Biserrula Pelecinus-Nodulating Mesorhizobium Sp

Total Page:16

File Type:pdf, Size:1020Kb

Biserrula Pelecinus-Nodulating Mesorhizobium Sp Symbiotic Effectiveness, Phylogeny and Genetic Stability of Biserrula pelecinus-nodulating Mesorhizobium sp. isolated from Eritrea and Ethiopia Amanuel Asrat Bekuma A thesis submitted for the degree of Doctor of Philosophy Murdoch University, Perth Western Australia June 2017 ii Declaration I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution. Amanuel Asrat Bekuma iii This thesis is dedicated to my family iv Abstract Biserrula pelecinus is a productive pasture legume with potential for replenishing soil fertility and providing quality livestock feed in Southern Australia. The experience with growing B. pelecinus in Australia suggests an opportunity to evaluate this legume in Ethiopia, due to its relevance to low-input farming systems such as those practiced in Ethiopia. However, the success of B. pelecinus is dependent upon using effective, competitive, and genetically stable inoculum strains of root nodule bacteria (mesorhizobia). Mesorhizobium strains isolated from the Mediterranean region were previously reported to be effective on B. pelecinus in Australian soils. Subsequently, it was discovered that these strains transferred genes required for symbiosis with B. pelecinus (contained on a “symbiosis island’ in the chromosome) to non-symbiotic soil bacteria. This transfer converted the recipient soil bacteria into symbionts that were less effective in N2-fixation than the original inoculant. This study investigated selection of effective, stable inoculum strains for use with B. pelecinus in Ethiopian soils. Genetically diverse and effective mesorhizobial strains of B. pelecinus were shown to be present in Ethiopian and Eritrean soils. These strains were shown to belong to the genus Mesorhizobium and carry highly mobile symbiosis islands, with a novel integration hotspot (ser-tRNA). In vitro, the transfer of the symbiosis island from these strains to a non-symbiotic recipient strain resulted in novel bacteria with a poorly effective phenotype, except for one highly effective strain. By deleting a relaxase gene, which is involved in the conjugative transfer of the symbiosis island, a more stable strain was created containing an immobile symbiosis island. The study highlights the presence of taxonomically and symbiotically distinct B. pelecinus-nodulating Mesorhizobium strains in East African soils. In these Mesorhizobium strains, the rate of symbiosis island transfer was as high as 3x10-3 in vitro. It is suggested that island transfer has a significant role in the rapid evolution of poorly effective strains. Further, it is likely that this transfer contributes to one of the most intractable problems compromising N2-fixation in agricultural systems - that of poorly effective but competitive background rhizobia. In this study, the management of symbiosis island transfer through inactivation of the relaxase gene without affecting the symbiotic phenotype was found to be a viable approach for tackling this problem. v Acknowledgments I am deeply indebted to many people and organizations that have supported me faithfully to make this achievement possible and I wish to take this opportunity to thank them here. I acknowledge the generous financial support of Australian Award scholarship (AusAID) and Murdoch University for sponsoring my study. I also acknowledge and Curtin University for partially supporting my research. I would like to thank my supervisors, John Howieson, Graham O’Hara, Jason Terpolilli, Ravi Tiwari, Solomon Mengistu and Joshua Ramsay for all your advice and always making time for my meetings throughout my years at Murdoch. A special thank goes to John for sharing all your brilliant thoughts, guidance and encouragement from inception to completion of the thesis. I also thank Graham for your critical comments and handling of the side matters. I thank Ravi for not getting tired of teaching me the basics of molecular biology and being available almost any time for help. I also thank Jason for sharing your wisdom and upholding great supervision during my study period. I thank Solomon Mengistu for your guidance and assistance during the field research. I also thank Josh for the advices and constructive criticism that gave me an opportunity to excel. I also thank, Regina for assistance during glasshouse works, George for the invaluable discussions and support, Tim for sharing your witty thoughts and support during lab work, and Sofie for sharing your expertise in the phylogenetic analysis. All of you have made my work easier and productive. I would also like to thank CRS team members, my fellow students, and friends, Lambert, Anabel, Aliyu, Mazvita, Waynee, Rebecca, Tian, Ron, Julie, Wani, Liza, Tom, Rob, Jamba, Rachael, Tefera, Alemu, Yehualashet, Selam and others for helping me have a productive, yet enjoyable stay in Australia. A special thanks are also reserved for my parents, Asrat and Beletu, for raising me with love and bringing me to this level; and all my beloved family; Tady, Kidist, Hailu, Keneni, Yematawork, Bogale, Kedija, the late Mickey, Biruk, Misrak, Tesfa, Firehiwot, Kidus, Mekdes, Ashenafi, Yeabsira, Bahran, Hawi, Kiya, Natnael, Dagim, Selome, Markan, and Abem, for your encouragement and prayers from half way around the world. I miss you all. vi Finally, sincerest thanks to my loving wife Honey and son Akiya for your unwavering support of my work and for the patience that you have shown throughout my studies. I Love you both. Above all, thanks God! I couldn’t have done it without you. vii Table of Contents Declaration .............................................................................................................. ii Abstract .................................................................................................................. iv Acknowledgments .................................................................................................. v List of figures ......................................................................................................... xi List of Tables ....................................................................................................... xiii List of abbreviations ........................................................................................... xiv 1 Introduction and literature review ................................... 1 1.1 The significance of biological nitrogen fixation (BNF) ........................... 1 1.1.1 The process of nitrogen fixation in Rhizobia ..................................................... 2 1.2 The rhizobia-legume symbiosis ................................................................. 2 1.3 Host specificity in the rhizobia-legume symbiosis ................................... 5 1.4 Diversity of rhizobia ................................................................................... 6 1.4.1 Molecular techniques for elucidation of rhizobial diversity............................... 6 1.4.2 The current approach to rhizobial classification: polyphasic taxonomy ............ 7 1.4.3 Taxonomy of Mesorhizobium .......................................................................... 10 1.4.4 The genus Mesorhizobium ............................................................................... 12 1.5 The case for the introduction of B. pelecinus to Ethiopian agriculture 13 1.6 Biserrula pelecinus .................................................................................... 14 1.7 Is inoculation required to introduce B. pelecinus to a new area? ........ 15 1.8 Mobile genetic elements and their role in bacterial evolution and genetic stability ..................................................................................................... 16 1.8.1 Significance of symbiosis island transfer in Mesorhizobium ........................... 17 1.8.2 Evolution of poorly N2-fixing symbionts of B. pelecinus in Western Australian soils through SI transfer ................................................................................................ 17 1.8.3 The mechanism and regulation of symbiosis island excision and transfer ...... 18 1.8.4 Integration and excision ................................................................................... 18 1.8.5 Conjugative transfer ......................................................................................... 19 1.8.6 Quorum sensing ............................................................................................... 20 1.9 Aims of the study: .................................................................................... 21 2 Symbiotic effectiveness and promiscuity of indigenous B. pelecinus-nodulating rhizobial strains isolated from Ethiopian and Eritrean soil .................................................... 23 2.1 Introduction .............................................................................................. 23 2.2 Materials and Methods ............................................................................ 24 2.2.1 Strains and legume hosts .................................................................................. 24 2.2.2 Glasshouse screening for symbiotic effectiveness and host range ................... 26 2.2.3 Pot preparation ................................................................................................. 27 2.2.4 Germination and planting ................................................................................. 27 2.2.5 Inoculation
Recommended publications
  • Global-Level Population Genomics Reveals Differential Effects of Geography and Phylogeny on Horizontal Gene Transfer in Soil Bacteria
    Global-level population genomics reveals differential effects of geography and phylogeny on horizontal gene transfer in soil bacteria Alex Greenlona, Peter L. Changa,b, Zehara Mohammed Damtewc,d, Atsede Muletac, Noelia Carrasquilla-Garciaa, Donghyun Kime, Hien P. Nguyenf, Vasantika Suryawanshib, Christopher P. Kriegg, Sudheer Kumar Yadavh, Jai Singh Patelh, Arpan Mukherjeeh, Sripada Udupai, Imane Benjellounj, Imane Thami-Alamij, Mohammad Yasink, Bhuvaneshwara Patill, Sarvjeet Singhm, Birinchi Kumar Sarmah, Eric J. B. von Wettbergg,n, Abdullah Kahramano, Bekir Bukunp, Fassil Assefac, Kassahun Tesfayec, Asnake Fikred, and Douglas R. Cooka,1 aDepartment of Plant Pathology, University of California, Davis, CA 95616; bDepartment of Biological Sciences, University of Southern California, Los Angeles, CA 90089; cCollege of Natural Sciences, Addis Ababa University, Addis Ababa, 32853 Ethiopia; dDebre Zeit Agricultural Research Center, Ethiopian Institute for Agricultural Research, Bishoftu, Ethiopia; eInternational Crop Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India; fUnited Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 183-8509 Tokyo, Japan; gDepartment of Biological Sciences, Florida International University, Miami, FL 33199; hDepartment of Mycology and Plant Pathology, Banaras Hindu University, Varanasi 221005, India; iBiodiversity and Integrated Gene Management Program, International Center for Agricultural Research in the Dry Areas, 10112 Rabat, Morocco; jInstitute National
    [Show full text]
  • Desert Soil Microbes As a Mineral Nutrient Acquisition Tool for Chickpea (Cicer Arietinum L.) Productivity at Different Moisture
    plants Article Desert Soil Microbes as a Mineral Nutrient Acquisition Tool for Chickpea (Cicer arietinum L.) Productivity at Different Moisture Regimes Azhar Mahmood Aulakh 1,*, Ghulam Qadir 1, Fayyaz Ul Hassan 1, Rifat Hayat 2, Tariq Sultan 3, Motsim Billah 4 , Manzoor Hussain 5 and Naeem Khan 6,* 1 Department of Agronomy, PMAS Arid Agriculture University, Rawalpindi 46000, Pakistan; [email protected] (G.Q.); [email protected] (F.U.H.) 2 Soil Science Research Institute, PMAS Arid Agriculture University, Rawalpindi 46000, Pakistan; [email protected] 3 LRRI, National Agricultural Research Centre, Islamabad 44000, Pakistan; [email protected] 4 Department of Life Sciences, Abasyn University Islamabad Campus, Islamabad 44000, Pakistan; [email protected] 5 Groundnut Research Station, Attock 43600, Pakistan; [email protected] 6 Department of Agronomy, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA * Correspondence: [email protected] (A.M.A.); naeemkhan@ufl.edu (N.K.) Received: 6 October 2020; Accepted: 13 November 2020; Published: 24 November 2020 Abstract: Drought is a major constraint in drylands for crop production. Plant associated microbes can help plants in acquisition of soil nutrients to enhance productivity in stressful conditions. The current study was designed to illuminate the effectiveness of desert rhizobacterial strains on growth and net-return of chickpeas grown in pots by using sandy loam soil of Thal Pakistan desert. A total of 125 rhizobacterial strains were isolated, out of which 72 strains were inoculated with chickpeas in the growth chamber for 75 days to screen most efficient isolates. Amongst all, six bacterial strains (two rhizobia and four plant growth promoting rhizobacterial strains) significantly enhanced nodulation and shoot-root length as compared to other treatments.
    [Show full text]
  • Revised Taxonomy of the Family Rhizobiaceae, and Phylogeny of Mesorhizobia Nodulating Glycyrrhiza Spp
    Division of Microbiology and Biotechnology Department of Food and Environmental Sciences University of Helsinki Finland Revised taxonomy of the family Rhizobiaceae, and phylogeny of mesorhizobia nodulating Glycyrrhiza spp. Seyed Abdollah Mousavi Academic Dissertation To be presented, with the permission of the Faculty of Agriculture and Forestry of the University of Helsinki, for public examination in lecture hall 3, Viikki building B, Latokartanonkaari 7, on the 20th of May 2016, at 12 o’clock noon. Helsinki 2016 Supervisor: Professor Kristina Lindström Department of Environmental Sciences University of Helsinki, Finland Pre-examiners: Professor Jaakko Hyvönen Department of Biosciences University of Helsinki, Finland Associate Professor Chang Fu Tian State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University, China Opponent: Professor J. Peter W. Young Department of Biology University of York, England Cover photo by Kristina Lindström Dissertationes Schola Doctoralis Scientiae Circumiectalis, Alimentariae, Biologicae ISSN 2342-5423 (print) ISSN 2342-5431 (online) ISBN 978-951-51-2111-0 (paperback) ISBN 978-951-51-2112-7 (PDF) Electronic version available at http://ethesis.helsinki.fi/ Unigrafia Helsinki 2016 2 ABSTRACT Studies of the taxonomy of bacteria were initiated in the last quarter of the 19th century when bacteria were classified in six genera placed in four tribes based on their morphological appearance. Since then the taxonomy of bacteria has been revolutionized several times. At present, 30 phyla belong to the domain “Bacteria”, which includes over 9600 species. Unlike many eukaryotes, bacteria lack complex morphological characters and practically phylogenetically informative fossils. It is partly due to these reasons that bacterial taxonomy is complicated.
    [Show full text]
  • Molecular Characterization Among Strains of Chickpea Root Nodule Bacteria Isolated from Different Areas of Middle Gujarat
    RESEARCH PAPER International Journal of Agricultural Sciences, June to December, 2009, Vol. 5 Issue 2 : 577-581 Molecular characterization among strains of chickpea root nodule bacteria isolated from different areas of middle Gujarat V.R. HINGE*, R.L. CHAVHAN1, Y.A. DESHMUKH2 AND S.N. SALUNKHE3 Department of Agricultural Botany, B.A. College of Agriculture, Anand Agricultural University, ANAND (GUJARAT) INDIA ABSTRACT Eighteen strains of Root nodule bacteria were collected from the chickpea plant, grown in different areas of middle Gujarat, viz., Anand, Dahod, Thasara, Arnej and Dhanduka. These strains were confirmed as Rhizobium by using different biochemical test and maintained their pure culture. Molecular characterization based on repetitive DNA sequence especially, ERIC sequence (Enterobacterial Repetitive Intergeneric Consensus) were done together with two known Rhizobium strains, one commercial culture (GSFC, Vadodara), five standard strains of Rhizobium and one standard strain of Agribacterium tumefacinus. The total of 320 no of amplicons was generated by using ERIC primer pair. The strain MTCC 4188 (Mesorhizobium ciceri) produced highest no of amplicons while strain MTCC 120 (Bradyrhizobium japonicum) showed a less no of amplicons. Data analysis of ERIC fingerprinting pattern clustered all RNB strains and standard strains into four major clusters as per their phylogenetic relationship. Majority of RNB strains (65 per cent) were closely related to the genus Mesorhizobium ciceri species and Mesorhizobium loti, while remaining 40 per cent RNB strains showed similarity to Rhizobium leguminosarum (MTCC 99) and Agrobacterium tumefaciens (MTCC 431). The ERIC-PCR fingerprinting could become a powerful tool for depicting the genetic diversity among eighteen RNB strains and standard strains.
    [Show full text]
  • Specificity in Legume-Rhizobia Symbioses
    International Journal of Molecular Sciences Review Specificity in Legume-Rhizobia Symbioses Mitchell Andrews * and Morag E. Andrews Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +64-3-423-0692 Academic Editors: Peter M. Gresshoff and Brett Ferguson Received: 12 February 2017; Accepted: 21 March 2017; Published: 26 March 2017 Abstract: Most species in the Leguminosae (legume family) can fix atmospheric nitrogen (N2) via symbiotic bacteria (rhizobia) in root nodules. Here, the literature on legume-rhizobia symbioses in field soils was reviewed and genotypically characterised rhizobia related to the taxonomy of the legumes from which they were isolated. The Leguminosae was divided into three sub-families, the Caesalpinioideae, Mimosoideae and Papilionoideae. Bradyrhizobium spp. were the exclusive rhizobial symbionts of species in the Caesalpinioideae, but data are limited. Generally, a range of rhizobia genera nodulated legume species across the two Mimosoideae tribes Ingeae and Mimoseae, but Mimosa spp. show specificity towards Burkholderia in central and southern Brazil, Rhizobium/Ensifer in central Mexico and Cupriavidus in southern Uruguay. These specific symbioses are likely to be at least in part related to the relative occurrence of the potential symbionts in soils of the different regions. Generally, Papilionoideae species were promiscuous in relation to rhizobial symbionts, but specificity for rhizobial genus appears to hold at the tribe level for the Fabeae (Rhizobium), the genus level for Cytisus (Bradyrhizobium), Lupinus (Bradyrhizobium) and the New Zealand native Sophora spp. (Mesorhizobium) and species level for Cicer arietinum (Mesorhizobium), Listia bainesii (Methylobacterium) and Listia angolensis (Microvirga).
    [Show full text]
  • Mesorhizobium Ciceri LMS-1 Expressing an Exogenous
    Letters in Applied Microbiology ISSN 0266-8254 ORIGINAL ARTICLE Mesorhizobium ciceri LMS-1 expressing an exogenous 1-aminocyclopropane-1-carboxylate (ACC) deaminase increases its nodulation abilities and chickpea plant resistance to soil constraints F.X. Nascimento1, C. Brı´gido1, B.R. Glick2, S. Oliveira1 and L. Alho1 1 Laborato´ rio de Microbiologia do Solo, I.C.A.A.M., Instituto de Cieˆ ncias Agra´ rias e Ambientais Mediterraˆ nicas, Universidade de E´ vora, E´ vora, Portugal 2 Department of Biology, University of Waterloo, Waterloo, ON, Canada Keywords Abstract 1-aminocyclopropane-1-carboxylate deaminase, acdS, chickpea, Mesorhizobium, Aims: Our goal was to understand the symbiotic behaviour of a Mesorhizobium root rot, soil. strain expressing an exogenous 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which was used as an inoculant of chickpea (Cicer arietinum) plants Correspondence growing in soil. Luı´s Alho, Instituto de Cieˆ ncias Agra´ rias e Methods and Results: Mesorhizobium ciceri LMS-1 (pRKACC) was tested for Ambientais Mediterraˆ nicas, Universidade de its plant growth promotion abilities on two chickpea cultivars (ELMO and E´ vora, Apartado 94, 7002-554 E´ vora, Portugal. E-mail: [email protected] CHK3226) growing in nonsterilized soil that displayed biotic and abiotic con- straints to plant growth. When compared to its wild-type form, the M. ciceri 2012 ⁄ 0247: received 8 February 2012, LMS-1 (pRKACC) strain showed an increased nodulation performance of c. revised 27 March 2012 and accepted 29 125 and 180% and increased nodule weight of c. 45 and 147% in chickpea cul- March 2012 tivars ELMO and CHK3226, respectively. Mesorhizobium ciceri LMS-1 (pRKACC) was also able to augment the total biomass of both chickpea plant doi:10.1111/j.1472-765X.2012.03251.x cultivars by c.
    [Show full text]
  • Bradyrhizobium Ivorense Sp. Nov. As a Potential Local Bioinoculant for Cajanus Cajan Cultures in Côte D’Ivoire
    TAXONOMIC DESCRIPTION Fossou et al., Int. J. Syst. Evol. Microbiol. 2020;70:1421–1430 DOI 10.1099/ijsem.0.003931 Bradyrhizobium ivorense sp. nov. as a potential local bioinoculant for Cajanus cajan cultures in Côte d’Ivoire Romain K. Fossou1,2, Joël F. Pothier3, Adolphe Zézé2 and Xavier Perret1,* Abstract For many smallholder farmers of Sub- Saharan Africa, pigeonpea (Cajanus cajan) is an important crop to make ends meet. To ascertain the taxonomic status of pigeonpea isolates of Côte d’Ivoire previously identified as bradyrhizobia, a polyphasic approach was applied to strains CI-1B T, CI- 14A, CI- 19D and CI- 41S. Phylogeny of 16S ribosomal RNA (rRNA) genes placed these nodule isolates in a separate lineage from current species of the B. elkanii super clade. In phylogenetic analyses of single and concatenated partial dnaK, glnII, gyrB, recA and rpoB sequences, the C. cajan isolates again formed a separate lineage, with strain CI- 1BT sharing the highest sequence similarity (95.2 %) with B. tropiciagri SEMIA 6148T. Comparative genomic analyses corroborated the novel species status, with 86 % ANIb and 89 % ANIm as the highest average nucleotide identity (ANI) values with B. elkanii USDA 76T. Although CI- 1BT, CI- 14A, CI- 19D and CI- 41S shared similar phenotypic and metabolic properties, growth of CI- 41S was slower in/on various media. Symbiotic efficacy varied significantly between isolates, with CI- 1BT and CI- 41S scoring on the C. cajan ‘Light- Brown’ landrace as the most and least proficient bacteria, respectively. Also proficient on Vigna radiata (mung bean), Vigna unguiculata (cowpea, niébé) and additional C.
    [Show full text]
  • BEATRIZ JORRIN RUBIO.Pdf
    Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros Agrónomos Genomics of Specificity in the Symbiotic Interaction between Rhizobium leguminosarum and Legumes Ph.D Thesis Beatriz Jorrín Rubio Licenciada en Biología 2016 Universidad Politécnica de Madrid Escuela Técnica Superior de Ingenieros Agrónomos Departamento de Biotecnología Ph.D Thesis: Genomics of Specificity in the Symbiotic Interaction between Rhizobium leguminosarum and Legumes Author: Beatriz Jorrín Rubio Licenciada en Biología Director: Juan Imperial Ródenas Licenciado en Biología Doctor en Biología Madrid, 2016 A mis padres A Sofía A mis hermanos “There’s the story, then there’s the real story, then there’s the story of how the story came to be told. Then there’s what you leave out of the story. Which is part of the story too.” Maddaddam Margaret Atwood RECONOCIMIENTOS Esta Tesis se ha desarrollado en el laboratorio de Genómica y Biotecnología de Bacterias Diazotróficas Asociadas con Plantas del Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Para el desarrollo de esta Tesis he contado con una beca UPM homologada financiada por el proyecto MICROGEN: Genómica Comparada Microbiana (Programa Consolider), que ha sido también el proyecto financiador del trabajo experimental. Quisiera reconocer la labor de aquellas personas que han contribuido al desarrollo y consecución de esta Tesis. Dr. Juan Imperial, por la dirección y supervisión de esta Tesis. Por ser un gran mentor y por enseñarme todo lo que sé. Dr. Manuel González Guerrero, por enseñarme los entresijos de la Ciencia y del trabajo en el laboratorio. Dra. Gisèle Laguerre, por su participación en el inicio de este proyecto y por facilitarnos el suelo P1 de Dijon.
    [Show full text]
  • Characterisation of Bacteria Associated with the Root Nodules of Hypocalyptus and Related Genera
    Characterisation of bacteria associated with the root nodules of Hypocalyptus and related genera by Chrizelle Winsie Beukes Dissertation submitted in partial fulfilment of the requirements for the degree Magister Scientiae In the Faculty of Natural and Agricultural Sciences, Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa Promoter: Prof. E.T. Steenkamp Co-promoters: Prof. S.N. Venter Dr. I.J. Law August 2011 © University of Pretoria Dedicated to my parents, Hendrik and Lorraine. Thank you for your unwavering support. © University of Pretoria I certify that this dissertation hereby submitted to the University of Pretoria for the degree of Magister Scientiae (Microbiology), has not previously been submitted by me in respect of a degree at any other university. Signature _________________ August 2011 © University of Pretoria Table of Contents Acknowledgements i Preface ii Chapter 1 1 Taxonomy, infection biology and evolution of rhizobia, with special reference to those nodulating Hypocalyptus Chapter 2 80 Diverse beta-rhizobia nodulate legumes in the South African indigenous tribe Hypocalypteae Chapter 3 131 African origins for fynbos associated beta-rhizobia Summary 173 © University of Pretoria Acknowledgements Firstly I want to acknowledge Our Heavenly Father, for granting me the opportunity to obtain this degree and for putting the special people along my way to aid me in achieving it. Then I would like to take the opportunity to thank the following people and institutions: My parents, Hendrik and Lorraine, thank you for your support, understanding and love; Prof. Emma Steenkamp, for her guidance, advice and significant insights throughout this project; My co-supervisors, Prof.
    [Show full text]
  • Mesorhizobium Septentrionale Sp Nov and Mesorhizobium Temperatum Sp Nov., Isolated from Astragalus Adsurgens Growing in the Northern Regions of China
    This is a repository copy of Mesorhizobium septentrionale sp nov and Mesorhizobium temperatum sp nov., isolated from Astragalus adsurgens growing in the northern regions of China. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/290/ Article: Gao, J-L., Turner, S.L., Kan, F.L. et al. (8 more authors) (2004) Mesorhizobium septentrionale sp nov and Mesorhizobium temperatum sp nov., isolated from Astragalus adsurgens growing in the northern regions of China. International Journal of Systematic and Evolutionary Microbiology. pp. 2003-2012. ISSN 1466-5034 https://doi.org/10.1099/ijs.0.02840-0 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ International Journal of Systematic and Evolutionary Microbiology (2004), 54, 2003–2012 DOI 10.1099/ijs.0.02840-0 Mesorhizobium septentrionale sp. nov. and Mesorhizobium temperatum sp. nov., isolated from Astragalus adsurgens growing in the northern regions of China Jun-Lian Gao,1,2,3 Sarah Lea Turner,3 Feng Ling Kan,1 En Tao Wang,1,4 Zhi Yuan Tan,5 Yu Hui Qiu,1 Jun Gu,1 Zewdu Terefework,2 J.
    [Show full text]
  • Identifying Elite Rhizobia for Commercial Soybean
    IDENTIFYING ELITE RHIZOBIA FOR COMMERCIAL SOYBEAN (GLYCINE MAX) INOCULANTS MAUREEN N. WASWA BSc Horticulture (JKUAT) THESIS SUBMITTED IN PARTIAL FULFILMENT FOR THE AWARD OF DEGREE OF MASTER OF SCIENCE IN SOIL SCIENCE DEPARTMENT OF LAND RESOURCE MANAGEMENT AND AGRICULTURAL TECHNOLOGY, UNIVERSITY OF NAIROBI 2013 1 DECLARATION This thesis is my original work and has not been submitted for a degree in any other University Signature………………….. Date…………………… Maureen Nekoye Waswa This thesis has been submitted for examination with our approval as supervisors 1. Signature……………… Date…………………… Prof. Nancy Karanja (UoN) 2. Signature……………… Date…………………… Dr. Paul Woomer (CIAT-TSBF) 3. Signature……………… Date…………………… Dr. Frederick Baijukya (CIAT-TSBF) i DEDICATION To: my father, Chrispus W. Wanjala; my mother, Norah N. Wanjala; and my brothers and sisters. My parents’ vision for a better tomorrow is unrivalled by the best educators in my life. Above all I extend my sincere gratitude to the Almighty God for making this journey possible. ii ACKNOWLEDGEMENT I take this opportunity to express my gratitude to my supervisors Prof. K.N Karanja (University of Nairobi), Dr. Paul L. Woomer (CIAT-TSBF) and Dr. Frederick Baijukya (CIAT-TSBF) for their constant expert guidance, advice and support through all the stages of the research work. I also wish to thank all technicians in the department of LARMAT particularly Stanley Kisamuli for the encouragement and support provided during my research. My gratitude also goes to the Bill and Melinda Gates Foundation for funding my course and research work through N2Africa project. Appreciation also goes to my husband, Andrew S. Mabonga for his support during long period of my study.
    [Show full text]
  • Article (Published Version)
    Article Bradyrhizobium ivorense sp. nov. as a potential local bioinoculant for Cajanus cajan cultures in Côte d'Ivoire FOSSOU, Romain, et al. Abstract For many smallholder farmers of Sub-Saharan Africa, pigeonpea (Cajanus cajan) is an important crop to make ends meet. To ascertain the taxonomic status of pigeonpea isolates of Côte d’Ivoire previously identified as bradyrhizobia, a polyphasic approach was applied to strains CI-1BT, CI-14A, CI-19D and CI-41S. Phylogeny of 16S ribosomal RNA (rRNA) genes placed these nodule isolates in a separate lineage from current species of the B. elkanii super clade. In phylogenetic analyses of single and concatenated partial dnaK, glnII, gyrB, recA and rpoB sequences, the C. cajan isolates again formed a separate lineage, with strain CI-1BT sharing the highest sequence similarity (95.2%) with B. tropiciagri SEMIA 6148T. Comparative genomic analyses corroborated the novel species status, with 86% ANIb and 89% ANIm as the highest average nucleotide identity (ANI) values with B. elkanii USDA 76T. Although CI-1BT, CI-14A, CI-19D and CI-41S shared similar phenotypic and metabolic properties, growth of CI-41S was slower in/on various media. Symbiotic efficacy varied significantly between isolates, with CI-1BT and CI-41S scoring on the [...] Reference FOSSOU, Romain, et al. Bradyrhizobium ivorense sp. nov. as a potential local bioinoculant for Cajanus cajan cultures in Côte d’Ivoire. International Journal of Systematic and Evolutionary Microbiology, 2020, vol. 70, no. 2, p. 1421-1430 DOI : 10.1099/ijsem.0.003931 Available at: http://archive-ouverte.unige.ch/unige:138593 Disclaimer: layout of this document may differ from the published version.
    [Show full text]