Rhizobium Pongamiae Sp. Nov. from Root Nodules of Pongamia Pinnata

Total Page:16

File Type:pdf, Size:1020Kb

Rhizobium Pongamiae Sp. Nov. from Root Nodules of Pongamia Pinnata Hindawi Publishing Corporation BioMed Research International Volume 2013, Article ID 165198, 9 pages http://dx.doi.org/10.1155/2013/165198 Research Article Rhizobium pongamiae sp. nov. from Root Nodules of Pongamia pinnata Vigya Kesari, Aadi Moolam Ramesh, and Latha Rangan Department of Biotechnology, Indian Institute of Technology Guwahati, Assam 781 039, India Correspondence should be addressed to Latha Rangan; latha [email protected] Received 27 April 2013; Accepted 6 June 2013 Academic Editor: Eldon R. Rene Copyright © 2013 Vigya Kesari et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Pongamia pinnata has an added advantage of N2-fixing ability and tolerance to stress conditions as compared with other biodiesel crops. It harbours “rhizobia” as an endophytic bacterial community on its root nodules. A gram-negative, nonmotile, fast-growing, ∘ rod-shaped, bacterial strain VKLR-01T wasisolatedfromrootnodulesofPongamia that grew optimal at 28 C, pH 7.0 in presence of 2% NaCl. Isolate VKLR-01 exhibits higher tolerance to the prevailing adverse conditions, for example, salt stress, elevated T T temperatures and alkalinity. Strain VKLR-01 hasthemajorcellularfattyacidasC18:1 7c (65.92%). Strain VKLR-01 was found to be a nitrogen fixer using the acetylene reduction assay and PCR detection ofa nif H gene. On the basis of phenotypic, phylogenetic distinctiveness and molecular data (16S rRNA, recA, and atpD gene sequences, G + C content, DNA-DNA hybridization etc.), strain VKLR-01T = (MTCC 10513T =MSCL1015T) is considered to represent a novel species of the genus Rhizobium for which the name Rhizobium pongamiae sp. nov. is proposed. Rhizobium pongamiae may possess specific traits that can be transferred to other rhizobia through biotechnological tools and can be directly used as inoculants for reclamation of wasteland; hence, they are very important from both economic and environmental prospects. 1. Introduction P. pinnata , which can be cultivated on marginal lands, has the potential to not only provide a renewable energy resource but Pongamia pinnata (L.) Pierre is a nonedible “pioneer” bio- in addition alleviate the competitive situation that exists with diesel and medicinal tree species of the family Leguminosae food crops as biofuels and associated arable land and water that grows in multiple geoclimatic conditions, ranging from use. It is also used in agriculture and environmental man- humid, tropical, subtropical regions to cooler and semiarid agement, due to its insecticidal and nematicidal properties zones [1–3]. Nitrogen is an important nutrient for plant [7]. Finally, Pongamia has been identified as a resource for growth and yield; however, its availability in soils is limited. agroforestry, urban landscaping to suspend the pollutants and Modern agriculture depends on chemically synthesized N the bioameloriation of degraded lands. fertilizers which are expensive and require fossil fuels for Isolation and identification of authentic and effective production, adding to greenhouse gas emissions. Biological rhizobiaisolatesarerequiredtosupportP. pinnata plantations nitrogen fixation is a useful and important alternative [4], in nitrogen-poor soils. Pongamia trees are purportedly able to especially in biofuel production [2, 5]. Pongamia can grow grow in a wide range of environments: in the tropics, with ∘ on low-fertility land due to its nodulation properties and temperatures from 13–45 C,salinesoils,andinsoilswith good N2-fixing symbiotic associations with “rhizobia” (a a range of pH including sodic soils, and they are an ideal polyphyletic assemblage of alphaproteobacteria family: Rhi- candidate for reforestation of marginal lands [3, 5]. The ability zobiaceae), thus minimizing competition with food crops or of rhizobia to grow in these diverse environmental condi- related fertilizer, water, and land resources needed for food tions will be important for the establishment and success and fodder production [6]. The sustainable production of of Pongamia plantations on these unfertile lands. It, thus, plant oils for biodiesel production from a tree crop such as satisfies all “sustainability criteria” expected from modern 2 BioMed Research International second- and third-generation biofuel crops. However, little described by Boyde and Wood [15]. A growth characteristic of attention has been paid to the occurrence of nitrogen-fixing isolate was recorded at different temperatures (4, 25, 28, 30, 37, ∘ endophytic bacteria in the rhizospheres of this biodiesel tree 42, and 50 C) in YEM broth and agar until 48 h of culture. The which is important for their diverse applicabilities as well ability to grow in acid and alkaline media was also tested by as agronomic and ecological significances. In preliminary inoculating the isolate onto YEM broth and YEM agar plates studies, the effective nodulations of P. pinnata with three adjusted to various pH values (pH 4.0–11.0 at intervals of 1 pH strains of rhizobia (Bradyrhizobium japonicum strain CB1809, units)using1NHCl/1NNaOH.TheNaCltoleranceofthe Bradyrhizobium sp. strain CB564, and Rhizobia sp. strain isolate was tested by growing in YEM broth and YEM agar NGR234) were demonstrated [1]. plates containing 0%, 1%, 2%, 3%, 4%, and 5% (w/v) NaCl. The importance of characterizing indigenous rhizobia of Pongamia cannot be overemphasized. Still there has not 2.3. Gram Staining: Biochemical and Physiological Character- been any detailed study of phenotypic characteristics and istic. Gram reaction was determined with the bioMerieux´ symbiotic effectiveness of rhizobia isolates which naturally Gram-stain kit according to the manufacturer instructions. nodulate Pongamia considering its potential value in sus- Acid production from different carbohydrates was deter- tainable agriculture and role in agroforestry. Therefore, in mined by employing the API 50 CH system (bioMerieux)´ this work, we attempt to isolate the nitrogen-fixing rhizobial according to the manufacturers instructions. The ability of the symbiont strain from nodules of P. pinnata occurring in isolatetoutilizevariouscarbonandaminoacidscompounds North Guwahati, Assam, India. The objectives were to deter- as sole carbon and nitrogen source was investigated using the mine the exact taxonomic position of isolated and identified method described by Lindstrom¨ and Lehtomaki¨ [16]. Def 9 strain by using a polyphasic characterization that included (carbon source) and Def 8 (nitrogen source) agar mediums determination of phenotypic and biochemical properties, were used, and appropriate controls were maintained. Results ∘ phylogenetic investigations based on 16S rRNA, atpD, and were noted after 3 days of incubation at 28 C. A set of phys- recA gene sequences, and genetic analysis. Further investiga- iological characteristics including catalase and oxidase tests tions were also performed in order to verify the nodulation and nitrate reduction were assessed using protocols described and nitrogen-fixing property of the isolated bacterium strain. by Shieh et al. [17]. Gelatin hydrolysis and methyl red test were also performed using the methods of Smibert and Krieg 2. Materials and Methods [18]. The intrinsic antibiotic resistance tests for the isolate were performed by disc-diffusion assay in YEM agar against 2.1. Soil Sampling and Isolation of Rhizobia. P. pinnata sapl- 16 different antibiotics (Discs, HiMedia) of concentrations ings approximately 2-3 months old found in North Guwahati ranging from 2 to 100 g. Cell biomass for the analysis of ∘ ∘ isoprenoid quinones was obtained from the isolate grown on (26 14 6 N; 91 41 28 E),Assam,India,wereuprooted ∘ during April 2010 containing distinct nodules. Nodules yeast extract-mannitol broth (YEM) (12 h, 28 C, 180 rpm). excised from the roots were surface sterilized with 70% (v/v) ethanol for 1 min. Subsequently, nodules were treated with 2.4. FAME Analysis. Fattyacidmethylesters(FAMEs)ofthe 10%(w/v)sodiumhypochloritefor15minandwashedwith isolate were extracted and prepared according to the standard sterile distilled water (3x). Single surface-sterilized nodule protocol of the MIDI Sherlock/Hewlett Packard Microbial (approximately 2 mm) was opened into two halves with a Identification System as described by Sasser [19]. For cellular sterile blade, and the central parts of the nodule were scooped FAME analysis, isolate was grown on trypticase soy broth with blunt needle, macerated, and diluted in 500 Lofsaline agar (TSBA), which consists of 30 g trypticase soy broth and ∘ water (0.9%). Roughly 100 Loftheinoculumwasspread 15gofagar(BBL)for12hat28C under aerobic conditions on yeast extract-mannitol (YEM) and tryptone-yeast extract ∘ (180 rpm). The fatty acid methyl esters extracts were ana- (TYE) agar plates and incubated at 28 Cfor1–3days.The lyzed by Gas Chromatography MODEL 6850 (Agilent Gas purity of the culture was verified by repeated streaking of −1 Chromatography) equipped with an Agilent ultra 2 capillary single colony onto YEM agar [8]with25mgKg (w/v) congo column. red. Single purified isolate was maintained in YEM broth ∘ containing 20% (v/v) glycerol at −80 C. 2.5. DNA Extraction, PCR Amplification, and Sequencing. Cell biomass for DNA extraction was obtained from the 2.2. Growth and Phenotypic Characteristics. Cell size and isolate grown on yeast extract-mannitol (YEM) broth (12 h, ∘ morphology of the root nodule isolate
Recommended publications
  • Revised Taxonomy of the Family Rhizobiaceae, and Phylogeny of Mesorhizobia Nodulating Glycyrrhiza Spp
    Division of Microbiology and Biotechnology Department of Food and Environmental Sciences University of Helsinki Finland Revised taxonomy of the family Rhizobiaceae, and phylogeny of mesorhizobia nodulating Glycyrrhiza spp. Seyed Abdollah Mousavi Academic Dissertation To be presented, with the permission of the Faculty of Agriculture and Forestry of the University of Helsinki, for public examination in lecture hall 3, Viikki building B, Latokartanonkaari 7, on the 20th of May 2016, at 12 o’clock noon. Helsinki 2016 Supervisor: Professor Kristina Lindström Department of Environmental Sciences University of Helsinki, Finland Pre-examiners: Professor Jaakko Hyvönen Department of Biosciences University of Helsinki, Finland Associate Professor Chang Fu Tian State Key Laboratory of Agrobiotechnology College of Biological Sciences China Agricultural University, China Opponent: Professor J. Peter W. Young Department of Biology University of York, England Cover photo by Kristina Lindström Dissertationes Schola Doctoralis Scientiae Circumiectalis, Alimentariae, Biologicae ISSN 2342-5423 (print) ISSN 2342-5431 (online) ISBN 978-951-51-2111-0 (paperback) ISBN 978-951-51-2112-7 (PDF) Electronic version available at http://ethesis.helsinki.fi/ Unigrafia Helsinki 2016 2 ABSTRACT Studies of the taxonomy of bacteria were initiated in the last quarter of the 19th century when bacteria were classified in six genera placed in four tribes based on their morphological appearance. Since then the taxonomy of bacteria has been revolutionized several times. At present, 30 phyla belong to the domain “Bacteria”, which includes over 9600 species. Unlike many eukaryotes, bacteria lack complex morphological characters and practically phylogenetically informative fossils. It is partly due to these reasons that bacterial taxonomy is complicated.
    [Show full text]
  • Defining the Rhizobium Leguminosarum Species Complex
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 December 2020 doi:10.20944/preprints202012.0297.v1 Article Defining the Rhizobium leguminosarum species complex J. Peter W. Young 1,*, Sara Moeskjær 2, Alexey Afonin 3, Praveen Rahi 4, Marta Maluk 5, Euan K. James 5, Maria Izabel A. Cavassim 6, M. Harun-or Rashid 7, Aregu Amsalu Aserse 8, Benjamin J. Perry 9, En Tao Wang 10, Encarna Velázquez 11, Evgeny E. Andronov 12, Anastasia Tampakaki 13, José David Flores Félix 14, Raúl Rivas González 11, Sameh H. Youseif 15, Marc Lepetit 16, Stéphane Boivin 16, Beatriz Jorrin 17, Gregory J. Kenicer 18, Álvaro Peix 19, Michael F. Hynes 20, Martha Helena Ramírez-Bahena 21, Arvind Gulati 22 and Chang-Fu Tian 23 1 Department of Biology, University of York, York YO10 5DD, UK 2 Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; [email protected] 3 Laboratory for genetics of plant-microbe interactions, ARRIAM, Pushkin, 196608 Saint-Petersburg, Russia; [email protected] 4 National Centre for Microbial Resource, National Centre for Cell Science, Pune, India; [email protected] 5 Ecological Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; [email protected] (M.M.); [email protected] (E.K.J.) 6 Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA; [email protected] 7 Biotechnology Division, Bangladesh Institute of Nuclear Agriculture (BINA), Bangladesh; [email protected] 8 Ecosystems and Environment Research programme , Faculty of Biological and Environmental Sciences, University of Helsinki, FI-00014 Finland; [email protected] 9 Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand; [email protected] 10 Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Cd.
    [Show full text]
  • Specificity in Legume-Rhizobia Symbioses
    International Journal of Molecular Sciences Review Specificity in Legume-Rhizobia Symbioses Mitchell Andrews * and Morag E. Andrews Faculty of Agriculture and Life Sciences, Lincoln University, PO Box 84, Lincoln 7647, New Zealand; [email protected] * Correspondence: [email protected]; Tel.: +64-3-423-0692 Academic Editors: Peter M. Gresshoff and Brett Ferguson Received: 12 February 2017; Accepted: 21 March 2017; Published: 26 March 2017 Abstract: Most species in the Leguminosae (legume family) can fix atmospheric nitrogen (N2) via symbiotic bacteria (rhizobia) in root nodules. Here, the literature on legume-rhizobia symbioses in field soils was reviewed and genotypically characterised rhizobia related to the taxonomy of the legumes from which they were isolated. The Leguminosae was divided into three sub-families, the Caesalpinioideae, Mimosoideae and Papilionoideae. Bradyrhizobium spp. were the exclusive rhizobial symbionts of species in the Caesalpinioideae, but data are limited. Generally, a range of rhizobia genera nodulated legume species across the two Mimosoideae tribes Ingeae and Mimoseae, but Mimosa spp. show specificity towards Burkholderia in central and southern Brazil, Rhizobium/Ensifer in central Mexico and Cupriavidus in southern Uruguay. These specific symbioses are likely to be at least in part related to the relative occurrence of the potential symbionts in soils of the different regions. Generally, Papilionoideae species were promiscuous in relation to rhizobial symbionts, but specificity for rhizobial genus appears to hold at the tribe level for the Fabeae (Rhizobium), the genus level for Cytisus (Bradyrhizobium), Lupinus (Bradyrhizobium) and the New Zealand native Sophora spp. (Mesorhizobium) and species level for Cicer arietinum (Mesorhizobium), Listia bainesii (Methylobacterium) and Listia angolensis (Microvirga).
    [Show full text]
  • Analysis of the Interaction Between Pisum Sativum L. and Rhizobium Laguerreae Strains Nodulating This Legume in Northwest Spain
    plants Article Analysis of the Interaction between Pisum sativum L. and Rhizobium laguerreae Strains Nodulating This Legume in Northwest Spain 1, 1 1, 2 José David Flores-Félix y , Lorena Carro , Eugenia Cerda-Castillo z, Andrea Squartini , Raúl Rivas 1,3,4 and Encarna Velázquez 1,3,4,* 1 Departamento de Microbiologíay Genética, Universidad de Salamanca, 37007 Salamanca, Spain; jdfl[email protected] (J.D.F.-F.); [email protected] (L.C.); [email protected] (E.C.-C.); [email protected] (R.R.) 2 Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro, Italy; [email protected] 3 Instituto Hispanoluso de Investigaciones Agrarias, 37007 Salamanca, Spain 4 Unidad Asociada USAL-IRNASA, 37007 Salamanca, Spain * Correspondence: [email protected]; Tel.: +349-2329-4532 Present address: CICS-UBI–Health Sciences Research Centre, University of Beira Interior, y 6200-506 Covilhã, Portugal. Present address: Departamento de Biología, Facultad de Ciencia y Tecnología, Universidad Nacional z Autónoma de Nicaragua, León 21000, Nicaragua. Received: 3 November 2020; Accepted: 9 December 2020; Published: 11 December 2020 Abstract: Pisum sativum L. (pea) is one of the most cultivated grain legumes in European countries due to the high protein content of its seeds. Nevertheless, the rhizobial microsymbionts of this legume have been scarcely studied in these countries. In this work, we analyzed the rhizobial strains nodulating the pea in a region from Northwestern Spain, where this legume is widely cultivated. The isolated strains were genetically diverse, and the phylogenetic analysis of core and symbiotic genes showed that these strains belong to different clusters related to R.
    [Show full text]
  • 2010.-Hungria-MLI.Pdf
    Mohammad Saghir Khan l Almas Zaidi Javed Musarrat Editors Microbes for Legume Improvement SpringerWienNewYork Editors Dr. Mohammad Saghir Khan Dr. Almas Zaidi Aligarh Muslim University Aligarh Muslim University Fac. Agricultural Sciences Fac. Agricultural Sciences Dept. Agricultural Microbiology Dept. Agricultural Microbiology 202002 Aligarh 202002 Aligarh India India [email protected] [email protected] Prof. Dr. Javed Musarrat Aligarh Muslim University Fac. Agricultural Sciences Dept. Agricultural Microbiology 202002 Aligarh India [email protected] This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machines or similar means, and storage in data banks. Product Liability: The publisher can give no guarantee for all the information contained in this book. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. # 2010 Springer-Verlag/Wien Printed in Germany SpringerWienNewYork is a part of Springer Science+Business Media springer.at Typesetting: SPI, Pondicherry, India Printed on acid-free and chlorine-free bleached paper SPIN: 12711161 With 23 (partly coloured) Figures Library of Congress Control Number: 2010931546 ISBN 978-3-211-99752-9 e-ISBN 978-3-211-99753-6 DOI 10.1007/978-3-211-99753-6 SpringerWienNewYork Preface The farmer folks around the world are facing acute problems in providing plants with required nutrients due to inadequate supply of raw materials, poor storage quality, indiscriminate uses and unaffordable hike in the costs of synthetic chemical fertilizers.
    [Show full text]
  • Biserrula Pelecinus-Nodulating Mesorhizobium Sp
    Symbiotic Effectiveness, Phylogeny and Genetic Stability of Biserrula pelecinus-nodulating Mesorhizobium sp. isolated from Eritrea and Ethiopia Amanuel Asrat Bekuma A thesis submitted for the degree of Doctor of Philosophy Murdoch University, Perth Western Australia June 2017 ii Declaration I declare that this thesis is my own account of my research and contains as its main content work which has not previously been submitted for a degree at any tertiary education institution. Amanuel Asrat Bekuma iii This thesis is dedicated to my family iv Abstract Biserrula pelecinus is a productive pasture legume with potential for replenishing soil fertility and providing quality livestock feed in Southern Australia. The experience with growing B. pelecinus in Australia suggests an opportunity to evaluate this legume in Ethiopia, due to its relevance to low-input farming systems such as those practiced in Ethiopia. However, the success of B. pelecinus is dependent upon using effective, competitive, and genetically stable inoculum strains of root nodule bacteria (mesorhizobia). Mesorhizobium strains isolated from the Mediterranean region were previously reported to be effective on B. pelecinus in Australian soils. Subsequently, it was discovered that these strains transferred genes required for symbiosis with B. pelecinus (contained on a “symbiosis island’ in the chromosome) to non-symbiotic soil bacteria. This transfer converted the recipient soil bacteria into symbionts that were less effective in N2-fixation than the original inoculant. This study investigated selection of effective, stable inoculum strains for use with B. pelecinus in Ethiopian soils. Genetically diverse and effective mesorhizobial strains of B. pelecinus were shown to be present in Ethiopian and Eritrean soils.
    [Show full text]
  • Significance of Plant Growth Promoting Rhizobacteria in Grain Legumes
    plants Review Significance of Plant Growth Promoting Rhizobacteria in Grain Legumes: Growth Promotion and Crop Production Karivaradharajan Swarnalakshmi 1,* , Vandana Yadav 1, Deepti Tyagi 1, Dolly Wattal Dhar 1, Annapurna Kannepalli 1 and Shiv Kumar 2,* 1 Division of Microbiology, ICAR-Indian Agricultural Research Institute (IARI), New Delhi 110012, India; [email protected] (V.Y.); [email protected] (D.T.); [email protected] (D.W.D.); [email protected] (A.K.) 2 International Centre for Agricultural Research in the Dry Areas (ICARDA), Rabat 10112, Morocco * Correspondence: [email protected] (K.S.); [email protected] (S.K.) Received: 23 September 2020; Accepted: 28 October 2020; Published: 17 November 2020 Abstract: Grain legumes are an important component of sustainable agri-food systems. They establish symbiotic association with rhizobia and arbuscular mycorrhizal fungi, thus reducing the use of chemical fertilizers. Several other free-living microbial communities (PGPR—plant growth promoting rhizobacteria) residing in the soil-root interface are also known to influence biogeochemical cycles and improve legume productivity. The growth and function of these microorganisms are affected by root exudate molecules secreted in the rhizosphere region. PGPRs produce the chemicals which stimulate growth and functions of leguminous crops at different growth stages. They promote plant growth by nitrogen fixation, solubilization as well as mineralization of phosphorus, and production of phytohormone(s). The co-inoculation of PGPRs along with rhizobia has shown to enhance nodulation and symbiotic interaction. The recent molecular tools are helpful to understand and predict the establishment and function of PGPRs and plant response. In this review, we provide an overview of various growth promoting mechanisms of PGPR inoculations in the production of leguminous crops.
    [Show full text]
  • Analysis of Rhizobial Strains Nodulating Phaseolus Vulgaris From
    Systematic and Applied Microbiology 37 (2014) 149–156 Contents lists available at ScienceDirect Systematic and Applied Microbiology j ournal homepage: www.elsevier.de/syapm Analysis of rhizobial strains nodulating Phaseolus vulgaris from Hispaniola Island, a geographic bridge between Meso and South America and the first historical link with Europe a b,c d César-Antonio Díaz-Alcántara , Martha-Helena Ramírez-Bahena , Daniel Mulas , e b b,c e,∗ Paula García-Fraile , Alicia Gómez-Moriano , Alvaro Peix , Encarna Velázquez , d Fernando González-Andrés a Facultad de Ciencias Agronómicas y Veterinarias, Universidad Autónoma de Santo Domingo, Dominican Republic b Instituto de Recursos Naturales y Agrobiología, IRNASA (CSIC), Salamanca, Spain c Unidad Asociada Grupo de Interacción Planta-Microorganismo, Universidad de Salamanca-IRNASA (CSIC), Spain d Instituto de Medio Ambiente, Recursos Naturales y Biodiversidad, Universidad de León, Spain e Departamento de Microbiología y Genética, Universidad de Salamanca, Spain a r t i c l e i n f o a b s t r a c t Article history: Hispaniola Island was the first stopover in the travels of Columbus between America and Spain, and Received 13 July 2013 played a crucial role in the exchange of Phaseolus vulgaris seeds and their endosymbionts. The analysis of Received in revised form recA and atpD genes from strains nodulating this legume in coastal and inner regions of Hispaniola Island 15 September 2013 showed that they were almost identical to those of the American strains CIAT 652, Ch24-10 and CNPAF512, Accepted 18 September 2013 which were initially named as Rhizobium etli and have been recently reclassified into Rhizobium phaseoli after the analysis of their genomes.
    [Show full text]
  • Horizontal Transfer of Symbiosis Genes Within and Between Rhizobial Genera: Occurrence and Importance
    G C A T T A C G G C A T genes Review Horizontal Transfer of Symbiosis Genes within and Between Rhizobial Genera: Occurrence and Importance Mitchell Andrews 1,*, Sofie De Meyer 2,3 ID , Euan K. James 4 ID , Tomasz St˛epkowski 5, Simon Hodge 1 ID , Marcelo F. Simon 6 ID and J. Peter W. Young 7 ID 1 Faculty of Agriculture and Life Sciences, Lincoln University, P.O. Box 84, Lincoln 7647, New Zealand; [email protected] 2 Centre for Rhizobium Studies, Murdoch University, Murdoch 6150, Australia; [email protected] 3 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium 4 James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; [email protected] 5 Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland; [email protected] 6 Embrapa Genetic Resources and Biotechnology, Brasilia DF 70770-917, Brazil; [email protected] 7 Department of Biology, University of York, York YO10 5DD, UK; [email protected] * Correspondence: [email protected]; Tel.: +64-3-423-0692 Received: 6 May 2018; Accepted: 21 June 2018; Published: 27 June 2018 Abstract: Rhizobial symbiosis genes are often carried on symbiotic islands or plasmids that can be transferred (horizontal transfer) between different bacterial species. Symbiosis genes involved in horizontal transfer have different phylogenies with respect to the core genome of their ‘host’. Here, the literature on legume–rhizobium symbioses in field soils was reviewed, and cases of phylogenetic incongruence between rhizobium core and symbiosis genes were collated.
    [Show full text]
  • Selection of Optimal Rhizobia Strain for Crotalaria Longirostrata
    MQP-BIO-MB2-0914 SELECTION OF OPTIMAL RHIZOBIA STRAIN FOR CROTALARIA LONGIROSTRATA A Major Qualifying Project Report Submitted to the Faculty of the WORCESTER POLYTECHNIC INSTITUTE in partial fulfillment of the requirements for the Degree of Bachelor of Science in Biology and Biotechnology by _________________________ _________________________ Michael Isidoro Richard Messier April 30, 2009 Signature page APPROVED: _________________________ _________________________ Ally Hunter, M.S. Michael Buckholt, Ph.D. Biology & Biotechnology Biology & Biotechnology Major Advisor WPI Project Advisor Abstract Chipilin (Crotalaria longirostrata) is a leguminous food crop native to Mexico and El Salvador. There is incentive to produce Chipilin for ethnic markets in the northeast; however, attempts to grow this plant in New England have not been profitable because Chilipin’s optimal Rhizobium symbiont is unknown. Five Rhizobia strains were evaluated for their ability to form root nodules. Plant yield and minimum nitrogen fertilizer requirements were also measured across strains and three strains were identified to permit healthy chipilin growth in minimal Nitrogen fertilizer (5ppm). Nitrogenase activity was confirmed and quantified by a Ureide assay. Table of Contents Signature page ............................................................................................................................................... 1 Abstract ........................................................................................................................................................
    [Show full text]
  • Draft Genome Sequence of Type Strain HBR26T and Description of Rhizobium Aethiopicum Sp
    Lawrence Berkeley National Laboratory Recent Work Title Draft genome sequence of type strain HBR26T and description of Rhizobium aethiopicum sp. nov. Permalink https://escholarship.org/uc/item/7f20n7cx Journal Standards in genomic sciences, 12(1) ISSN 1944-3277 Authors Aserse, Aregu Amsalu Woyke, Tanja Kyrpides, Nikos C et al. Publication Date 2017-01-26 DOI 10.1186/s40793-017-0220-z Peer reviewed eScholarship.org Powered by the California Digital Library University of California Aserse et al. Standards in Genomic Sciences (2017) 12:14 DOI 10.1186/s40793-017-0220-z EXTENDED GENOME REPORT Open Access Draft genome sequence of type strain HBR26T and description of Rhizobium aethiopicum sp. nov. Aregu Amsalu Aserse1*, Tanja Woyke2, Nikos C. Kyrpides2, William B. Whitman3 and Kristina Lindström1 Abstract Rhizobium aethiopicum sp. nov. is a newly proposed species within the genus Rhizobium. This species includes six rhizobial strains; which were isolated from root nodules of the legume plant Phaseolus vulgaris growing in soils of Ethiopia. The species fixes nitrogen effectively in symbiosis with the host plant P. vulgaris, and is composed of aerobic, Gram-negative staining, rod-shaped bacteria. The genome of type strain HBR26T of R. aethiopicum sp. nov. was one of the rhizobial genomes sequenced as a part of the DOE JGI 2014 Genomic Encyclopedia project designed for soil and plant-associated and newly described type strains. The genome sequence is arranged in 62 scaffolds and consists of 6,557,588 bp length, with a 61% G + C content and 6221 protein-coding and 86 RNAs genes. The genome of HBR26T contains repABC genes (plasmid replication genes) homologous to the genes found in five different Rhizobium etli CFN42T plasmids, suggesting that HBR26T may have five additional replicons other than the chromosome.
    [Show full text]
  • Diversity of Rhizobium-Phaseolus Vulgaris Symbiosis: Overview and Perspectives
    Plant and Soil 252: 11–23, 2003. © 2003 FAO. Published by Kluwer Academic Publishers. Printed in the Netherlands. 11 Diversity of Rhizobium-Phaseolus vulgaris symbiosis: overview and perspectives Esperanza Mart´ınez-Romero∗ Centro de Investigaci´on sobre Fijaci´on de Nitr´ogeno. UNAM. Ap. Postal 565-A. Cuernavaca, Morelos, M´exico Received 11 October 2001. Accepted in revised form 28 March 2002 Key words: biodiversity, nitrogen fixation, nodulation, Phaseolus vulgaris, Rhizobium, symbiosis Abstract Common bean (Phaseolus vulgaris) has become a cosmopolitan crop, but was originally domesticated in the Americas and has been grown in Latin America for several thousand years. Consequently an enormous diversity of bean nodulating bacteria have developed and in the centers of origin the predominant species in bean nodules is R. etli. In some areas of Latin America, inoculation, which normally promotes nodulation and nitrogen fixation is hampered by the prevalence of native strains. Many other species in addition to R. etli have been found in bean nodules in regions where bean has been introduced. Some of these species such as R. leguminosarum bv. phaseoli, R. gallicum bv. phaseoli and R. giardinii bv. phaseoli might have arisen by acquiring the phaseoli plasmid from R. etli. Others, like R. tropici, are well adapted to acid soils and high temperatures and are good inoculants for bean under these conditions. The large number of rhizobia species capable of nodulating bean supports that bean is a promiscuous host and a diversity of bean-rhizobia interactions exists. Large ranges of dinitrogen fixing capabilities have been documented among bean cultivars and commercial beans have the lowest values among legume crops.
    [Show full text]