minsk, Belarus Abstract: Discussed is the role of wild and domestic ungulates in the formation of helminth fauna of the European bison in the Republic of Belarus. The current status of helminth infection of E. bison was determined and comparative analysis was conducted regarding the helminth fauna of other wild and domestic ungulates of the Republic of Belarus. Key words: European bison, helminth infection, Belarus Introduction The European bison (Bison bonasus) is a rare terrestrial mammal inhabiting a num- ber of countries including the territory of the Republic of Belarus. To facilitate fur- ther increase of its population, measures for conservation and sound management have been developed, aiming at preserving the already existing European bison population and enriching it with new individuals through an import of animals from other countries. One of present urgent problems in maintenance of European bison are parasitic infestations, since breeding programs carried out in Belarus concern not only the European bison but also other species of large mammals. Therefore an access to complete information about the types of helminths that are capable to affect the health of the E. bison and about factors that influence the formation of helmin- thiases is very important. One of these aspects is the transfer of helminths from one organism to another. -
Ecology of the European Badger (Meles Meles) in the Western Carpathian Mountains: a Review
Wildl. Biol. Pract., 2016 Aug 12(3): 36-50 doi:10.2461/wbp.2016.eb.4 REVIEW Ecology of the European Badger (Meles meles) in the Western Carpathian Mountains: A Review R.W. Mysłajek1,*, S. Nowak2, A. Rożen3, K. Kurek2, M. Figura2 & B. Jędrzejewska4 1 Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawińskiego 5a, 02-106 Warszawa, Poland. 2 Association for Nature “Wolf”, Twardorzeczka 229, 34-324 Lipowa, Poland. 3 Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland. 4 Mammal Research Institute, Polish Academy of Sciences, Waszkiewicza 1c, 17-230 Białowieża, Poland. * Corresponding author email: [email protected]. Keywords Abstract Altitudinal Gradient; This article summarizes the results of studies on the ecology of the European Diet Composition; badger (Meles meles) conducted in the Western Carpathians (S Poland) Meles meles; from 2002 to 2010. Badgers inhabiting the Carpathians use excavated setts Mustelidae; (53%), caves and rock crevices (43%), and burrows under human-made Sett Utilization; constructions (4%) as permanent shelters. Excavated setts are located up Spatial Organization. to 640 m a.s.l., but shelters in caves and crevices can be found as high as 1,050 m a.s.l. Badger setts are mostly located on slopes with southern, eastern or western exposure. Within their territories, ranging from 3.35 to 8.45 km2 (MCP100%), badgers may possess 1-12 setts. Family groups are small (mean = 2.3 badgers), population density is low (2.2 badgers/10 km2), as is reproduction (0.57 young/year/10 km2). Hunting by humans is the main mortality factor (0.37 badger/year/10 km2). -
Eradication of Stoats (Mustela Erminea) from Secretary Island, New Zealand
McMurtrie, P.; K-A. Edge, D. Crouchley, D. Gleeson, M.J. Willans, and A.J. Veale. Eradication of stoats (Mustela erminea) from Secretary Island, New Zealand Eradication of stoats (Mustela erminea) from Secretary Island, New Zealand P. McMurtrie1, K-A. Edge1, D. Crouchley1, D. Gleeson2, M. J. Willans3, and A. J. Veale4 1Department of Conservation, Te Anau Area Office, PO Box 29, Lakefront Drive, Te Anau 0640, New Zealand. <[email protected]>. 2Landcare Research, PB 92170, Auckland, NZ. 3The Wilderness, RD Te Anau-Mossburn Highway, Te Anau, NZ. 4School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, NZ. Abstract Stoats (Mustelia erminea) are known to be good swimmers. Following their liberation into New Zealand, stoats reached many of the remote coastal islands of Fiordland after six years. Stoats probably reached Secretary Island (8140 ha) in the late 1800s. Red deer (Cervus elaphus) are the only other mammalian pest present on Secretary Island; surprisingly, rodents have never established. The significant ecological values of Secretary Island have made it an ideal target for restoration. The eradication of stoats from Secretary Island commenced in 2005. Nine-hundred-and-forty-five stoat trap tunnels, each containing two kill traps, were laid out along tracks at a density of 1 tunnel per 8.6 ha. Traps were also put in place on the adjacent mainland and stepping-stone islands to reduce the probability of recolonisation. Pre-baiting was undertaken twice, first in June and then in early July 2005. In late July, the traps were baited, set and cleared twice over 10 days. -
The 2008 IUCN Red Listings of the World's Small Carnivores
The 2008 IUCN red listings of the world’s small carnivores Jan SCHIPPER¹*, Michael HOFFMANN¹, J. W. DUCKWORTH² and James CONROY³ Abstract The global conservation status of all the world’s mammals was assessed for the 2008 IUCN Red List. Of the 165 species of small carni- vores recognised during the process, two are Extinct (EX), one is Critically Endangered (CR), ten are Endangered (EN), 22 Vulnerable (VU), ten Near Threatened (NT), 15 Data Deficient (DD) and 105 Least Concern. Thus, 22% of the species for which a category was assigned other than DD were assessed as threatened (i.e. CR, EN or VU), as against 25% for mammals as a whole. Among otters, seven (58%) of the 12 species for which a category was assigned were identified as threatened. This reflects their attachment to rivers and other waterbodies, and heavy trade-driven hunting. The IUCN Red List species accounts are living documents to be updated annually, and further information to refine listings is welcome. Keywords: conservation status, Critically Endangered, Data Deficient, Endangered, Extinct, global threat listing, Least Concern, Near Threatened, Vulnerable Introduction dae (skunks and stink-badgers; 12), Mustelidae (weasels, martens, otters, badgers and allies; 59), Nandiniidae (African Palm-civet The IUCN Red List of Threatened Species is the most authorita- Nandinia binotata; one), Prionodontidae ([Asian] linsangs; two), tive resource currently available on the conservation status of the Procyonidae (raccoons, coatis and allies; 14), and Viverridae (civ- world’s biodiversity. In recent years, the overall number of spe- ets, including oyans [= ‘African linsangs’]; 33). The data reported cies included on the IUCN Red List has grown rapidly, largely as on herein are freely and publicly available via the 2008 IUCN Red a result of ongoing global assessment initiatives that have helped List website (www.iucnredlist.org/mammals). -
WAAVP2019-Abstract-Book.Pdf
27th Conference of the World Association for the Advancement of Veterinary Parasitology JULY 7 – 11, 2019 | MADISON, WI, USA Dedicated to the legacy of Professor Arlie C. Todd Sifting and Winnowing the Evidence in Veterinary Parasitology @WAAVP2019 @WAAVP_2019 Abstract Book Joint meeting with the 64th American Association of Veterinary Parasitologists Annual Meeting & the 63rd Annual Livestock Insect Workers Conference WAAVP2019 27th Conference of the World Association for the Advancements of Veterinary Parasitology 64th American Association of Veterinary Parasitologists Annual Meeting 1 63rd Annualwww.WAAVP2019.com Livestock Insect Workers Conference #WAAVP2019 Table of Contents Keynote Presentation 84-89 OA22 Molecular Tools II 89-92 OA23 Leishmania 4 Keynote Presentation Demystifying 92-97 OA24 Nematode Molecular Tools, One Health: Sifting and Winnowing Resistance II the Role of Veterinary Parasitology 97-101 OA25 IAFWP Symposium 101-104 OA26 Canine Helminths II 104-108 OA27 Epidemiology Plenary Lectures 108-111 OA28 Alternative Treatments for Parasites in Ruminants I 6-7 PL1.0 Evolving Approaches to Drug 111-113 OA29 Unusual Protozoa Discovery 114-116 OA30 IAFWP Symposium 8-9 PL2.0 Genes and Genomics in 116-118 OA31 Anthelmintic Resistance in Parasite Control Ruminants 10-11 PL3.0 Leishmaniasis, Leishvet and 119-122 OA32 Avian Parasites One Health 122-125 OA33 Equine Cyathostomes I 12-13 PL4.0 Veterinary Entomology: 125-128 OA34 Flies and Fly Control in Outbreak and Advancements Ruminants 128-131 OA35 Ruminant Trematodes I Oral Sessions -
Canine Ocular Thelaziosis in Slovakia a Case Report
DOI: 10.2478/fv-2018-0035 FOLIA VETERINARIA, 62, 4: 33—38, 2018 CANINE OCULAR THELAZIOSIS IN SLOVAKIA A CASE REPORT Balicka, A.1, Lapšanská, M.1, Halán, M.2, Trbolová, A.1 1Small Animals Clinic 2Department of Epizootiology and Parasitology University of Veterinary Medicine and Pharmacy in Košice Komenského 73 041 81 Košice Slovakia [email protected] INTRODUCTION ABSTRACT The nematode Thelazia callipaeda Raillet and Henry, Thelaziosis is a parasitic disease of the eye that has 1910 (Spiruida, Thelaziidae) is an agent of ocular thelaziosis become more common in Europe over the last twenty that can occur in large and small animals including cattle, years. It is caused by a nematode, order Spirurida, fam- horses, cats, dogs, wolves, red foxes and rabbits [8, 16, 19, ily Thelaziidae. The transmission of this parasite occurs 22]. Thelazia callipaeda has a zoonotic character. The oc- by the dipteran flies. Thelazia callipaeda occurs in the currence of Thelaziasp. in dogs used to be typical in North conjunctival sac, under the third eyelid or in the lacri- America and Asia [28] which explains its so-called name of mal ducts, causing blepharospasm, conjunctivitis, kera- “oriental eye worm” [25]. The disease was first reported in titis and sometimes corneal ulceration. Thelaziosis is northern Italy in 1989 [24]. Recently the number of infec- a zoonotic disease. It occurs in humans, domestic ani- tions are rapidly increasing and the occurrence of thelazio- mals and wildlife. Between 2016 and 2018 three cases of sis has been reported in Belgium, Germany [7], Portugal, canine ocular thelaziosis occurred in dogs admitted to Serbia, France [2], Spain [14], Switzerland [13], Hungary the Small Animals Clinic in Kosice, Slovakia. -
Evolution of MHC Class I Genes in Eurasian Badgers, Genus Meles (Carnivora, Mustelidae)
Heredity (2019) 122:205–218 https://doi.org/10.1038/s41437-018-0100-3 ARTICLE Evolution of MHC class I genes in Eurasian badgers, genus Meles (Carnivora, Mustelidae) 1 1,2 3 4 5 Shamshidin Abduriyim ● Yoshinori Nishita ● Pavel A. Kosintsev ● Evgeniy Raichev ● Risto Väinölä ● 6 7 8 1,2 Alexey P. Kryukov ● Alexei V. Abramov ● Yayoi Kaneko ● Ryuichi Masuda Received: 6 April 2018 / Revised: 30 May 2018 / Accepted: 30 May 2018 / Published online: 29 June 2018 © The Genetics Society 2018 Abstract Because of their role in immune defense against pathogens, major histocompatibility complex (MHC) genes are useful in evolutionary studies on how wild vertebrates adapt to their environments. We investigated the molecular evolution of MHC class I (MHCI) genes in four closely related species of Eurasian badgers, genus Meles. All four species of badgers showed similarly high variation in MHCI sequences compared to other Carnivora. We identified 7−21 putatively functional MHCI sequences in each of the badger species, and 2−7 sequences per individual, indicating the existence of 1−4 loci. MHCI exon 2 and 3 sequences encoding domains α1 and α2 exhibited different clade topologies in phylogenetic networks. Non- α 1234567890();,: 1234567890();,: synonymous nucleotide substitutions at codons for antigen-binding sites exceeded synonymous substitutions for domain 1 but not for domain α2, suggesting that the domains α1 and α2 likely had different evolutionary histories in these species. Positive selection and recombination seem to have shaped the variation in domain α2, whereas positive selection was dominant in shaping the variation in domain α1. In the separate phylogenetic analyses for exon 2, exon 3, and intron 2, each showed three clades of Meles alleles, with rampant trans-species polymorphism, indicative of the long-term maintenance of ancestral MHCI polymorphism by balancing selection. -
Life and Human Coexistence with Large Carnivores
LIFE NATURE | LIFE AND HUMAN COEXISTENCE WITH LARGE CARNIVORES POPULATION PROJECT TITLE CANTABRIAN LIFE94 NAT/E/004827 Action program for the conservation of the brown bear and its habitats in the Cantabrian mountains - 2nd phase (Asturias) LIFE94 NAT/E/004829 Action program for the conservation of the brown bear and its habitats in the Cantabrian mountains - 2nd phase (Castilla y Léon) LIFE95 NAT/E/001154 Action programme for the conservation of the brown bear and its habitat in the Cantabrian mountains - 3rd phase (Castilla y Leon) LIFE95 NAT/E/001155 Action programme for the conservation of the brown bear and its habitat in the Cantabrian mount mountains - 3rd phase (Castilla y Leon) LIFE95 NAT/E/001156 Action programme for the conservation of the brown bear and its habitat in the Cantabrian mount mountains - 3rd phase (Castilla y Leon) LIFE95 NAT/E/001158 Action programme for the conservation of the brown bear and its habitat in the Cantabrian mount mountains - 3rd phase (Castilla y Leon) LIFE98 NAT/E/005305 Oso en Asturias - Program for the conservation of the brown bear in Asturias LIFE98 NAT/E/005326 Oso/núcleos reproductores - Conservation of the cantabrian Brown bear breeding nucleus LIFE99 NAT/E/006352 Ancares project : co-ordinate management of two adjoining comunitarian sites of interest (LIC) LIFE99 NAT/E/006371 Ancares/Galicia - Ancares Project : co-ordinate management of two adjoining sites of community interest CARPATHIAN LIFE02 NAT/RO/008576 Vrancea 30/11/2005 - In situ conservation of large carnivore in Vrancea County